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Abstract. Let OK be a mixed characteristic complete DVR with perfect residue field k and
fraction field K. It is a celebrated result of Berthelot and Ogus that for a smooth proper formal
scheme X/OK there exists a comparison between the de Rham cohomology groups Hi

dR(X/OK)
and the crystalline cohomology groups Hi

crys(Xk/W (k)) of the special fibre, after tensoring with
K. In this article, we use the stacky perspective on prismatic cohomology, due to Drinfeld and
Bhatt–Lurie, to give a version of this comparison result with coefficients in a perfect complex
of prismatic F -crystals on X. Our method is of an integral nature and suggests new tools to
understand the relationship between torsion in de Rham and crystalline cohomology.
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1. Introduction

Let k/Fp be a perfect extension, set W =W (k) and K0 = Frac(W ), and let K/K0 be a finite
totally ramified extension of degree e and with uniformiser π. Fix X to be a smooth proper
formal OK-scheme. One of the major goals of p-adic Hodge theory is the comparison of various
p-adic cohomology theories attached to X, and for which one of the initial motivations was the
crystalline-de Rham comparison of Berthelot–Ogus.

To explain this, recall that for a smooth proper morphism f : T → S of smooth complex varieties
and a sufficiently small disk D ⊆ San, the Gauss–Manin connection induces an isomorphism,

∇GM : Rif∗Ω
•
T an/San |D ≃ OD ⊗C HidR(Ts0/C), (1)

for any s0 ∈ D. Analogously, envisioning Spf(OK) as a small disk around Spec(k), one anticipates
that the de Rham cohomology HidR(X/OK) depends only on the special fibre Xk. The crystalline
cohomology groups Hicrys(Xk/W ) were defined to realise this idea (cf. [Ber74, BO78]).

Using the formalism of crystalline cohomology, the analogue of (1) becomes the precise
mathematical statement that there is a functorial isomorphism of OK-modules,

HidR(X/OK) ≃ Hicrys(Xk/W )⊗W OK , if e ⩽ p− 1. (2)

Thus, for small e, we do indeed see that HidR(X/OK) depends functorially only on Xk.
In their celebrated paper [BO83], Berthelot and Ogus observed that the analogue of (2) always

holds rationally, regardless of e, i.e. there is a functorial isomorphism of K-vector spaces,

HidR(XK/K) = HidR(X/OK)⊗OK
K ≃ Hicrys(Xk/W )⊗W K. (3)

Thus, the rational de Rham cohomology HidR(XK/K) also depend functorially only on Xk.
The Berthelot–Ogus isomorphism has become nearly indispensable in arithmetic geometry.

But, this classical perspective is lacking in two significant ways:
(I) the classical setup of the Berthelot–Ogus comparison does not allow for “(integral) coeffi-

cients”,
(II) the method of proof does not lend itself to relating the integral structures HidR(X/OK) and

Hicrys(Xk/W ), e.g. relating their torsion subgroups.
Our goal in this article is to explain how the recent advances in integral p-adic Hodge theory, in
the form of Bhatt and Scholze’s prismatic cohomology (see [BS22]) and its stacky reinterpretation
by Drinfeld and Bhatt–Lurie (see [Dri24, BL22a]), helps address these insufficiencies.

For now, we state our analogue of the Berthelot–Ogus isomorphism with coefficients where we
will use ϕ to denote Frobenius, in several different contexts.

Theorem A. Let E be a perfect complex of prismatic crystals on X. Then, for n ⩾ ⌈logp( e
p−1)⌉

there exists a natural isomorphism of n-twisted de Rham and crystalline cohomology groups,

ι(n) : Hi,(n)

dR (E) ≃ ϕ∗nHicrys(E
crys
k )⊗W OK .

Moreover, a Frobenius structure φ : ϕ∗E[1/I∆]
∼−→ E[1/I∆] gives rise to a natural commutative

diagram of isomorphisms,

Hi,(n)

dR (E)⊗OK
K ϕ∗nHicrys(E

crys
k )⊗W K

HidR(X/OK ,E
dR)⊗OK

K Hicrys(Xk/W,E
crys
k )⊗W K.

ι(n)

∼

φ
(n)
dR

≀ φ
(n)
crys≀

∼

Thus, the cohomology groups Hi,(n)

dR (E) and Hi
dR(X/OK ,E

dR)⊗OK
K admit a W -descent and a

K0-descent, respectively. Moreover, these groups only depend functorially on the pair (Xk,Ek).

In the rest of this introduction we shall explain Theorem A more precisely, and indicate how
it provides new tools for comparing torsion in de Rham and crystalline cohomologies.
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A prismatic analogue of Dwork’s trick. The restriction on e appearing in (2) can be
motivated via the isomorphism (1) and its setup: for e ⩾ p the ‘radius’ of Spf(OK), intuitively
p−1/e, is too large to support a convergent connection.

Now, note that the ‘Frobenius’ ϕ(x) = xp on the open p-adic unit disk D is contracting:
ϕn(B(r)) ⊆ B(rp

n
), where B(t) = {|x| ⩽ t} ⊆ D. So, for a vector bundle F on D, we have

ϕ∗n(F|B(r)) = ϕ∗n(F|B(rpn )). Thus, twisting by Frobenius increases the radius of triviality, an
observation known as Dwork’s trick.

We would like to apply this idea to the ‘disk’ Spf(OK). By (2) it would suffice to twist enough
number of times to reduce from radius p−1/e to radius p−1/(p−1), i.e. twist a = ⌈logp( e

p−1)⌉ number
of times (cf. [Kat73, Section 3]). And, indeed, by inspecting the proof of (3) reveals the use of a
Dwork’s-trick-like isomorphism:

X(a)

p=0 ≃ X
(a)

k ⊗k OK/p, (4)
where (−)(a) denotes the relevant Frobenius twist of the scheme. Then, (3) follows as the relative
Frobenius maps Xp=0 → X(a)

p=0 and Xk → X
(a)
k induce isogenies on crystalline cohomology.

Unfortunately, this idea lacks firm foundations because there is no Frobenius map on Spf(OK).
While there have been various attempts to address this issue, most notably Ogus’ introduction of
the convergent site (e.g. see [Ogu84]), they fail to address (II) and (to a lesser extent) (I).

To provide full and firm foundations for an analogue of Dwork’s trick, we appeal to the stacky
interpretation of prismatic cohomology. From the morphism f : X → Spf(OK) one produces a
diagram of (formal) stacks,

XdR X∆ (Xk/W )crys

Spf(OK) O∆
K Spf(W ),

ρX,dR

fdR f∆

ρX,crys

fcrys

ρdR ρcrys

For a perfect complex E on X∆, i.e. a perfect complex of prismatic crystals, we have:

ρ∗dRf
∆
∗ E ≃ fdR∗ EdR =: RΓdR(E

dR), ρ∗crysf
∆
∗ E ≃ f crys∗ E

crys
k =: RΓcrys(E

crys
k ),

where we are suppressing derived notation and, by definition, EdR = ρ∗dR,XE and E
crys
k = ρ∗crys,XE.1

Unlike Spf(OK), the stack O∆
K admits a Frobenius FOK

, and so we can form the twisted maps,

ρ(n)

dR := FnOK
◦ ρdR, ρ(n)

crys := FnOK
◦ ρcrys.

Then, we define the n-twisted de Rham and crystalline cohomology complexes,

RΓ(n)

dR(E) :=
(
ρ(n)

dR

)∗
f∆
∗ E, RΓ(n)

crys (E) :=
(
ρ(n)
crys

)
f∆
∗ E ≃ ϕ∗nRΓ((Xk/W )crys,E

crys
k ),

and the n-twisted de Rham and crystalline cohomology groups are their cohomology groups.
Subsequently, we view the following as a prismatic incarnation of Dwork’s trick.

Theorem B (see Theorem 3.12). For any n ⩾ a, the following compositions,

Spf(OK)
ρ
(n)
dR−−−→ O∆

K

ρ
(n)
crys←−−−− Spf(W )

str.←−−− Spf(OK),

(where the rightmost map is the natural one) are naturally identified in Map(Spf(OK),O∆
K).

Remark 1. When e = 1, and thus a = 0, Theorem B is due to Bhatt–Lurie when X = Spf(Zp)
(see [BL22a, Proposition 3.6.6]), and in general due to Imai–Kato–Youcis (see [IKY25, Theorem
3.19]). So, we really do view the main import of Theorem B as an analogue of Dwork’s trick.

From Theorem B, the first part of Theorem A easily follows. For the second part, the main
observation is that a Frobenius structure φ on E induces one on Rf∆

∗ E, and that pulling it back
along ρ(n)

dR and ρ(n)
crys, induces isogenies labelled φ(n)

dR and φ(n)
crys, as in loc. cit., respectively.

1If E is a vector bundle, then EdR is equivalent to a vector bundle with integrable connection on X, and E
crys
k to

a crystal on (Xk/W )crys. Moreover, their cohomologies recover the usual de Rham and crystalline cohomologies.
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A Breuil–Kisin reinterpretation. One can make the analogy with Dwork’s trick even stronger,
and in doing so connect our work to previous incarnations of Dwork’s trick appearing in integral
p-adic Hodge theory, e.g. those appearing in [HK94, Section 5], [Tsu99, Section 4.4], [Fal99,
Section 2], [Bre97, Section 6] and [Kis06, Section 1.2].

Namely, there exists a Frobenius-equivariant flat Breuil–Kisin covering ρS : Spf(S) → O∆
K

where S :=W JuK is equipped with the Witt vector Frobenius on W and ϕ(u) = up. We think
of Spf(S) as a closed-times-open bi-disk, where Spf(W ) has radius p−1/p. Let E denote the
minimal polynomial for π relative to W . Then, as E has degree e we indeed see that the closed
embedding,

Spf(OK) Spf(S).
(E=0)

does act as a closed subdisk of radius p−1/e. In the prismatic world, the role of an appropriately-
sized closed subdisk (i.e. where we expect convergence) is played by a morphism,

ρS̃ : Spf(S̃)→ O∆
K , for S̃ := S

[{
umẽ

m!

}
m⩾1

]∧
p
,

and where ẽ = ⌈ e
p−1⌉ is the ratio of the convergent radius and the radius of Spf(OK).2

We then have the following diagram, which conveys the full strength of Dwork’s trick:

Spf(OK) O∆
K Spf(W )

Spf(S̃) Spf(S) Spf(S̃),

ρ
(n)
dR

str.

i

ρ
(n)
crys

(u=0)ρ
(n)

S̃ ρ
(n+1)
S

ρ
(n)

S̃
s (5)

where i corresponds to the map S̃ ↠ OK sending u to π, the lower horizontal arrows correspond
to the natural inclusion S ↪→ S̃, and s comes from the natural map W → S̃, which induces a
map in the absolute prismatic site (OK)∆.

A more refined version of Dwork’s trick in the prismatic setting, is the following.

Theorem C (see Proposition 3.24). For any uniformiser π and any integer n ⩾ a, the diagram
(5) is naturally 2-commutative.

To explain the implications of Theorem (C), fix a perfect complex E on X∆ and n ⩾ a. For
notational simplicitly, we further write M(n+1) :=

(
ρ(n+1)

S

)∗
f∆
∗ E and M̃ (n) :=

(
ρ(n)

S̃

)∗
f∆
∗ E. The

commutativity of the left square of (5) implies that we have have isomorphisms,(
ρ(n)

dR

)∗
f∆
∗ E ≃M(n+1)/E ≃ i∗M̃ (n).

The second identification here is the analogue of the equality ϕ∗n(F|B(r)) = ϕ∗n(F|B(rpn )) from the
classical version of Dwork’s trick. The commutativity of the right square gives us identifications,(

ρ(n)
crys

)∗
f∆
∗ E ≃M(n+1)/u ≃ M̃ (n)/u.

On the other hand, the commutativity of the right square with the section s further gives us that,

M̃ (n)/u ≃ s∗(ρ(n)
crys)

∗f∆
∗ E. (6)

The map ρ(n)
crys is obtained by applying (−)∆ to the map Spec(k)

π=0−−→ Spf(OK) precomposed
with the (n+1)th power of the Frobenius. Thus, we view (6) precisely as the expected constancy
after restricting to the smaller subdisk Spf(S̃), as suggested by Dwork’s trick.

Thus, we can ultimately give a refinement of Theorem A. Namely, there is:
(a) a canonical isomorphism of perfect complexes over OK :

M(n+1)/E ≃M(n+1)/u⊗W OK , (7)
2The prism (S̃, (p)) is a modification (better suited to the ramified situation) of the Breuil prism.
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(b) an identification of the source of (7) with
(
ρ(n)

dR

)∗
f∆
∗ E,

(c) the ‘constancy’ of M(n+1)/u, with constant value
(
ρ(n)
crys

)∗
f∆
∗ E.

Implications for crystalline and de Rham torsion. The isomorphism (3) tells us that the
(free) ranks of de Rham and crystalline cohomology must always agree. A much more subtle
question is to determine the relationship between their respective torsion submodules.

For clarity, let us write

Hicrys(Xk/W )[p∞] ≃
⊕r

i=1W/p
ai , HidR(X/OK)[p∞] ≃

⊕s
j=1 OK/π

bj .

The equality r = s holds (e.g. see [ČK19, Remark 7.8]), but relating ℓicrys =
∑r

i=1 ai and
ℓidR =

∑s
j=1 bj seems difficult. To wit, [ČK19, Question 7.13]) asks if ℓidR ̸= e · ℓicrys can occur.

We discuss such examples below (see Examples 4.21 and 4.32) giving an affirmative answer to
this question, and we expect that equality does not hold ‘generically’ for large i and e.

But, in fact, Theorem A and the isomorphism (7) gives us tools to study the precise relationship.

Conjecture α (see Conjecture 4.19). The inequality ℓicrys ⩽ ℓidR ⩽ e · ℓicrys always holds.

