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ABSTRACT. For p > 3 and an unramified extension F'/Q, with perfect residue field, we define a
syntomic complex with coefficients in a Wach module over a certain period ring for F'. We show that our
complex computes the crystalline part of the Galois cohomology (in the sense of Bloch and Kato) of the
associated crystalline representation of the absolute Galois group of F'. Furthermore, we establish that
Wach modules of Berger naturally descend over to a smaller period ring studied by Fontaine and Wach.
This enables us to define another syntomic complex with coefficients and we show that its cohomology
also computes the crystalline part of the Galois cohomology of the associated representation.

1. INTRODUCTION

Let F' be an unramified extension of Q, with perfect residue field and let G denote the absolute
Galois group of F'. One of the main goals of p-adic Hodge theory is to classify p-adic representations
of G arising from geometry, for example, crystalline, semistable, de Rham etc. The notion of p-adic
crystalline representations, defined by Fontaine in [Fon82], is meant to capture the idea of “good
reduction” of algebraic varieties defined over F.

To understand p-adic representations more explicitly, Fontaine intiated different programs aiming
to describe p-adic representations in terms of certain semilinear algebraic objects. In [CF00] Colmez
and Fontaine showed that the category of p-adic crystalline representations of G is equivalent to the
category of weakly admissible filtered ¢-modules over F' (see Subsection 2.2). On the other hand, in
[Fon90], Fontaine showed that the category of all p-adic representations of G is equivalent to the cate-
gory of étale (i, I'p)-modules, where I'p — Z; . Fontaine’s equivalence was further refined to establish
an equivalence between the category of p-adic crystalline representations of Gr and the category of
Wach modules, where a Wach module is a certain lattice inside the étale (p, I'r)-module associated to
the representation (see [Fon90; Wac96; Col99; Ber04]). All preceding categorical equivalences are exact
and it is natural to ask the following:

Question. Let V be a p-adic crystalline representation of Gg. Can one (partially) compute the contin-
uous Galois cohomology of V in terms of the associated filtered p-module, resp. the étale (v, I'r)-module,
resp. the Wach module?

In [BK90], Bloch and Kato defined a complex using the filtered ¢-module Deis(V') associated to V'
and showed that their complex computes the crystalline part of the continuous Galois cohomology of V'
(see Theorem 1.1). Moreover, in [Her98], Herr defined a complex in terms of the étale (¢, I'r)-module
associated to V' (not necessarily crystalline) and showed that his complex computes the continuous
Galois cohomology of V' (see Subsection 2.3). The main objective of this article is to answer the open
question above for Wach modules, i.e. we will define a syntomic complex in terms of the Wach module
associated to V and show that our complex computes the crystalline part of the continuous Galois
cohomology of V' (see Theorem 1.3 and Theorem 1.9). Our results are related to the results of [BIK90]
(see Remark 4.3 and Remark 4.14) and [Her98] (see Remark 1.5), however, our constructions and proofs
are direct and independent of [BIKX90; Her98].
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1.1. Bloch—Kato Selmer groups. Let us begin by recalling the result of Bloch and Kato.
In [BK90], the authors defined Bloch-Kato Selmer groups of V' as a subspace inside the continuous
G p-cohomology of V| i.e. H}“(GF,V) C H*¥(Gp,V), for k € N. Morally, Bloch-Kato Selmer group
picks out the crystalline part of the Galois cohomology of V' (see Remark 2.4). More precisely, from
[BK90] we have the following:

Theorem 1.1 (Corollary 2.6). Let V' be a p-adic crystalline representation of Gr. Then the complex
D*(Dexis (V) = Fil° Deyis (V) =25 Deyis(V),

computes the crystalline part of the Galois cohomology