Conjecture α seems difficult even in the simplest non-trivial cases. But, in Section 4.4 we
explain how Dwork’s trick, specifically the isomorphism (7), allows us to transform Conjecture α
into questions about u∞-torsion in prismatic cohomology, which possesses finer structures given
the extensive study in recent years (e.g. [LL23, GL25]).

In Appendix A, we give evidence for these conjectural properties of the u∞-torsion in Breuil–
Kisin cohomology, by verifying that our main such conjecture (see Conjecture 4.26) holds in a
small number of non-trivial cases (see Theorem A.20).

Acknowledgements. The authors thank Piotr Achinger, Naoki Imai, Hiroki Kato, Tong Liu,
Dat Pham and Takeshi Tsuji for helpful discussions. We especially thank Shizhang Li for patiently
answering many questions of ours. This collaboration started while the second author was hosted
at the University of Tokyo by Naoki Imai, and we thank him for his hospitality. The work of first
named author is partially supported by a Simons Collaboration grant on Perfection, Algebra and
Geometry and partially by JSPS KAKENHI grant numbers 22F22711 and 22KF0094.

Global notation and conventions
Throughout this article we fix the following notation.

⋄ p is a prime,
⋄ k is a perfect field of characteristic p,
⋄ FX (resp. FR) is the absolute Frobenius on

an Fp-scheme X (resp. Fp-algebra R),
⋄ for a ring R and R-module M we write its

length as ℓR(M),
⋄ W :=W (k) the ring of Witt vectors,
⋄ K0 = Frac(W ),
⋄ K a finite totally ramified extension of K0,
⋄ OK the ring of integers of K,
⋄ π a uniformiser of K,

⋄ Eπ = E := min.polyOK/W (π) ∈W [u],
⋄ e = [K : K0],
⋄ ẽ = ⌈ e

p−1⌉,
⋄ a = ⌈logp

(
e

p−1

)
⌉.

⋄ K is an algebraic closure of K and C = K̂,
⋄ Ainf = Ainf(OC),
⋄ Acrys = Acrys(OC),
⋄ π♭ := (π, π1/p, · · · ),
⋄ θ : Ainf → OC is Fontaine’s map,
⋄ θ(-1) := θ ◦ ϕ−1,
⋄ ξ = p− p♭ and ξ(1) = ϕ(ξ).

We also the phrase formal stack over Zp to mean a stack on the category of p-nilpotent rings,
equipped with the fpqc topology. For a stack S on all rings with the fpqc topology, we denote by
Ŝ its p-adic completion, which means its restriction to the full subcategory of p-nilpotent rings.
A morphism of formal stacks f : X → Y over Zp is called a flat surjection if for every p-nilpotent
ring R and and object y of Y (R), there exists a faithfully flat map R→ R′ and an object x′ of
X(R′) such that f(x′) ≃ y|R′ is in Y (R′).
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2. Preliminaries on prismatic theory

In this section, we give a minimal recollection on parts of the prismatic theory we need in the
sequel. We do this mainly as a means to set notation and to refer the reader to more in-depth
discussions (e.g. [Bha23, BL22a, BL22b, BS22, BS23, Dri24]) for details.

In addition to global notation and conventions, we use the following notation in this section.

Notation 2.1. Let us fix the following notation:

• X is a quasi-syntomic p-adic formal scheme,
• W is the p-typical Witt vector group scheme,
• δ : W→ W the usual δ-structure,
• F : W→ W is the usual Frobenius lift,

• V : W→ W is the usual Verschiebung map,
• [−] : Â1 → W the Teichmüller lift,
• γ0 : W→ Ga the zeroth component map.

Finally, we shall freely use the notion of quasi-ideals d : I → A (which we sometimes write as
[I → A] for clarity) and their quotients Cone(d) (where we occasionally write A/I) as in [Dri21].

2.1. Prismatisation and prismatic (F -)crystals. We begin by recalling the prismatisation
of X, a formal stack over Zp, due to Drinfeld and Bhatt–Lurie.

Definition 2.2 (Prismatisation, [Bha23, Definition 5.1.6]). Let us recall the following:
(1) For a p-nilpotent ring R a Cartier–Witt divisor over R is a map of invertible W(R)-modules

α : I → W(R) such that γ0(α(I)) is nilpotent and δ(α(I)) generates W(R).
(2) The prismatisation X∆ of X is the formal stack over Zp associating to any p-nilpotent

ring R the groupoid of pairs (α : I → W(R), s) where α is a Cartier–Witt divisor over R,
and s : Spec(W(R)/I)→ X is a morphism of (derived) schemes.3

If X = Spf(R), then we write R∆ instead of X∆. We write O∆ for the structure sheaf of X∆.

The formal stack X∆ over Zp carries a Frobenius lift denoted FX (or FR when X = Spf(R)).4

For a p-nilpotent ring R, the map FX : X∆(R)→ X∆(R) associates to the pair (α : I → W(R), s)
the pair (F ∗(α) : F ∗(I) → W(R), F ∗(s)), where F is the Frobenius on W. Here F ∗(s) denotes
the composition Spec(W(R)/F ∗(I))

F−→ Spec(W(R)/I)
s−→ X.

By a prismatic crystal on X we mean a quasi-coherent object of the derived ∞-category,

D(X∆) := lim
Spec(R)→X∆

D(R),

where Spec(R)→ X∆ travels over morphisms to X∆ from the spectra of p-nilpotent rings. By a
perfect prismatic crystal we mean an object of the full (∞-)subcategory,

Perf(X∆) := lim
Spec(R)→X∆

Perf(R).

We define the category Vect(X∆) of prismatic crystals in vector bundles analogously.
We frequently use another more down-to-earth interpretation of prismatic crystals using objects

(A, I) of the absolute prismatic site X∆. We let ϕA denote the Frobenius lift on a prism (A, I).

Definition 2.3 (Absolute prismatic site, [BS23]). The absolute prismatic site X∆ of X is opposite
to the category5 of bounded prisms (A, I) equipped with a morphism s : Spf(A/I) → X and
endowed with the flat topology.6 If X = Spf(R), we write R∆ instead of X∆. We denote by O∆

the sheaf associating A to (A, I), and let ϕ∆ denote the endomorphism restricting to ϕA on each
(A, I).

3Technically, W(R)/I = cone(α) need not be a discrete ring and, in general, it is a 1-truncated animated ring.
See [Dri24, Paragraph 1.3.5] for an elementary description of the groupoid of maps Spec(W(R)/I) → X.

4Technically, this notation is overloaded if X is an Fp-scheme, as it could also mean the absolute Frobenius
there. But, we hope the meaning is clear to the reader from the context.

5As is standard, we will conflate X∆ and its opposite category, often writing morphisms in X∆ as if they were
in Xop

∆ . Additionally, we will almost always omit the structure map s from the notation, just writing (A, I).
6More precisely, the topology generated by those collection of morphisms {(A, I) → (Am, Im)}m∈M such that

either {Spf(Am) → Spf(A)} is a Zariski cover or M = {1} and A → A1 is (p, I)-adically faithfully flat.
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For any object (A, I) of X∆, note that one can construct a Frobenius-equivariant morphism
ρ(A,I) : Spf(A) → X∆ as follows: Consider a morphism g : Spec(R) → Spf(A), where R is a
p-nilpotent ring. As A is a δ-ring, therefore, the universal property of Witt vectors gives us a
morphism A→ W(R). Then, the Cartier–Witt divisor over R corresponding to the composition
ρ(A,I) ◦ g is the map α : I ⊗A W(R)→ W(R). Moreover, as cone(α) annihilates A, so we get an
induced map,

Spec(cone(α))
g−→ Spf(A/I)

s−→ X.

Thus, we have produced an element ρ(A,I) ◦ g in X∆(R) as desired. This map is functorial in the

sense that if (A, I)→ (B, J) is a map in X∆, then the composition Spf(B)→ Spf(A)
ρ(A,I)−−−→ X∆

is naturally identified with the map ρ(B,J).

Example 2.4. Suppose that R is a quasi-regular semi-perfectoid algebra (e.g. perfectoid) in
the sense of [BMS19, Definition 4.20]. Then, from [BS22, Section 7.1] there exists an initial
object (∆R, IR) of R∆ (e.g. if R is perfectoid, then ∆R = Ainf(R)). Additionally, the natural map
ρ(∆R,IR) : Spf(∆R)→ R∆ is an isomorphism (see [BL22a, Lemma 6.1]).

Proposition 2.5 ([BL22b, Theorem 6.5]). The morphisms ρ(A,I) induce equivalences

D(X∆) ≃ D(X∆) ≃ lim
(A,I)∈X∆

D(A),

which restrict to equivalences on the full subcategories of perfect complexes and vector bundles.

There is a natural map u : X∆ → Cart :=
[
Â1/Gm

]
associating to a pair (α : I → W(R), s) the

generalised Cartier divisor I ⊗W(R),γ0 R→ R, using the interpretation of the target as in [BL22a,
Section 3.1]. We let I∆ ⊆ O∆ denote the pullback under u of the tautological invertible ideal
sheaf on Cart. Under the equivalence in Proposition 2.5, the pair I∆ ⊆ O∆ and endomorphism
FX of O∆ correspond to the pair I∆ ⊆ O∆ and endomorphism ϕ∆ of O∆, where I∆(A, I) := I.

Definition 2.6. A perfect prismatic F -crystal on X∆ (resp. X∆) is a perfect complex E on
X∆ (resp. X∆) and an isomorphism φE : F

∗
X(E)[1/I

∆] ∼−→ E[1/I∆] of O∆[1/I∆]-modules (resp. an
isomorphism φE : ϕ

∗
∆(E)[1/I∆]→ E[1/I∆] of O∆[1/I∆]-modules),7 called a Frobenius structure. Denote

the category of perfect prismatic F -crystals on X∆ (resp. X∆) by Perfφ(X∆) (resp. Perfφ(X∆)).

From Proposition 2.5, it easily follows that there are natural identifications,

Perfφ(X∆) ≃ Perfφ(X∆) ≃ lim
(A,I)∈X∆

Perfφ(A, I), (2.1)

where Perfφ(A, I) denotes the category of perfect complexes of A-modules M equipped with an
isomorphism of A-modules φM : (ϕ∗AM)[1/I] ∼−→M [1/I]. Due to these equivalences, we shall often
implicitly identify the categories in (2.1).

2.2. Absolute pushforwards and relative prismatic cohomology. Let f : X → Y be a
morphism of quasi-syntomic p-adic formal schemes, and note that we have the following:

(1) A morphism of formal stacks over Zp,

f∆ : X∆ → Y ∆, (α : I → W(R), s) 7→ (α : I → W(R), f ◦ s).

(2) A cocontinuous morphism of ringed sites,

f∆ : X∆ → Y∆, ((A, I), s) 7→ ((A, I), f ◦ s).

7Observe that as I∆ ⊆ O∆ is a Cartier divisor, therefore, for any morphism Spec(R) → X∆, the open subscheme
Spec(R)− V (I∆(R)) ⊆ Spec(R) is affine (see [SP, Tag 07ZT]) and we denote by O∆[1/I∆](R) its global sections.
The sheaf O∆[1/I∆] admits a similar definition.

7
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The preceding morphisms thus naturally induce morphisms of ∞-categories,

Rf∆
∗ : D(X∆)→ D(Y ∆), and R(f∆)∗ : D(X∆,O∆)→ D(Y∆,O∆),

These two pushforwards match under the equivalence in Proposition 2.5, and so we shall often
implicitly identify them.

Let (A, I) be an object of Y∆ and E an object of D(X∆). Then, we define

RΓ(X/(A, I),E) := Lρ∗(A,I)Rf
∆
∗ E.

When there is no chance for confusion, we shall shorten this notation to RΓA(E) and denote its
cohomology groups by HiA(E). These cohomology groups may be computed site-theoretically as
the cohomology of (the pullback of) E on the relative prismatic site (X/(A, I))∆ as in [BS22].

This interpretation in terms of relative prismatic cohomology allows one to produce from a
Frobenius structure φE on E a morphism F ∗

Y (Rf
∆
∗ E)[1/I

∆] → (Rf∆
∗ E)[1/I

∆] of O∆[1/I∆]-modules
(e.g. see [GR24, Construction 7.6]). We abuse notation and denote this map by Rf∆

∗ φE.

Theorem 2.7 ([GR24, Corollary 5.16 and Theorem 8.1]). Let f : X → Y be a smooth proper
morphism of smooth formal OK-schemes. Then, Rf∆

∗ E is a perfect prismatic crystal on Y ∆ for
any perfect prismatic crystal E on X. Moreover, E is equipped with a Frobenius structure φE,
then Rf∆

∗ φE is a Frobenius structure on Rf∆
∗ E.

2.3. The prismatisation of OK . We now record some points of O∆
K that play a central role in

our proof of the twisted crystalline-de Rham comparison (see Theorem B).

2.3.1. The (n-twisted) Breuil–Kisin prism. Let S :=W JuK and recall that E = Eπ in S is
the Eisenstein polynomial of a uniformiser π of OK . We define the Breuil–Kisin prism to be the
pair (S, E), where S is equipped with the Frobenius lift

ϕS : S→ S,
∑

k∈N aku
k 7→

∑
k∈N ϕW (ak)u

pk.

Observe that the map sending u to π induces an isomorphism S/E ∼−→ OK , and we denote
the inverse of this map as nat : OK

∼−→ S/E. Then, we may view the pair (S, E) as an object
of (OK)∆ with the map Spf(S/E) → Spf(OK) induced by nat. Additionally, we shorten the
notation ρ(S,E) to ρS or ρπ.

Proposition 2.8. The map ρS : Spf(S)→ O∆
K is a flat surjection.

Proof. Note that ϕS : Spf(S)→ Spf(S) is a flat surjection. So, it is enough to show that ρS ◦ϕS
is a flat surjection. But, from the commutativity of triangle (2) in diagram (2.8) of Proposition
2.13, it is then sufficient to show that the composition Spf(Ainf)→ O∆

K (see Section 2.3.5 for this
map), is a flat surjection. By using the identification in Example 2.4, we are further reduced to
showing that the map O∆

C → O∆
K is a flat surjection. The latter follows from [BL22b, Lemma

6.3], as OK → OC is quasi-syntomic (e.g. see [IKY24, Lemma 1.15]). □

For any n ⩾ 0, set E(n) := E(n)
π := ϕnS(Eπ). Then, with S still equipped with the Frobenius

lift ϕS, the pair (S, E(n)) is a prism called the (n-twisted) Breuil–Kisin prism, which coincides
with the usual Breuil–Kisin prism when n = 0. The n-fold self-composition of the Frobenius ϕnS
induces a map,

ϕ
n
S : S/E → S/E(n),

and composing this with nat endows (SR, (E
(n))) with the structure of an object of (OK)∆.

Additonally, we shorten ρ(S,E(n)) to ρ(n)

S or ρ(n)
π , noting the change in index.

It is clear that ϕnS : S→ S is a flat surjection which induces a morphism (S, (E))→ (S, E(n))
in (OK)∆. Using this and the fact that ρS is Frobenius-equivariant, we have the following
identification in Map(Spf(S),O∆

K):

ρ(n)

S ≃ F
n
OK
◦ ρS. (2.2)
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2.3.2. The product of Breuil–Kisin prisms. Breuil–Kisin prisms depend on the choice of
E = Eπ, and thus on the choice of the uniformiser π. To show the independence of our later
constructions of this choice, in this section, we study the product of Breuil–Kisin prisms for
different choices of the uniformiser.

Let us fix another uniformiser π′ of OK . Let S⊗̂ZpS be shorthand for the (p,Eπ, Eπ′)-adic
completion of S⊗Zp S, and set

J := ker(S⊗̂ZpS) ↠ OK ,

where the surjective map denotes the composition of the multiplication map with nat. We define
the mixed Breuil–Kisin prism to be

Sπ,π′ = (S⊗̂ZpS){ JEπ
}∧δ ,

where the right-hand side denotes the (p,Eπ)-adic completion of the δ-algebra obtained by freely
adjoining to (S⊗̂ZpS) the elements j

Eπ
, for j in J .8 Let us set Iπ,π′ ⊆ Sπ,π′ to be the ideal

generated by Eπ, or equivalently, by Eπ′ .
Let us observe that there are natural maps of prisms S p1−→ Sπ,π′

p2←− S coming from projection
and, by our setup, the following two compositions coincide:

OK
nat−−→ Sπ/Eπ

p1−→ Sπ,π′/Iπ,π′
p2←− S/Eπ′

nat←−− OK .

Thus, (Sπ,π′ , Iπ,π′) has an unambiguous structure as an element of (OK)∆, and we use ρπ,π′ to
denote the corresponding map Spf(Sπ,π′)→ O∆

K .

Proposition 2.9. The object (Sπ,π′ , Iπ,π′) is the product of (S, Eπ) and (S, Eπ′) in (OK)∆.
Moreover, the following diagram

Sπ,π′ S

S O∆
K ,

p1

p2 ρπ,π′ ρπ

ρπ′

is 2-commutative, and its outer square is 2-cartesian.

Proof. The first claim follows from from the same argument given in [DLMS24, Example 3.4].
For the second claim, consider morphisms f, g : S ⇒ R for a p-nilpotent ring R, such that the
compositions ρπ ◦f and ρπ′ ◦g are identified in Map(Spec(R),O∆

K). This gives us an isomorphism
of generalised Cartier–Witt divisors EπW(R) → W(R) and Eπ′W(R) → W(R), such that the
induced maps OK → S/Eπ → W(R)/Eπ and OK → S/Eπ′ → W(R)/Eπ′ are identified. From
the two maps S→ W(R) induced by f and g, we obtain a unique morphism S⊗̂ZpS→ W(R).
Our identification of Cartier–Witt divisors guarantees that this map uniquely upgrades to a
morphism Sπ,π′ → W(R). This map gives rise to a morphism h : S⊗̂ZpS→ R and it is easy to
see that p1 ◦ h = f and p2 ◦ h = g, as desired. □

2.3.3. The modified Breuil prism. We continue with the notation from Section 2.3.1. Define

S̃ = S
{ϕ(uẽ)

p

}∧
δ
= S

[
{umẽ

m! }m⩾1

]∧
p

=
{∑

m∈N am
um

⌊m/ẽ⌋! ∈ K0JuK : am converges p-adically to 0
}
,

endowed with the natural Frobenius lift

ϕS̃ : S̃ → S̃,
∑

m∈N am
um

⌊m/ẽ⌋! 7→
∑

m∈N ϕW (am)
upm

⌊m/ẽ⌋! .

The pair (S̃, p) is a prism which we call the modified Breuil prism.

8The ostensible asymmetry in the definition of Sπ,π′ is remedied by observing that it is naturally equal to
(S⊗̂ZpS){ J

Eπ′
}∧δ as Eπ/Eπ′ is a unit in Sπ,π′ (using [BS22, Lemma 2.24] and the fact that Eπ′ = 0 mod Eπ).
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Remark 2.10. There is another more well-known prism closely related to (S̃, p): the Breuil
prism (S, p) (hence the name ‘modified Breuil prism’ for (S̃, p)). The ring S is defined in exactly
the same manner as the ring S̃ but with each instance of ẽ replaced by e. There is a natural
injective homomorphism SR → S̃R which is an isomorphism if and only if e = 1 or p = 2.

Observe that
E(1) = Ep = upe = 0 mod pS̃,

where the first equality follows because ϕS is a Frobenius lift, the second because E is an
Eisenstein polynomial of degree e, and the final equality follows because

upe = pup(e−ẽ)(p− 1)!u
pẽ

p! ∈ pS̃R.

Thus, if S/E(1) → S̃/p is the induced map, then we obtain a map r : OK → S̃/p, which is defined
to be the following composition:

OK
nat−−→ S/E

ϕS−−→ S/E(1) → S̃/p. (2.3)

For n ⩾ 0, we may view (S̃, p) as an object of (OK)∆ with the OK-structure map Fn
S̃/p
◦ r. Denote

the corresponding map Spf(S̃)→ O∆
K by ρ(n)

S̃
or ρ̃(n)

π , dropping the superscript when n = 0. Then,
by the same logic as for Equation (2.2), we have the following identification in Map(Spf(S̃),O∆

K):

ρ(n)

S̃
≃ FnOK

◦ ρS̃ . (2.4)

Finally, the following proposition follows by noting that πmẽ

m! belongs to OK for all m ⩾ 1 (e.g.
see [BO83, Lemma 3.9]).

Proposition 2.11. There exists a unique arrow i making the following diagram commute:

W S̃ S

OK

i (E=0)

where the unlabelled arrows are the natural maps. Moreover, i is a PD-thickening.

2.3.4. The prism (W,p). The pair (W,p), where W is equipped with the natural Witt vector
Frobenius ϕW , is a prism. Via the natural map q : OK ↠ k, we may view (W,p) as an element of
(OK)∆, and we denote the corresponding map Spf(W )→ O∆

K by ρW .
Observe that we may also view (W,p) naturally as an object of k∆, and thus we also obtain a

map Spf(W )→ k∆ and denote it as ρW . The following proposition is clear by Example 2.4.

Proposition 2.12. The map ρW : Spf(W )→ O∆
K naturally factorises as

Spf(W )
ρW−−→ k∆ → O∆

K ,

and the first map is an isomorphism.

Now, for any n ⩾ 0, we may also consider (W,p) as an object of (OK)∆ using the OK-structure
map given by the composition

OK
q−→ k

Fn
k−−→ k,

and denote the corresponding map Spf(W )→ O∆
K by ρ(n)

W . Then, similarly to Equation (2.2), we
have the following identifications in Map(Spf(W ),O∆

K) and Map(Spf(W ), k∆), respectively:

ρ(n)

W ≃ F
n
OK
◦ ρW , ρ(n)

W ≃ F
n
k ◦ ρW . (2.5)
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2.3.5. The prism (Ainf , ξ
(1)). Endowed with the usual Frobenius lift ϕ, the pair (Ainf , ξ

(1)) is a
prism. We may then consider the following composition:

OK → OC
∼−→ Ainf/ξ

(1),

where the last isomorphism is induced by the map θ(-1) = θ ◦ ϕ−1. This endows (Ainf , ξ
(1)) with

the structure of an object of (OK)∆. We denote the corresponding map Spf(Ainf)→ O∆
K by ρinf .

Moreover, for any n ⩾ 0, we may consider the pair (Ainf , ξ
(n+1)), where as per usual ξ(n+1) =

ϕn(ξ(1)) = ϕn+1(ξ). This is also a prism with the same Frobenius lift ϕ. We may endow it with
the structure of an object of (OK)∆ via the OK-structure map

OK → OC
∼−→ Ainf/ξ

(1) ϕn−→ Ainf/ξ
(n+1).

We denote the corresponding map Spf(Ainf) → O∆
K by ρ(n)

inf . Then, by the same logic as for
Equation (2.2), one has the following identification in Map(Spf(Ainf),O

∆
K):

ρ(n)

inf ≃ F
n
OK
◦ ρinf . (2.6)

2.3.6. The prism (Acrys, p). Endowed with the usual Frobenius lift ϕ, the pair (Acrys, p) is a
prism. We may then consider the composition,

OK → OC
∼−→ Ainf/ξ

(1) → Acrys/p,

where the last map makes sense as ξ(1) ∈ pAcrys,9 and we endow (Acrys, p) with the structure of
an object of (OK)∆. We denote the corresponding map Spf(Acrys)→ O∆

K by ρcrys.
Moreover, for any n ⩾ 0, we may consider the pair (Acrys, p) as an object of (OK)∆ with the

OK-structure map

OK → OC
∼−→ Ainf/ξ

(1) → Acrys/p
ϕn−→ Acrys/p.

We denote the corresponding map Spf(Acrys) → O∆
K by ρ(n)

crys. Then, by the same logic as for
(2.2), one has the following identification in Map(Spf(Acrys),O

∆
K):

ρ(n)
crys ≃ FnOK

◦ ρcrys. (2.7)

2.3.7. Relationship between various prisms. In this section, our goal is to show the precise
relationship between various prisms discussed above. We do this in the form of the following
proposition, whose precise meaning and proof will be explained immediately afterwards.

Proposition 2.13. Let n ⩾ 0 and consider the following diagram:

Spf(Ainf) Spf(Acrys)

Spf(W )

O∆
K

Spf(S) Spf(S̃)

ρ
(n)
inf

αinf

ρ
(n)
crys

αcrys

ρ
(n+1)
W

s

ρ
(n+1)
S

ρ
(n)

S̃

(2)

(3)

(6)

(4)

(1)

(5)

(2.8)

Triangles (2), (3), (4), (5) and (6) commute for all n ⩾ 0, and triangle (1) commutes if and only
if n ⩾ a.

In Proposition 2.13 the unlabelled morphisms are the obvious ones, and the remaining
morphisms are explained as follows:

• The map αinf : S→ Ainf is a homomorphism of W -algebras, where we set αinf(u) = [π♭],

9Indeed, ξp = p! ξ
p

p!
belongs to pAcrys, and so ξ(1) = ξp = 0 mod pAcrys.
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• the map αcrys : S̃ → Acrys is the unique extension of αinf as the divided powers [π♭]mẽ

m!

belong to Acrys for all m ⩾ 0 (e.g. this follows from [BO83, Lemma 3.9]),10

• s : S̃ →W is the identity on W and sends u to 0.

Proof of Proposition 2.13. The proof of this proposition is largely straightforward, so we only
comment on the more non-obvious parts of the claim below. In particular, by definitions it is
clear that triangles (3), (4) and (5) are commutative.

Let us first show that the triangle (1) in diagram (2.8) commutes if and only if n ⩾ a. This
amounts to the claim that the following morphisms,

(S, E(n+1), ϕ
n+1
S ◦ nat) (S̃, p, Fn

S̃/p
◦ r) (W,p, Fn+1

k ◦ q),

where the third entry of each term indicates the OK-structure map, are morphisms in (OK)∆ if
and only if n ⩾ a. It is easy to see that the maps above are morphisms of prisms, and it remains
to show that the OK-structure agree. Diagrammatically, it is equivalent to the claim that the
following square:

S/E(1) S̃/p S̃/p k

S/E OK OK/π k,

Fn
S̃/p

ϕS

∼ ∼

Fn+1
k

where all the non-labelled arrows are the natural ones, commutes if and only if n ⩾ a. Writing
OK = W [π], it suffices to verify that starting from OK and travelling around the diagram in
both directions produces the same result for any x in W and π. It is easy to verify that the
composition of the arrows in both directions sends x to xpn+1 in S̃/p. Moreover, the composition
of the arrows along the right-hand side of the diagram sends π to 0, but the composition of the
arrows along the left hand side sends π to upn+1 in S̃/p. Thus, the diagram commutes if and
only if p divides upn+1 in S̃. This clearly happens if and only if pn+1 ⩾ pẽ, which is equivalent to
having that pn ⩾ e

p−1 , or equivalently, n ⩾ ⌈logp( e
p−1)⌉ = a, as claimed.

Next, to show that the triangle (2) in diagram (2.8) is commutative, by definitions it is enough
to establish that αinf is a map in (OK)∆. To get this claim, we must first show that αinf maps the
ideal (ϕS(E)) into the ideal (ξ̃). This amounts to showing that θ(αinf(E)) = 0, but this precisely
translates to having E(π) = 0. To show that the OK-structure maps are compatible, it suffices
to observe that

OK
∼−→ S/E

ϕS−−→ S/E(1) αinf−−→ Ainf/ξ
(1),

sends w in W to ϕ(w) in Ainf/ξ
(1) and sends π to [π♭]p. But, this is precisely the same as the

map OK → Ainf/ξ
(1) described in Section 2.3.5.

Finally, to establish that the triangle (6) in diagram (2.8) commutes, it is enough to show that
s is a morphism in (OK)∆. To this end, observe that the map S→W sending u to 0 does send
(E(n)) to (p) for any n ⩾ 1. Indeed, note that ϕn(E(u)) = E(up

n
), and so it is sent to E(0) in

W . But, as E is an Eisenstein polynomial, therefore, we must have E(0) = pv, for some unit v
in W . This establishes the claim and allows us to conclude. □

3. The twisted crystalline–de Rham comparison

In this section we provide a general comparison between the so-called twisted crystalline
realisation and twisted de Rham realisation of a perfect complex of prismatic F -crystals over OK .

We continue to use notation from global notation and conventions and Notation 2.1.

10Indeed, as ξ has divided powers in Acrys, it suffices to show that the image of [π♭]ẽ under the map θ : Ainf → OC

has divided powers. But, θ([π♭]ẽ) = πẽ which has divided powers in OK , and thus OC , by [BO83, Lemma 3.9].
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3.1. A stack-theoretic approach. We begin by explaining a conceptual way of proving the
twisted crystalline-de Rham comparison that is more in the spirit of [BO78].

3.1.1. The twisted crystalline realisation functor. We begin by studying several ways to
explicitly understand the stack k∆. The interested reader may consult [IKY25, Section 1.1.3] for
a more general discussion in an unramified and non-twisted setting.

Definition 3.1. The reduced n-twisted crystalline point of OK is the morphism of formal stacks
over Zp,

ρ(n)
crys : Spf(W ) −→ k∆,

for n ⩾ 0, which for a p-nilpotent ring R associates to a map Spec(R)→ Spf(W ) the Cartier–Witt
divisor W(R)

p−→ W(R) with structure map,

k ∼−→W/p
ϕW−−→W/p −→ W(R)/p

Fn

−−→ W(R)/p, (3.1)

where W/p→ W(B)/p is the map induced by the unique δ-ring map W → W(B) lifting W → B.
The n-twisted crystalline point of OK is the map ρ(n)

crys : Spf(W )→ O∆
K obtained as the following

composition:

Spf(W )
ρ
(n)
crys−−−→ k∆ → O∆

K ,

where the latter map is the obvious one.

Let us shorten ρ(0)
crys to ρcrys and ρ(0)

crys to ρcrys. Then, by the definition of the Frobenius maps
Fk : k

∆ → k∆ and FOK
: O∆

K → O∆
K , we have that for any n ⩾ 0.

ρ(n)
crys = FnOK

◦ ρcrys, ρ(n)
crys = Fnk ◦ ρcrys (3.2)

Remark 3.2. The appearance of the ϕW in (3.1) may seem artificial. To help demystify it,
observe that in general for a quasi-syntomic k-scheme Z there is an isomorphism between the
formal stack over W given by (Z/W )crys (e.g. as defined in [Bha23, Remark 2.5.12]) and the
pullback stack ϕ∗W (Z∆) (e.g. see [Bha23, Corollary 2.6.8 & Construction 3.1.1] or [IKY25, Lemma
1.6]). From this perspective, we may view ρcrys as the composition

Spf(W ) ∼−→ (k/W )crys ∼−→ ϕ∗W (k∆)
Fk−→ k∆.

This observation is important as the first isomorphism Spf(W )→ (k/W )crys is the one well-suited
to crystalline theory (e.g. it corresponds to the equivalence between (F -)crystals on (k/W )crys
and (ϕW -)modules overW ), and is also the reason why a Frobenius twist appears in the crystalline
comparison theorem (e.g. as in [BS22, Theorem 1.8]).

We define our twisted crystalline realisation functor as follows.

Definition 3.3. The n-twisted crystalline realisation is the functor,

D(n)
crys : Perf((OK)∆) −→ Perf(W ),

obtained as the pullback ρ(n)
crys.

Remark 3.4. For any object V of Perf((OK)∆), by Remark 3.2 one may also interpret D(n)
crys(V)

as (ϕnVcrys)(W ↠ k), where Vcrys is the perfect complex of crystals on (k/W )crys associated
to Vk via the equivalence in [GR24, Theorem 6.4], ϕ is the Frobenius morphism of topoi
(k/W )crys → (k/W )crys, and W ↠ k ≃W/p is the natural PD-thickening.

Proposition 3.5. For any n ⩾ 0, there is a natural identification of ρ(n)
crys and ρ(n)

crys with ρ(n+1)

W

and ρ(n+1)

W , respectively.
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Proof. By Equations (2.5) and (3.2), our definition of ρcrys, and Proposition 2.12 we are reduced
to showing that ρcrys = ρ(1)

W . But, by definition, to a p-nilpotent ring R and a map Spec(R)→
Spf(W ), the map ρ(1)

W associates the Cartier–Witt divisor d : W(R) ⊗W (p) → W(R), where
W → W(B) is the map of δ-rings obtained from W → B, and with the structure map

k
Fk−→ k −→ cone(d) −→ W(B)/p,

which clearly agrees with the object of O∆
K(R) associated to Spec(R)→ Spf(W ) by ρcrys. □

Combining this observation with Proposition 2.13 and the equivalence in [BL22a, Proposition
3.3.5], we obtain the following identifications.

Corollary 3.6. For any n ⩾ 0, uniformiser π of OK , and any object V of Perf((OK)∆), there is
a natural identification in Perf(W ):

D(n)
crys(V) ≃ ϕ∗(n+1)

W V(W,p) (ϕ∗(n+1)

S (V(S, Eπ)))/u.
∼

ψ
(n)
crys,π

(3.3)

Remark 3.7. The first isomorphism in (3.3) is truly canonical, but the second (while natural
in V) implicitly depends on the choice of a uniformiser π to define Eπ, and therefore the prism
(S, Eπ) in (OK)∆. This explains our reasoning for labelling the second map but not the first.

3.1.2. The twisted de Rham realisation functor. We now discuss a de Rham analogue of
the material from Section 3.1.1. The interested reader may consult [IKY25, Section 1.2] for a
more general discussion in the non-twisted setting.

Definition 3.8. The n-twisted de Rham point of OK is the morphism of formal stacks over Zp,

ρ(n)

dR : Spf(OK) −→ O∆
K ,

for n ⩾ 0, which for a p-nilpotent ring R associates to a map Spec(R)→ Spf(OK) the Cartier–
Witt divisor W(R)

p−→ W(R) with the structure map

OK −→ R = W(R)/VW(R)
F−→ W(R)/p

Fn

−−→ W(R)/p.

Let us shorten ρ(0)

dR to ρdR. Then, by the definition of the Frobenius map FOK
: O∆

K → O∆
K we

have that ρ(n)

dR = FnOK
◦ ρdR, for any n ⩾ 0.

Definition 3.9. The n-twisted de Rham realisation is the functor,

D(n)

dR : Perf((OK)∆) −→ Perf(OK),

given by pullback along ρ(n)

dR : Spf(OK)→ O∆
K .

We again wish to more concretely understand the twisted de Rham realisation using the
Breuil–Kisin prism, as in Corollary 3.6.

Proposition 3.10 ([IKY25, Proposition 1.15]). There is a canonical identification in Map(Spf(OK),O∆
K):

ρdR ≃ ρ(1)

S .

Corollary 3.11. For any n ⩾ 0, uniformiser π of OK , and any object V of Perf((OK)∆), the
following is a natural identification in Perf(OK):

ψ(n)

dR,π : D(n)

dR(V)
∼−→ ϕ∗(n+1)

S V(S, Eπ)/Eπ. (3.4)

3.1.3. The twisted crystalline-de Rham comparison (stacky form). We are now ready to
state and prove the stacky version of the twisted crystalline-de Rham comparison.

Theorem 3.12 (Twisted crystalline-de Rham comparison). Suppose that n ⩾ a = ⌈logp
(

e
p−1

)
⌉.

(1) There is an identification between ρ(n)

dR and the composition

Spf(OK) −→ Spf(W )
ρ
(n)
crys−−−→ O∆

K ,

as objects of Map(Spf(OK),O∆
K).
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(2) For any object V of Perf((OK)∆), there is a canonical isomorphism in Perf(OK):

ι(n) : D(n)
crys(V)⊗W OK

∼−→ D(n)

dR(V).

Proof. Assertion (2) is an immediate consequence of assertion (1). To prove assertion (1), let R be
a p-nilpotent ring and α a morphism Spec(R)→ Spf(OK). The underlying Cartier–Witt divisors
of both ρ(n)

dR(α) and ρ(n)
crys(α) is W(R)

p−→ W(R), and their OK-structures are given respectively as
follows (see Definition 3.1 and Definition 3.8):

OK
α−→ R = W(R)/VW(R)

F−→ W(R)/p
Fn

−−→ W(R)/p, (3.5)

OK → k ∼−→W/p
ϕW−−→W/p

W(α)−−−→ W(R)/p
Fn

−−→ W(R)/p. (3.6)

To show that the composition of these respective maps agree, first observe that the following
respective composition of the maps,

W −→ OK
α−→ R = W(R)/VW(R)

F−→ W(R)/p, (3.7)

W −→ k ∼−→W/p
ϕW−−→W/p

W(α)−−−→ W(R)/p, (3.8)

agree by [IKY25, Theorem 1.19]. But, for n ⩾ a, the map Fn
OK/p

: OK/p→ OK/p factorises as

OK/p→ k
Fn
k−−→ k → OK/p, where the last map is induced by W → OK . As the composition of

(3.5) factorises through OK/p, the appearance of Fn in both (3.5) and (3.6) thus implies the
agreement of their compositions from the agreement of the compositions of (3.7) and (3.8). □

3.2. A non-stacky approach. We now explain a more down-to-earth approach to Theorem
3.12 using Breuil–Kisin theory. In the next section, we shall compare this to the stacky approach.

3.2.1. The twisted crystalline realisation. We begin by giving a Breuil–Kisin-theoretic
definition of the twisted crystalline realisation. To distinguish it from the (a priori different)
stack-theoretic twisted crystalline realisation, we temporarily use a prime in the notation.

Definition 3.13. Let π be a uniformiser of OK and n ⩾ 0 an integer. The π-indexed n-twisted
crystalline realisation functor is defined as follows:

D′,(n)
crys,π : Perf((OK)∆) −→ Perf(W ), V 7−→ ϕ∗(n+1)

S V(S, Eπ)/u.

To remove the π-dependency of the n-twisted crystalline realisation functors, we consider the
following construction.

Construction 3.14. Let V be an object of Perf((OK)∆) and n ⩾ 0 an integer. Then, the
following commutative diagram (see Proposition 2.13):

Spf(S) Spf(W ) Spf(S)

O∆
K ,

(u=0)

ρ
(n+1)
π

ρ
(n+1)
W

(u=0)

ρ
(n+1)

π′

together with Equations (2.2) and (2.5), yield isomorphisms:

ϕ∗(n+1)

S V(S, Eπ)/u ϕ∗(n+1)

W V(W,p) ϕ∗(n+1)

S V(S, Eπ′)/u.∼ ∼

The preceding diagram induces an isomorphism,

ȷ(n),V
crys,π,π′ : D′,(n)

crys,π(V)
∼−→ D′,(n)

crys,π′(V).

It is easy to see that the isomorphisms ȷ(n),V
crys,π,π′ are functorial in V and satisfy the following

cocycle condition:
ȷ(n),V
crys,π′,π′′ ◦ ȷ(n),V

crys,π,π′ = ȷ(n),V
π,π′′ .
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Thus, we obtain natural equivalences,

ȷ(n)

crys,π,π′ : D′,(n)
crys,π

∼−→ D′,(n)

crys,π′

in Func(Perf((OK)∆),Perf(W )) satisfying the cocycle condition.

Definition 3.15. The n-twisted crystalline realisation functor is defined as

D′,(n)
crys := lim←−

π

D′,(n)
crys,π : Perf((OK)∆) −→ Perf(W ).

We end this section by comparing D′,(n)
crys and D(n)

crys. Namely, via Corollary 3.6, for any π we
have a canonical identification

ψ(n)
crys,π : D(n)

crys
∼−→ D′,(n)

crys,π.

By combining Propositions 2.13 and 3.5, we have the following commutative diagram of stacks:

Spf(S) Spf(W ) Spf(S)

O∆
K

ρ
(n+1)
π

(u=0) (u=0)

ρ
(n)
crys ρ

(n+1)

π′

Thus, it is easy to deduce that ȷ(n)

crys,π,π′ ◦ ψ(n)
crys,π = ψ(n)

crys,π′ . From the preceding discussion we
obtain that,

Proposition 3.16. The following morphism is an equivalence in Func(Perf((OK)∆),Perf(W ))):

ψ(n)
crys := (ψ(n)

crys,π) : D(n)
crys −→ lim←−

π

D′,(n)
crys,π = D′,(n)

crys.

3.2.2. The twisted de Rham realisation. We now perform a similar analysis to define
the twisted de Rham realisation using the Breuil–Kisin theory, and to compare this to the
stack-theoretic definition.

Definition 3.17. Let π be a uniformiser of OK and n ⩾ 0 an integer. The π-indexed n-twisted
de Rham realisation functor is defined as follows:

D′,(n)

dR,π : Perf((OK)∆) −→ Perf(OK), V 7−→ ϕ∗(n+1)

S V(S, Eπ)/Eπ.

Observe that, by the setup as in Section 2.3.2, there is a commuting diagram of maps,

(S, Eπ) (Sπ,π′ , Iπ,π′) (S, Eπ′)

OK ,

p1 p2

(3.9)

where the horizontal arrows are the two projection maps in (OK)∆ and the rest are given by
reduction modulo the prismatic ideal.

Construction 3.18. Let V be an object of Perf((OK)∆) and n ⩾ 0 an integer. Applying the
crystal property for the diagram in (3.9), we obtain a commutative diagram of equivalences:

ϕ∗(n+1)

S V(S, Eπ)⊗S Sπ,π′ ϕ∗(n+1)

Sπ,π′ V(Sπ,π′ , Iπ,π′) ϕ∗(n+1)

S V(S, Eπ′)⊗S Sπ,π′ .∼ ∼

From the preceding diagram and commutativity of (3.9), note that by tensoring along Sπ,π′ → OK
we obtain an isomorphism,

ȷ(n),V
dR,π,π′ : D′,(n)

dR,π(V)
∼−→ D′,(n)

dR,π′(V).

The isomorphisms ȷ(n),V
dR,π,π′ are functorial in V and satisfy the following cocycle condition:

ȷ(n),V
dR,π′,π′′ ◦ ȷ(n),V

dR,π,π′ = ȷ(n),V
dR,π,π′′ .
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Thus, we obtain natural equivalences

ȷ(n)

dR,π,π′ : D′,(n)

dR,π
∼−→ D′,(n)

dR,π′

in Func(Perf((OK)∆),Perf(OK))) satisfying the cocycle condition.

Definition 3.19. The n-twisted de Rham realisation functor is defined as

D′,(n)

dR := lim←−
π

D′,(n)

dR,π : Perf((OK)∆) −→ Perf(OK).

We end this section by comparing D′,(n)

dR and D(n)

dR. Via Corollary 3.11, for any π, we have a
canonical identification

ψ(n)

dR,π : D(n)

dR
∼−→ D′,(n)

dR,π.

Moreover, we have the following (2-)commutative diagram:

Spf(S)

Spf(Sπ,π′) Spf(OK) O∆
K ,

Spf(S)

ρ
(1)
π

q1

q2

Eπ=0

(Eπ=Eπ′=0)
ρdR

Eπ′=0 ρ
(1)

π′

and therefore, it is easy to deduce that ȷ(n)

dR,π,π′ ◦ ψ(n)

dR,π = ψ(n)

dR,π′ . From this we obtain the
following.

Proposition 3.20. The following morphism is an equivalence in Func(Perf((OK)∆),Perf(OK)):

ψ(n)

dR =: (ψ(n)

dR,π) : D(n)

dR −→ lim←−D′,(n)

dR,π = D′,(n)

dR .

3.2.3. The twisted crystalline-de Rham comparison (non-stacky form). We shall now
give a non-stacky version of the twisted crystalline-de Rham comparison, and compare it to the
stack-theoretic one. We first require the following construction:

Construction 3.21. Fix a uniformiser π and an integer n ⩾ a. From Equations (2.2) and (2.5),
and Proposition 2.13 we obtain the following equivalences in Perf(S̃):

ϕ∗(n+1)

W V(W,p)⊗W S̃ ∼−→ ϕ∗n
S̃
V(S̃, p) ∼←− ϕ∗(n+1)

S V(S, Eπ)⊗S S̃.

Base change of the preceding isomorphisms, along the map S̃ → OK from Proposition 2.11,
furnishes us with an equivalence in Perf(OK):

ϕ∗(n+1)

W V(W,p)⊗W OK
∼−→ ϕ∗(n+1)

S V(S, Eπ)/Eπ.

Finally, using the isomorphism (see Construction 3.14),

ϕ∗(n+1)

W V(W,p) ∼−→ ϕ∗(n+1)

S V(S, Eπ)/u,

gives rise to an isomorphism

ι′,(n),V
π : D′,(n)

crys,π(V)⊗W OK
∼−→ D′,(n)

dR,π(V).

By construction, it is clear that the isomorphisms ι′,(n),V
π are functorial in V, and thus give rise

to an isomorphism ι′,(n)
π : D′,(n)

crys,π ⊗W OK → D′,(n)

dR,π in Func(Perf((OK)∆),Perf(OK)).
17



Proposition 3.22. For uniformisers π and π′ of OK , and an integer n ⩾ a, the following
diagram in Func(Perf((OK)∆),Perf(OK)) naturally commutes:

D(n)
crys,π ⊗W OK D(n)

dR,π

D(n)

crys,π′ ⊗W OK D(n)

dR,π′ .

ι
′,(n)
π

ȷ
(n)

crys,π,π′⊗1 ȷ
(n)

dR,π,π′

ι
′,(n)

π′

(3.10)

Proof. To prove the commutativity of (3.10), it suffices to check it after base change along the
faithfully flat map OK → OC . So, consider the following commutative diagram in (OK)∆:

(W,p)

(S̃π, p) (Acrys, p) (S̃π′ , p)

(S, E(1)
π ) (Ainf , ϕ

n(ξ̃)) (S, ϕ(Eπ′)),

ϕn+1 ϕn+1

ϕn

ϕn◦αinf,π

ϕn

ϕn◦αinf,π′

u=0 u=0

(3.11)

where we have used Proposition 2.13. Also, while the Eπ in (S, Eπ) indicates the exact structure
as an object of (OK)∆, the notation (S̃, p) does not indicate the π-dependence of the modified
Breuil prism, and so we have written it as S̃π (and likewise for π′) to indicate this dependency.

For an object V of Perf((OK)∆), the crystal property yields from (3.11) a large commutative
diagram of equivalences of objects in Perf(Acrys). Base changing along Acrys → OC yields the
base change of (3.10) along OK → OC as a commutative subdiagram, allowing us to conclude. □

From Proposition 3.22, it is clear that we obtain an equivalence,

ι′,(n) : D′,(n)
crys ⊗W OK

∼−→ D′,(n)

dR

in Func(Perf((OK)∆),Perf(OK)), for any n ⩾ a. We end this section by comparing this
construction to the equivalence ι(n) from Theorem 3.12.
Proposition 3.23. For any n ⩾ a, the following diagram commutes in Func(Perf((OK)∆),Perf(OK)):

D(n)
crys ⊗W OK D(n)

dR

D′(n)
crys ⊗W OK D′,(n)

dR .

ι(n)

ψ
(n)
crys⊗1 ψ

(n)
dR

ι′,(n)

Proof. To prove the claim, note that it is enough to show that for a fixed uniformiser π, the
following diagram commutes in Func(Perf((OK)∆),Perf(OK)):

D(n)
crys ⊗W OK D(n)

dR

D′(n)
crys,π ⊗W OK D′,(n)

dR,π.

ι(n)

ψ
(n)
crys⊗1 ψ

(n)
dR

ι
′,(n)
π

As in the proof of Proposition 3.22, let us denote by (S̃π, p) the modified Breuil prism with a
choice of uniformiser π. Then, given the construction of ψ(n)

crys,π and ψ(n)

dR,π, Proposition 3.23
follows from Proposition 3.24 below. This allows us to conclude. □
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For notational simplicity, in the following let us write ρ(n)
crys ⊗ 1 to denote the composition,

Spf(OK)→ Spf(W )
ρ
(n)
crys−−−→ O∆

K ,

appearing in Theorem 3.12.

Proposition 3.24. The identification from Theorem 3.12 naturally factors as,

ρ(n)
crys ⊗ 1 ∼−→ ρ̃(n)

π ◦ i
∼←− ρ(n)

dR,

where i : Spf(OK)→ Spf(S̃) is the map described in Proposition 2.11.

Proof. Consider the following diagram:

Spf(S) Spf(S)

Spf(OK) Spf(S̃π) O∆
K

Spf(W ) Spf(W ). ,

(Eπ=0)

i

nat.

ϕn+1
S

ρ̃
(n)
π

ϕn+1
W

ρπ

ρW,

where the left two triangles are commutative by Proposition 2.11, and the right two trapeziums
are 2-commutative with obvious identifications of the compositions.

Let ρ′,(n)

dR (resp. ρ′,(n)
crys ⊗ 1) denote the upper (resp. lower) composite maps Spf(OK)→ O∆

K . By
the commutativity of the above diagram, we obtain isomorphisms,

ρ′,(n)
crys ⊗ 1 ∼−→ ρ̃(n)

π ◦ spdR
∼←− ρ′,(n)

dR .

By Corollaries 3.11 and 3.6, we have isomorphisms ρ′,(n)

dR
∼−→ ρ(n)

dR and ρ′,(n)
crys ⊗ 1 ∼−→ ρ(n)

crys ⊗ 1,
respectively. Thus, we have obtained the following diagram of isomorphisms:

ρ(n)
crys ⊗ 1 ρ(n)

dR

ρ′,(n)
crys ⊗ 1 ρ̃(n)

π ◦ i ρ′,(n)

dR .

∼

≀ ≀

∼ ∼

(3.12)

This diagram commutes as each isomorphism is defined by the identity map on W (and a canonical
identification of its quasi-ideals), thus proving the assertion. □

4. Twisted crystalline and de Rham cohomology

In this section, we shall apply the material of Section 3 to perfect prismatic crystals of the
form Rf∆

∗ O
∆. In particular, we will deduce our extension of the Berthelot–Ogus isomorphism

to the case of coefficients. To formulate this result correctly, we introduce the notion of twisted
crystalline and de Rham cohomology, and study some of their properties.

Notation 4.1. We continue to use the notation from global notation and conventions, Notation
2.1 and Section 2.3. We further assume that f : X → Spf(OK) is a smooth proper morphism.

4.1. Twisted crystalline cohomology. We begin with the easier of the two definitions, twisted
crystalline cohomology, which ultimately reduces to classical notions.

Definition 4.2. For n ⩾ 0, the n-twisted crystalline cohomology functor is given by

RΓ(n)
crys(−) = RΓ(n)

crys(Xk/W,−) : Perf(X∆) −→ Perf(W ), V 7−→ D(n)
crys(Rf

∆
∗ V).

We denote the associated cohomology groups by Hi,(n)
crys(V) = Hi,(n)

crys(Xk/W,V), and when V = O∆

we omit V from the notation.
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Recall that for a quasi-syntomic k-scheme Z there is an equivalence of ∞-categories,

(−)crys : Perf(Z∆) ∼−→ Perf((Z/W )crys), V 7−→ Vcrys,

(e.g. see [GR24, Theorem 6.4]). We then define the functor,

(−)crys : Perf(X∆) −→ Perf((Xk/W )crys), V 7−→ (V|(Xk)∆
)crys.

These functors are compatible with Frobenius morphisms, i.e., (F ∗
XV)

crys is naturally identified
with ϕ∗crysVcrys, where ϕcrys is the Frobenius endomorphism of the crystalline topos.

Proposition 4.3. For each n ⩾ 0, there are natural identifications

RΓ(n)
crys(V) ≃ ϕ∗nWRΓ((Xk/W )crys,V

crys) ≃ RΓ((X(n)

k /W )crys, (V
crys)(n)).

If V is equipped with a Frobenius structure, then these isomorphisms are Frobenius-equivariant.

Proof. By the discussion in Section 2.2 and Corollary 3.6, we have natural identifications,

RΓ(n)
crys(V) ≃ ϕ∗nW (F ∗

XRf
∆
∗ V)(W,p) ≃ ϕ

∗(n+1)

W RΓ∆(Xk/W,V),

and the last term is naturally isomorphic to ϕ∗nWRΓ((Xk/W )crys,V
crys) by [GR24, Theorem 6.4].

This shows the first natural isomorphism, and the second one follows from [SP, Tag 07MS, Tag
07MU, Tag 07MY]. The last claim follows by a similar argument and the same references. □

In particular, we see that there is a natural identification,

RΓ(0)
crys(V) ≃ RΓ((Xk/W )crys,V

crys),

and we shall often implicitly make this identification. Finally, note that a Frobenius structure
φV : F

∗
XV[1/I∆]

∼−→ V[1/I∆] induces an isomorphism in Perf(K0):

φ(n)

V : RΓ(n)
crys(V)[1/p]

∼−→ RΓ(0)
crys(V)[1/p] = RΓ((Xk/W )crys,V

crys)[1/p], (4.1)

interpreted either prismatically, or in terms of the Frobenius structure on crystalline cohomology
(e.g. see [SP, Tag 07N5]), which agree via Proposition 4.3.

4.2. Twisted de Rham cohomology. We now come to the more subtle definition of twisted
de Rham cohomology, which does not have a classical interpretation.

Definition 4.4. For n ⩾ 0, the n-twisted de Rham cohomology functor is given by

RΓ(n)

dR(−) = RΓ(n)

dR(X/OK ,−) : Perf(X∆) −→ Perf(OK), V 7−→ D(n)

dR(Rf
∆
∗ V).

We denote the associated cohomology groups by Hi,(n)

dR (V) = Hi,(n)

dR (X/OK ,V), and when V = O∆

we omit V from the notation.

We now observe that twisted de Rham cohomology recovers the de Rham cohomology in the
non-twisted (i.e. n = 0) case. To state this precisely, recall that we have the relative de Rham
stack (X/OK)

dR as in [Bha23, Definition 2.5.3]. A coefficient sheaf for de Rham cohomology is
a perfect complex W on (X/OK)

dR. Additionally, if W is a vector bundle, then the data of W
is equivalent to the data of a vector bundle with integrable connection (W0,∇) on X, and the
cohomology of W is the usual cohomology of the de Rham complex associated to (W0,∇) (see
[Bha23, Remark 2.5.8]).

Next, recall that we have the following morphism of stacks (see [Bha23, Constructions 5.3.13
& 5.3.5 and Footnote 62]):

idR,X/OK
: (X/OK)dR −→ X∆.

For an object V of Perf(X∆), let us write VdR for i∗dR,X/OK
(V), and we claim the following:

Proposition 4.5. There exists a natural identification in Perf(OK):

RΓ(0)

dR(X/OK ,V) ≃ RΓdR(V
dR).
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Proof. Note that we have the following commutative diagram of formal stacks:

(X/OK)dR XdR X∆

Spf(OK) OdR
K O∆

K

Spf(Zp) Z∆
p ,

idR,X

fdR f∆

idR,OK

idR

(4.2)

where the composition of the top horizontal arrows defines idR,X/OK
(e.g. see [Bha23, Footnote 62]),

and the bottom horizontal arrow idR is the restriction to Gm/Gm of the map idR : A1/Gm → ZN
p

from [Bha23, Construction 5.3.4], and this restriction identifies with the de Rham point of [BL22a,
Example 3.2.6]. Additionally, using the definitions, it is easy to verify that in (4.2) the bottom
right square and the outer square on the right are cartesian, and so, it follows that the top right
square is also cartesian. Moreover, the top left square is cartesian by definition and thus it follows
that the outer square on the top is also cartesian.

Next, we claim that the composition of the middle horizontal arrows in (4.2) identifies with
the de Rham point ρdR of Definition 3.8. Consider the following commutative diagram of stacks:

Spf(OK) = Spf(S/Eπ) OHT
K Spf(OK) OdR

K

Spf(S) O∆
K O∆

K ,

ρHT
(S,Eπ)

id

idR,OK

ρ(S,Eπ) F∆

where the composition of the left vertical arrow with the bottom horizontal arrows identifies
with the de Rham point ρdR by Proposition 3.10, and it is clear that the composition of the
top horizontal arrows with the right vertical arrow coincides with the composition of the middle
horizontal arrows in (4.2). In the preceding diagram, the left square commutes by definition and
the right square commutes by Lemma 4.6 below, hence, the claim follows.

Finally, to show the claimed identification on cohomologies, note that if we have derived base
change for formal stacks, we have the following identifications:

RΓdR(X/OK ,V
dR) ≃ RfdR∗ i∗X,dR ≃ ρdRRf∆

∗ ≃ R
(0)

dR(X/OK ,V),

and thus it suffices to verify that derived base change holds. As the top outer square in (4.2) is
Cartesian, by applying [Hau24, Proposition A.0.2] (using Proposition 2.8 and [BL22b, Lemma
6.3]), we see that it suffices to show that ρdR is a locally closed regular immersion. But, using the
flat covering ρS : Spf(S)→ O∆

K , we are reduced to observing that Spf(OK)→ Spf(S) is cut-out
by the regular element E. This completes our proof. □

The following observation was used above:

Lemma 4.6. Let X be a bounded p-adic formal scheme. Then, the following diagram of formal
stacks 2-commutes up to unique isomorphism:

XHT X XdR

X∆ X∆.

idR,X

F∆
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Proof. By an argument similar to the proof of [BL22a, Proposition 3.6.6], it is easy to see that
the following diagram of stacks commutes up to unique isomorphism:

GHT
a Ga GdR

a

G∆
a G∆

a .

idR,Ga

F∆

Then, the claim follows by transmutation (cf. [Bha23, Remark 2.3.8]). □

Moreover, we observe that in the case of trivial coefficients (i.e. V = O∆) one can interpret the
twisted de Rham cohomology as a more classical object:

Proposition 4.7. There exists a functorial identification,

RΓ(n)

dR(X/OK) ≃ RΓcrys(X
(n)

p=0/OK).

Proof. Choose a uniformiser π of OK . Then, by Corollary 3.11 we have an identification,

RΓ(n)

dR(X/OK) ≃ ϕ∗(n+1)

S RΓS(X/OK)/Eπ.

Applying the crystal property to the morphism (S, E(1)
π ) → (S̃, p) in (OK)∆ from Proposition

2.13 and using the morphism S̃ → OK from Proposition 2.11, gives us the following identification:

ϕ∗(n+1)

S RΓS(X/OK)/Eπ ≃ ϕ∗nS̃ RΓS̃(X/OK)⊗S̃ OK .

But, we have a further identification,

ϕ∗n
S̃

RΓS̃(X/OK)⊗S̃ OK ≃ RΓcrys((X ⊗OK
S̃/p)(n)/S̃)⊗S̃ OK .

Moreover, the map (S̃, p)→ (OK , p) is a morphism of PD-rings, so by [SP, Tag 07MS] we have
an identification,

RΓcrys

((
X ⊗Spf(OK) Spec(S̃/p)

)(n)
/S̃

)
⊗S̃ OK ≃ RΓcrys(X

(n)

p=0/OK).

Finally, putting everything together yields the following identification:

RΓ(n)

dR(X/OK) ≃ RΓcrys(X
(n)

p=0/OK),

and using an argument similar to that in the proof of Proposition 3.22 shows that the preceding
identification is independent of the choice of uniformiser π. This allows us to conclude. □

Remark 4.8. Despite Proposition 4.7 and in contrast to twisted crystalline cohomology, it is not
possible to define twisted de Rham cohomology for general coefficients in a non-prismatic way. It
may be tempting to say, in analogy with Proposition 4.7, that RΓ(n)

dR(V) should be isomorphic
to RΓcrys(X

(n)

p=0/OK , ((Vp=0)
crys)(n)), where (Vp=0)

crys has the obvious meaning. However, the
natural map X(n)

p=0 → Xp=0 does not upgrade to a morphism of topoi,

(X(n)

p=0/OK)crys (Xp=0/OK)crys,×

and so it does not seem possible to define ((Vp=0)
crys)(n)) in a purely crystalline way.

4.3. Berthelot–Ogus comparison isomorphism with coefficients. We now explain how to
obtain an analogue of the Berthelot–Ogus comparison isomorphism (see [BO83, Corollary 2.5])
with coefficients in perfect prismatic F -crystals.

To begin, we observe the following cohomological consequence of Theorem 3.12.

Theorem 4.9. Let V be a perfect prismatic crystal on X. Then, there exists a natural integral
generalised Berthelot–Ogus isomorphism,

RΓ(n)
crys(V)⊗W OK

∼−→ RΓ(n)

dR(V).

To obtain a generalisation of the classical Berthelot–Ogus isomorphism with coefficients, we
need to rationally untwist this isomorphism. The procedure to do this begins with the following
construction.
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Construction 4.10. Let (V, φV) be an object of Perfφ((OK)∆) and i ⩾ 0. Evaluating V on the
prism (S, E(i)

π ) and applying the Frobenius morphism φV gives us the following isomorphism:

ϕ∗SV(S, E
(i)
π )[1/E(i)

π ] ∼−→ V(S, E(i)
π )[1/E(i)

π ]. (4.3)

Using the morphism ϕiS : (S, Eπ)→ (S, E(i)
π ) in (OK)∆, we obtain that ϕ∗iSV(S, Eπ) ≃ V(S, E(i)

π ).
Therefore, we may interpret (4.3) as an isomorphism,

ϕ
∗(i+1)
S V(S, Eπ)[1/E

(i)
π ] ∼−→ ϕ∗iSV(S, Eπ)[1/E

(i)
π ].

Thus, iterating this procedure for any n ⩾ 0, yields the following isomorphism:

φ(n)

V,π : ϕ
∗(n+1)

S V(S, Eπ)[1/E
(n)
π ···E(1)

π ] ∼−→ ϕ∗SV(S, Eπ)[1/E
(n)
π ···E(1)

π ].

Our goal is to apply the morphism φ(n)

V,π to rationally untwist the twists appearing in the
twisted crystalline and de Rham realisations. For this, we make the following easy observation.

Lemma 4.11. For every i ⩾ 1:

E(i)
π = p · (unit) mod Eπ, E(i)

π = p · (unit) mod u.

Now, consider the following isomorphisms:

φ(n)

crys,V,π, : D(n)
crys,π(V)[1/p]

∼−→ Dcrys,π(V)[1/p],
(
resp. φ(n)

dR,V,π : D(n)

dR(V)[
1/p] ∼−→ DdR(V)[1/p]

)
,

in Perf(K0) (resp. Perf(K)) induced by the reduction of φ(n)

V,π modulo u (resp. Eπ). The
preceding isomorphisms are functorial in V, and so we obtain “rational untwisting” maps.

Proposition 4.12. For any n ⩾ 0, there exists a natural equivalence in Func(Perfφ((OK)∆),Perf(K0))
(resp. Func(Perfφ((OK)∆),Perf(K))),

φ(n)
crys,π : D(n)

crys,π[1/p]
∼−→ Dcrys[1/p],

(
resp. φ(n)

dR,π : D(n)

dR,π[
1/p] ∼−→ DdR(V)[1/p]

)
.

The following is proven similarly to Proposition 3.22.

Proposition 4.13. For uniformisers π and π′ of OK and any integer n ⩾ 0, we have the following
identification:

ȷ(0)crys,π,π′ [1/p] ◦ φ(n)
crys,π = φ(n)

crys,π′ ◦ ȷ(n)

crys,π,π′ [1/p](
resp. ȷ(0)dR,π,π′ [1/p] ◦ φ(n)

dR,π = φ(n)

dR,π′ ◦ ȷ(n)

dR,π,π′ [1/p]
)
.

Using Propositions 4.12 and 4.13, the next definitions follows naturally.

Definition 4.14. For any n ⩾ 0, we define the following equivalence in Func(Perfφ((OK)∆),Perf(K0))
(resp. Func(Perfφ((OK)∆),Perf(K))):

φ(n)
crys := (φ(n)

crys,π) : D(n)
crys[1/p]

∼−→ Dcrys[1/p],
(
resp. φ(n)

dR := (φ(n)

dR,π) : D(n)

dR[
1/p] ∼−→ DdR(V)[1/p]

)
,

Thus, we obtain the following Berthelot–Ogus-type isomorphism, where the tensor products
are computed entrywise (i.e. after applying the relevant functor to a perfect prismatic F -crystal).

Theorem 4.15. Let (V, φV) be an object of Perfφ((OK)∆). Then, for any n ⩾ a, we have a
generalised Berthelot–Ogus isomorphism,

ι(n)

BO : Dcrys ⊗W K ∼−→ DdR ⊗OK
K,

such that the following diagram commutes,

D(n)
crys ⊗W K D(n)

dR ⊗OK
K

Dcrys ⊗W K DdR ⊗OK
K.

ι(n)[1/p]

φ
(n)
crys φ

(n)
dR

ι
(n)
BO
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As an application of Theorem 4.15, and using Corollaries 3.6 and 3.11, we recover the following
analogue of the classical Berthelot–Ogus isomorphism for cohomology with coefficients.

Corollary 4.16. Let (V, φV) be an object of Perfφ((X)∆). Then, there exists a canonical
isomorphism,

ι(n)

BO : RΓcrys(V
crys)⊗W K ∼−→ RΓdR(V

dR)⊗OK
K.

Remark 4.17. The isomorphism ι(a)BO from Corollary 4.16 agrees with the isomorphism from
[BO83] when V = O∆. Indeed, this follows ultimately from two observations. The first is that the
isomorphisms φ(n)

crys and φ(n)

dR agree with Frobenius maps on crystalline cohomology coming from
the identifications in Propositions 4.3 and 4.7, respectively. The second is the observation that
the argument for equivalency of structure maps in the proof of Theorem 3.12 precisely correspond
to the Dwork-like isomorphism as in Equation (4) from the introduction.

4.4. A conjectural framework to study torsion in crystalline and de Rham cohomology.
In this final subsection we state a conjecture concerning the relationship between torsion in
crystalline and de Rham cohomology, and explain how Theorem 3.12 gives a framework for its
study. In Appendix A, we shall verify one of these conjectures in a small number of small cases.

The main conjecture. To state our conjecture, it is helpful to first set the following notation.

Notation 4.18. For any n ⩾ 0, we set

ℓi,(n)
crys(X/OK) := ℓW

(
Hi,(n)

crys(Xk/W )[p∞]
)
, ℓi,(n)

dR (X/OK) := ℓOK

(
Hi,(n)

dR (X/OK)[p∞]
)
.

As X/OK is fixed, we shall always omit it from the notation (i.e. just writing ℓi,(n)
crys and ℓi,(n)

dR ).
Moreover, we shorten ℓi,(0)crys and ℓi,(0)dR to ℓicrys and ℓidR, respectively.

Conjecture 4.19 (Main Conjecture). For all i ⩾ 0, we have the following inequalities:

ℓicrys ⩽ ℓidR ⩽ e · ℓicrys.
For clarity, let us write

Hicrys(Xk/W )[p∞] ≃
⊕r

i=1W/p
ai , HidR(X/OK)[p∞] ≃

⊕s
j=1 OK/π

bj .

Then, r = s by [ČK19, Remark 7.8], and thus Conjecture 4.26 can be understood as giving a
rough relationship between the size of ai and the size of bj , as ℓicrys =

∑r
i=1 ai and ℓidR =

∑s
j=1 bj .

To help understand this conjecture, we now examine several non-trivial examples. In particular,
we discuss an example where the second inequality in Conjecture 4.19 is strict for which it is
unclear whether this has been previously recorded in the literature (cf. [ČK19, Question 7.13]).

Example 4.20. Suppose X admits a descent to OK′ for some subextension K ′ of K/K0 of
ramification index at most p − 1. Then, ℓicrys = ℓidR. Indeed, by base change we are reduced
to the case K = K ′. We have ⌈logp( e

p−1)⌉ = 0, and so the claim follows from Theorem 4.9 (or,
more simply, from [BO78, Corollary 7.4]).

Example 4.21 (Li–Petrov). There exists a finite extension K/K0 with e = p4 − p2 and an
elliptic scheme E/OK such that Ek is supersingular, and such that E[p2](K) contains a point x
of order p2. For this E, let H denote the integral closure in E of the subgroup generated by x.
Set X = BH to be the classifying stack for H, a smooth proper formal OK-stack. Then, Li and
Petrov compute that,

H2
crys(Xk/W ) = k2, H3

crys(X/OK) = k,

H2
dR(X/OK) = OK/π

2e−p3+p2 ⊕ OK/π
p3−p2 , H3

dR(X/OK) = OK/π
p3−p2 .

From this, we observe that,

e · ℓ2crys = 2e, ℓ2dR = (2e− p3 + p2) + (p3 − p2) = 2e,

so that ℓ2crys < ℓ2dR = e · ℓ2crys, although it is clear that,

H2
crys(X/OK)⊗W OK ̸≃ H2

dR(X/OK).
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Furthermore, we observe that,

e · ℓ3crys = e = p4 − p2, ℓ3dR = p3 − p2,

so that 1 = ℓ3crys < ℓ3dR < e · ℓ3crys. One may further replace X by an actual formal scheme by a
standard approximation technique (cf. [LL23, Construction 6.12 and Proposition 6.13]).

Example 4.22. Suppose that HidR(X/OK)[p∞] is p-torsion. In this case, we have that 1 ⩽ bj ⩽ e
for all j, and ai ⩾ 1 for all i. Thus, we see that,

ℓidR =
∑s

j=1 bj ⩽ e · s = e · r ⩽ e ·
∑r

i=1 ai = e · ℓicrys.

Additionally, if Hicrys(Xk/W )[p∞] is also p-torsion, then ai = 1 for all i, and we see that,

ℓicrys =
∑r

i=1 ai = r = s ⩽
∑s

j=1 bj = ℓidR.

Remark 4.23. One can use Example 4.22 to illustrate the subtlety of Conjecture 4.19. Suppose
that Hi

crys(Xk/W )[p∞] and Hi
dR(X/OK)[p

∞] are both p2-torsion, so ai ∈ {1, 2} for all i. Write
r1 for the number of i with ai = 1 and define r2 analogously. Thus, ℓicrys = r1 + 2r2. Our
assumptions imply only that bj ⩽ 2e for all j. Then, the naive approach taken in Conjecture 4.19
only implies that ℓidR ⩽ 2er, whereas e · ℓicrys = er1 + 2er2, and thus this is not helpful if r1 ̸= 0.

Questions about torsion in Breuil–Kisin cohomology. We now explain how Theorem 4.9
allows one to reduce Conjecture 4.19 to questions about torsion in Breuil–Kisin cohomology.

We begin by making the following simple but crucial observation, coming from Proposition 4.3
and the fact that ϕW : W ∼−→W is an isomorphism of rings.

Proposition 4.24. The equality ℓi,(n)
crys = ℓicrys holds for all n ⩾ 0.

Now, from Theorem 3.12 it follows that we have the equality,

ℓi,(n)

dR = e · ℓi,(n)
crys , for all n ⩾ a. (4.4)

This indicates a refinement of Conjecture 4.19, namely that the following two statements hold:

(L1) ℓi,(a)dR ⩽ e · ℓidR,
(L2) ℓi,(n)

dR is a non-decreasing quantity in n.

Remark 4.25. One interesting and non-obvious consequence of Proposition 4.24 and (4.4) is
that the quantity ℓi,(n)

dR is constant for n ⩾ a.

To make the preceding statements more tractable, we would like to instead formulate them
in terms of the highly structured u∞-torsion in Breuil–Kisin cohomology. In the following, for
a Breuil–Kisin module M (see [BMS18, Section 4]), we shall write M[u∞] for its u∞-torsion
submodule and M := M∨∨/Mtf (see Section A.1 for details). Our main conjecture concerns
the preceding modules arising from Breuil–Kisin cohomology. Additionally, for a (complex of)
S-module(s) M we shorten the notation ϕ∗nS M to M(n).

Conjecture 4.26. Set Mi := Hi
S(X/OK) and let f(n) denote either ℓOK

(Mi[u∞](n+1)[E]) or
ℓOK

(Mi
(n+1)

[E]). Then, f satisfies the following:
(1) f(a) ⩽ e · f(0),
(2) f(n) ⩽ f(n+ 1), for all n.

Remark 4.27. A neater conjecture would be that if we set Mi
m := Hi

(
RΓS(X/OK)/p

m) and
fm(n) := ℓOK

(
Mi

m[u
∞](n+1)), then fm(n) ⩽ fm(n + 1) for every m. The precise relationship

between this statement and Conjecture 4.26 is unclear, but it seems somewhat likely that the
former is stronger than the later. Corollary A.24 and its proof may be seen as evidence for this.
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Conjecture 4.26 is not sufficient to obtain (L1) and (L2), and so a further hypothesis is required.
To state this, observe that as Hi,(n)

dR (X/OK) is defined as the ith-cohomology of RΓS(X/OK)(n)/E,
one may apply [SP, Tag 061Z] to obtain the exact sequence,

0 −→ HiS(X/OK)(n+1)/E −→ Hi,(n)

dR (X/OK) −→ Hi+1
S (X/OK)(n+1)[E] −→ 0, (4.5)

which may fail to be exact on the right when one passes to p∞-torsion submodules.

Hypothesis 4.28. Set Qi,(n) to be the image of Hi,(n)

dR (X/OK)[p∞] in Hi+1
S (X/OK)(n+1)[E]. Then,

ℓOK

(
Qi,(a)

)
⩾ ℓOK

(
Qi,(0)

)
, and ℓOK

(
Qi,(n+1)

)
⩾ ℓOK

(
Qi,(n)

)
for all n ⩾ 0.

Remark 4.29. We have chosen not to state Hypothesis 4.28 as a conjecture due to a lack of
substantial evidence. That said, it is reasonable to believe that it holds in all cases. In fact, the
authors suspect that Qi,(n) = Hi+1

S (X/OK)(n+1)[E] for all sufficiently large n, which would allow
one to reduce the verification of Hypothesis 4.28 to the verification of Conjecture 4.26.

The precise relationship between Conjecture 4.19 and Conjecture 4.26 can now be made precise.
The proof of the following proposition makes use of several routine calculations concerning
Breuil–Kisin modules done in Appendix A and so we postpone its proof until Section A.3.1.

Proposition 4.30. Under Hypothesis 4.28, Conjecture 4.26 implies Conjecture 4.19.

As remarked in the introduction and explained via Proposition 4.30, we hope that Conjecture
4.26 will be useful in proving Conjecture 4.19 as the u∞-torsion in Breuil–Kisin cohomology has
incredibly rich structure (e.g. see [LL23] and [GL25]). To illustrate, we exploit this structure to
prove Conjecture 4.26 in Appendix A in a small number of non-trivial cases (see Theorem A.20).

Remark 4.31. When OK =W [ζpm ], it is also reasonable to use the q-de Rham prism and its
variants (see [BS22, Section 16], [BL22a, Section 2.6] and [Abh24, Section 2]) instead of the
Breuil–Kisin prism, in order to better understand torsion in de Rham and crystalline cohomologies.
This would require a robust understanding of the structure of torsion in q-de Rham cohomology,
analogous to the u∞-torsion in Breuil–Kisin cohomology. We intend to explore these ideas and
their consequences in a future work.

We end by giving an interesting non-trivial example where Conjecture 4.26 holds.

Example 4.32. Let G→ H be a map of finite flat OK-group schemes which is generically an
isomorphism, and let A/OK be an abelian scheme with H ⊆ A (see [BBM82, Théorème 3.1.1]).

Write M(•) for the Breuil–Kisin Dieudonné functor of Kisin (see [Kis06, Theorem 2.3.5]).
Then, a forthcoming result of Kubrak–Li–Mondal implies that setting X = [A/G], a smooth
proper formal OK-stack, and A′ = A/H, an abelian scheme over OK , then we have that

HiS(X/OK) ≃ HiS(X/OK)[u∞]⊕HiS(A
′/OK), for i ⩾ 0,

H1
S(X/OK)tor = 0 and H2

S(X/OK)tor ≃ coker (M(H)→M(G)) =: M.

So, now assume that K contains K0[ζpm ], and consider the map Z/pm → µpm sending 1 to
ζpm ∈ µpm(OK), which clearly satisfies the desired conditions. In this case, we have that M ≃ k
for which Conjecture 4.26 clearly holds.

Appendix A. Some calculations involving Breuil–Kisin modules

We continue to use the notation from global notation and conventions, Notation 2.1 and the
ones discussed in Section 2.3. In addition, we often make use of the following pieces of notation.

Notation A.1. For a S-module M and integer n ⩾ 0, we write M(n) as a shorthand for
M⊗S,ϕnS

S. For any subscript ?, one should interpret M(n)

? as (M?)
(n). Finally, as we use it so

frequently, we also note the notation from Proposition A.3 below.

A.1. Preliminaries on Breuil–Kisin modules. In this section, we will collect some basic
results on Breuil–Kisin modules studied in [BMS18, LL20].
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A.1.1. Generalised Breuil–Kisin modules. Recall that an effective φ-module over S is a
module M equipped with an S-linear map φM : M(1) →M.

Definition A.2. A generalised Breuil–Kisin module of height i ⩾ 0 is a finite type effective
φ-module over S such that there exists an S-linear map ψM : M→M(1) satisfying the following:

(1) ψM ◦ φM = Ei · idM(1) ,
(2) φM ◦ ψM = Ei · idM.

Morphisms between generalised Breuil–Kisin modules are S-linear, Frobenius equivariant maps.

Proposition A.3 ([BMS18, Proposition 4.3]). Let M be a generalised Breuil–Kisin module.
Then, there exist canonical short exact sequences of generalised Breuil–Kisin modules:

0 −→Mtor −→M −→Mtf −→ 0 (A.1)

0 −→Mtf −→Mfree −→M −→ 0, (A.2)

where Mtor ⊂ M is the torsion submodule and is killed by a power of p, the module Mtf is
torsion-free, the module Mfree is free over S and given as the reflexive hull of Mtf over S, and
the module M is a torsion S-module and killed by a power of (p, u).

Let M[u∞] denote the u-power torsion submodule of M, a generalised Breuil–Kisin module
height i, and observe that we have,

φM

(
M[u∞](1)

)
⊂M[u∞], and ψM(M[u∞]) ⊂M[u∞](1).

Lemma A.4 ([LL20, Lemma 6.2]). The following is a short exact sequence in Modφ,iS :

0 −→M[u∞] −→M −→M/M[u∞] −→ 0. (A.3)

Lemma A.5 ([LL20, Lemma 6.3]). Let M be a generalised Breuil–Kisin module of height i and
assume that it is killed by pn for some n ⩾ 0. Then, the following are equivalent:

(1) The module M is u-torsion free,
(2) M = N/N′, where N′ ⊂ N and both are finite free Breuil–Kisin modules of height i,
(3) the module M may be written as a successive extension of finite free kJuK-modules Mj

such that each Mj is a generalised Breuil–Kisin module of height i.

Finally, we note a structural result on generalised Breuil–Kisin modules modulo powers of p.

Lemma A.6 ([GL25, Lemma 3.5]). Let M be a generalised Breuil–Kisin module of height i and
n ⩾ 0 be an integer such that pn kills both Mtor and M. Then, for N ⩾ 2n, the sequence

0 −→Mtor ⊕M −→M/pNM −→Mfree/p
NMfree −→M −→ 0, (A.4)

is exact. In particular, we have an isomorphism of S-modules (M/pNM)[u∞]
∼−→M[u∞]⊕M.

A.1.2. Structure of the u∞-torsion in Breuil–Kisin cohomology.

Definition A.7 ([LL23, Defintion 3.1]). A quasi-filtered Breuil–Kisin module of height i ⩾ 1
consists of the following set of data:

• Two S-modules M and N;
• Four S-linear maps f : M(1) → N, g : N→M(1), h : N→M and h′ : M→ N;

satisfying the following conditions:
(1) The map h is injective.
(2) We have g ◦ f = Ei−1 · idM(1) , f ◦ g = Ei−1 · idN, h′ ◦ h = E · idN and h ◦ h′ = E · idM.

Note that in Definition A.7, M is Breuil–Kisin module of height i with φM := h ◦ f and
ψM = g ◦ h′. When the extra structure of a quasi-filtered Breuil–Kisin module beyond this is
unimportant, we abuse notation and just refer to M as the quasi-filtered Breuil–Kisin module.
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Proposition A.8 ([LL23, Proposition 3.3 & Corollary 3.4]). Let M be a quasi-filtered Breuil–
Kisin module of height i. Then, the annihilator ideal of M admits the following restriction:

Ei−1 ·Ann(M) ⊂ Ann
(
M(1)

)
= Ann(M)(1). (A.5)

Moreover, if there exists an integer α ⩾ 0 such that Ann(M) + (p) = (p, uα), then α ⩽ ⌊ e(i−1)
p−1 ⌋.

In what follows, we denote quantity α appearing in Proposition A.8 by α(M).

Theorem A.9 ([LL23, Theorem 3.6] and [GL25, Theorem 3.1]). Let M be a u∞-torsion quasi-
filtered Breuil–Kisin module. Then, we have the following:

(1) if e(i− 1) < p− 1, then M = 0,
(2) if e(i− 1) = p− 1, then Ann(M) = (p, u),
(3) if e(i− 1) < 2(p− 1), then Ann(M) + (u) ⊃ (pi−1, u),
(4) if i ⩽ 2 and e < p(p− 1), then Ann(M) + (u) = (p, u).

Using this, we are able to show that for small height and ramification, the annihilator of M
must contain an element of a particularly simple form.

Proposition A.10. Let M be a u∞-torsion quasi-filtered Breuil–Kisin module of height i ⩽ 2,
and assume e < p(p− 1) and write α = α(M). Then, 1 ⩽ α ⩽ ⌈ e

p−1⌉ < p, and either
• M is p-torsion,
• or Ann(M) contains an element of the form uα + px with x in S×.

Proof. For i = 0, 1, Theorem A.9 (1) implies that M = 0. So, we assume that i = 2. Moreover,
the inequality concerning α follows from Proposition A.8. So, we focus only on the last claim.

From Theorem A.9 and the definition of α we have that,

Ann(M) + (p) = (p, uα), and Ann(M) + (u) = (p, u).

So, let us write f = uα + pb and g = p+ uc, for some f and g in Ann(M[u∞]) with b and c in
S. Moreover, we may write c =

∑
i⩾0 ciu

i, with each ci in W . If for each i ⩾ 0, we have that
ci = pdi with di in W , then observe that g = p(1 + u

∑
i⩾0 diu

i), in particular, p is in Ann(M).
Otherwise, we may assume that there exists a minimal r ⩾ 1 such that cr−1 is in W×.

Let us write ci = pdi with di in W and 0 ⩽ i ⩽ r − 2, and observe that

g = p(1 + d1u+ · · ·+ dr−2u
r−1) + ur

∑
i⩾0 ci+r−1u

i ∈ Ann(M). (A.6)

If r ⩾ α+ 1, then substituting uα = f − pb in (A.6), we obtain that

p(1 + d1u+ · · ·+ dr−2u
r−1)− pbur−α

∑
i⩾0 ci+r−1u

i ∈ Ann(M).

In particular, if r ⩾ α+ 1, then it follows that p is in Ann(M). On the other hand, if 1 ⩽ r ⩽ α,
then using (A.6), it easily follows that g = pd+ ura′, with d and a′ in S×, is in Ann(M). As α
is minimal, it follows that 1 ⩽ r = α. This allows us to conclude. □

We end this section with the following simple observation.

Lemma A.11. Let N be a finite S-module. Assume that there exists f = ur + px in Ann(N)
with x in S×. If E is in Ann(N) and e ̸= r, then N is killed by p.

A.1.3. E-torsion and reduction modulo E of Frobenius twists. If M is a generalised
Breuil–Kisin module and n ⩾ 0, then (A.1) and (A.2), give exact sequences:

0 −→M(n)

tor −→M(n) −→M(n)

tf −→ 0 (A.7)

0 −→M(n)

tf −→M(n)

free −→M
(n) −→ 0, (A.8)

Reducing (A.7) modulo E, yields the following long exact sequence:

0 −→M(n)

tor[E] −→M(n)[E] −→M(n)

tf [E] −→
−→M(n)

tor/E −→M(n)/E −→M(n)

tf /E −→ 0.
(A.9)
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Lemma A.12. Equation (A.9) yields the following isomorphism of finite torsion OK-modules:

M(n)

tor[E]
∼−→M(n)[E] = (M(n)[E])[p∞]. (A.10)

Proof. In the long exact sequence (A.9), let us note that M(n)

tf [E] = 0. As M(n)

tor is a p-power
torsion S-module, because Mtor is, the isomorphism in (A.10) follows. □

Lemma A.13. The following sequence of finite OK-modules is exact:

0 −→M(n)

tor/E −→M(n)/E −→M(n)

tf /E −→ 0. (A.11)

Additionally, we have the following short exact sequence of finite torsion OK-modules:

0 −→M(n)

tor/E −→ (M(n)/E)[p∞] −→ (M(n)

tf /E)[p∞] −→ 0. (A.12)

Proof. By combining (A.9) and Lemma A.10, we obtain the short exact sequence in (A.11). Next,
in the sequence (A.12), the only non-obvious part is the surjectivity of the following map:

(M(n)/E)[p∞] −→ (M(n)

tf /E)[p∞].

But, this easily follows from the fact that M(n)

tor, and thus M(n)

tor/E, is p∞-torsion. □

Next, let us note that we have M[u∞] = Mtor[u
∞] and consider the following short exact

sequence of p∞-torsion S-modules:

0 −→M[u∞] −→Mtor −→Mtor/M[u∞] −→ 0. (A.13)

Then, Mtor, u -tf := Mtor/M[u∞] is u-torsion free.

Lemma A.14. For any n ⩾ 0, we have that M(n)

tor, u -tf [E] = 0.

Proof. Note that Mtor, u -tf is a p∞-torsion and u-torsion-free Breuil–Kisin module. So, from
Lemma A.5, there exist finite free Breuil–Kisin modules N and N′ with N′ ⊂ N and Mtor,u−tf

∼−→
N′/N. As ϕS is flat, we may twist by ϕS and reduce modulo E to obtain the exact sequence,

0 −→M(n)

tor, u -tf [E] −→ N′(n)/E −→ N(n)/E.

As N′(n)/E is a free OK-module, the claim follows. □

Now, Frobenius twisting the short exact sequence (A.13) and reducing modulo E yields the
following long exact sequence of S-modules:

0 −→M[u∞](n)[E] −→M(n)

tor[E] −→M(n)

tor, u -tf [E] −→

−→M[u∞](n)/E −→M(n)

tor/E −→M(n)

tor, u -tf/E −→ 0.
(A.14)

By combining Equation (A.14) and Lemma A.14, we obtain the following:

Lemma A.15. For a generalised Breuil–Kisin module M, there is an isomorphism of OK-modules:

M[u∞](n)[E]
∼−→M(n)

tor[E]. (A.15)

Moreover, the following sequence of finite torsion OK-modules is exact:

0 −→M[u∞](n)/E −→M(n)

tor/E −→M(n)

tor, u -tf/E −→ 0. (A.16)

Finally, note that by reducing the short exact sequence (A.8) modulo E one obtains the
following long exact sequence:

0 −→M(n)

tf [E] −→M(n)

free[E] −→M
(n)
[E] −→

−→M(n)

tf /E −→M(n)

free/E −→M
(n)
/E −→ 0.

(A.17)

Using this, we obtain the following.

Lemma A.16. For any n ⩾ 0, there is an isomorphism of OK-modules:

(M
(n)
[E])[p∞] = M

(n)
[E]

∼−→ (M(n)

tf /E)[p∞]. (A.18)
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A.2. Length calculations for generalised Breuil–Kisin modules. In this section, we collect
some results about lengths of Breuil–Kisin modules, their Frobenius twists, and their E-torsion
and reduction modulo E.

Lemma A.17. Let M be a generalised Breuil–Kisin module. Then, for any n ⩾ 0:

ℓOK

(
M(n)[E]

)
= ℓOK

(
M[u∞](n)[E]

)
, (A.19)

ℓOK

((
M(n)/E

)
[p∞]

)
= ℓOK

(
M(n)

tor, u -tf/E
)
+ ℓOK

(
M[u∞](n)/E

)
+ ℓOK

(
M

(n)
[E]

)
.

(A.20)

Proof. The claim in (A.19) follows by combining the isomorphism of OK-modules in (A.10) of
Lemma A.12 and (A.15) of Lemma A.15. Next, for (A.20), let us first note that we have the
following equality using (A.12) of Lemma A.11:

ℓOK

((
M(n)/E

)
[p∞]

)
= ℓOK

(
ϕ∗nM(n)

tor/E
)
+ ℓOK

((
M(n)

tf /E
)
[p∞]

)
.

Moreover, from (A.16) in Lemma A.15, we have that,

ℓOK

(
M(n)

tor/E
)
= ℓOK

(
M(n)

tor, u -tf/E
)
+ ℓOK

(
M[u∞](n)/E

)
,

and from (A.18) in Lemma A.16, we have that M(n)
[E]

∼−→ (M(n)

tf /E)[p∞] as OK-modules. Hence,
the equality in (A.20) follows. □

Lemma A.18. Let M be a generalised Breuil–Kisin module of height i. Then, for any n ⩾ 0:

ℓOK

(
M(n+1)

tor, u -tf/E
)
= ℓOK

(
M(n)

tor, u -tf/E
)
. (A.21)

Proof. From Lemma A.5 (3), note that there exists some N ⩾ 0 such that we may write Mtor, u -tf

as a successive extension of finite free kJuK-modules. Using this, one quickly reduces to the case
when M = Mtor,u−tf is a finite free kJuK-module. But, writing M

∼−→ kJuK⊕r, one computes that
M(n)/E

∼−→ (k[u]/uek[u])⊕r as OK-modules and for any m ⩾ 0, so the claim follows. □

Lemma A.19. For all n ⩾ 0, we have that ℓOK

(
M[u∞](n)[E]

)
= ℓOK

(
M[u∞](n)/E

)
.

Proof. Note that N := M[u∞] is killed by pm, for some m ⩾ 0, and we proceed by induction on
m. So, assume that N is p-torsion. As S/p = kJuK is a complete DVR, we have a decomposition

N ≃
⊕s

j=1 k[u]/u
rj ,

for some rj and s in N. Then, we see that,

N(n) ≃
⊕s

j=1 k[u]/u
pnrj ,

and noting that E = ue mod p, it is easy to compute that

ℓOK

(
N(n)[E]

)
= ℓOK

(
N(n)/E) =

∑s
j=1min{e, pnrj}.

Assume now that N is pm-torsion, and consider the exact sequence

0 −→ pN(n) −→ N(n) −→ N(n)/p −→ 0.

The first term is pm−1-torsion, and the last term in p-torsion. Reducing the preceding exact
sequence modulo E, one obtains a long exact sequence of torsion OK-modules,

0 −→ (pN(n))[E] −→ N(n)[E] −→ (N(n)/p)[E] −→ (pN(n))/E −→ N(n)/E −→ (N(n)/p)/E −→ 0,

and the claim follows from the induction hypothesis by the additivity of length. □

A.3. Applications to cohomology. We now apply the abstract statements on Breuil–Kisin
modules to prove some results concerning Breuil–Kisin cohomology of smooth formal OK-schemes.
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A.3.1. Proof of Proposition 4.30. We shall in fact show the stronger claim that under
Hypothesis 4.28, Conjecture 4.26 implies (L1) and (L2) from Section 4.4 (see the discussion
after Proposition 4.24), i.e. that ℓi,(a)dR ⩽ e · ℓidR and that ℓi,(n)

dR is non-decreasing in n. By (4.5),
we have the following equality:

ℓi,(n)

dR = ℓOK

((
Mi,(n)/E

)
[p∞]

)
+ ℓOK

(Qi,(n)). (A.22)

Using (A.20) in Lemma A.17, and Lemmas A.18 and A.19, we see that statement (2) in Conjecture
4.26 implies that the first term on the right hand side of (A.22) is non-decreasing in n. Moreover,
the second inequality in Hypothesis 4.28 implies that the second term on the right hand side of
(A.22) is non-decreasing in n. A similar analysis, using statement (1) in Conjecture 4.26 and the
first inequality in Hypothesis 4.28, implies the inequality ℓicrys ⩽ ℓidR in Conjecture 4.19.

A.3.2. Verification of Conjecture 4.26 in some small cases. We finally aim to use the
results in Sections A.1 and A.2 to prove the following.

Theorem A.20. Conjecture 4.26 holds when i ⩽ 2 and p · α(Mi) ̸= e < p(p− 1).

The key to proving this result is the following length estimates.

Proposition A.21. Let M be a u∞-torsion quasi-filtered Breuil–Kisin module of height i ⩽ 2.
Assume that pα(M) ̸= e < p(p− 1). Then, the following two inequalities hold:

ℓOK

(
M(n+1)[E]

)
⩾ ℓOK

(
M(n)[E]

)
, (A.23)

e · ℓOK

(
M(1)[E]

)
⩾ ℓOK

(
M(a+1)[E]

)
. (A.24)

Proof. Using Theorem A.9, the claim is trivial for i = 0, 1. For i = 2, the claim follows by using
Proposition A.10 and Lemmas A.22 and A.23 below. □

Lemma A.22. Assume that M is p-torsion, then the inequalities (A.23) and (A.24) hold.

Proof. As M is a finitely generated u∞-torsion module over S/p = kJuK, therefore, from the
proof of Lemma A.19 recall that we have,

ℓOK

(
M(n)[E]

)
= ℓOK

(
M(n)/E) =

∑s
j=1min{e, pnrj},

for any n ⩾ 0, which implies the claim. □

Lemma A.23. Write α = α(M). Assume that uα + px is in Ann(M) with 1 ⩽ α ⩽ ⌊ e
p−1⌋ < p

and x in S×, and e ̸= pα. Then, the inequalities (A.23) and (A.24) hold.

Proof. For e ⩽ p− 1, note that Ann(M) is p-torsion by Theorem A.9, and the claim follows by
Lemma A.22. So, we may assume that p ⩽ e ⩽ p(p − 1). Consider the element f := uα + px
assumed to be in Ann(N). It suffices to consider the following cases:

• if E ∈ Ann(M), then M is p-torsion by Lemma A.11 and we may use Lemma A.22;
• if E ̸∈ Ann(M) and E ∈ Ann(M(1)), then M(1) is p-torsion by Lemma A.11, in particular,
M is p-torsion and we may use Lemma A.22;
• if E ̸∈ Ann(M) and E ̸∈ Ann(M(1)), then the claim follows from the discussion below.

Assume that E ̸∈ Ann(M) and E ̸∈ Ann(M(1)). Let n ⩾ 0 and observe that f (n) belongs
to (p, u) (p, u)2, and thus S/f (n) is a regular local ring of dimension one, and so a DVR with
uniformiser u. As M is a finite, u∞-torsion S/f -module, we may write

M
∼−→

⊕s
j=1S/(f, u

rj ),

for some rj and s in N, and for all n ⩾ 0, we see that

M(n) ∼−→
⊕s

j=1S/(f
(n), up

nrj ).

Recall that u is a uniformiser of S/f (n) and let υn(−) denote the u-adic valuation on S/f (n).
Then, we compute that υn(p) = pnα, and therefore,

υn(E) =

 α if n = 0,
min{e, pα} if n = 1,
e if n ⩾ 2.

(A.25)
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Observe that we have,

ℓOK

(
M(n)[E]

)
= ℓOK

(
M(n)/E

)
=

∑s
j=1min{υn(E), pnrj}.

Hence, it follows that the inequalities (A.23) and (A.24) also hold when E ̸∈ Ann(M) and
E ̸∈ Ann(M(1)). This allows us to conclude. □

These methods also imply the following, which actually finishes the proof of Theorem A.20, as
Hi

(
RΓS(X/OK)/pm) and its u∞-torsion submodule Hi

(
RΓS(X/OK)/pm)[u∞] are quasi-filtered

Breuil–Kisin modules of height i by [LL23, Proposition 3.2].

Proposition A.24. With the assumptions in Theorem A.20, the following inequality holds:

ℓOK

(
Mi

(n+1)
[E]

)
⩾ ℓOK

(
Mi

(n)
[E]

)
. (A.26)

Proof. From Lemma A.6 and [SP, Tag 061Z], we have natural inclusions of S-modules

Mi ↪→ (Mi/pN )[u∞] ↪→ Hi
(
RΓS(X/OK)/pN

)
[u∞],

for some N ≫ 0. In particular, from Proposition A.8 and Proposition A.10, it follows that either
p kills Mi or uα + px kills Mi, with e ̸= pα, 1 ⩽ α ⩽ ⌊ e

p−1⌋ < p and x in S×. Hence, the claim
follows by the using the same arguments as in Lemmas A.22 and A.23. □
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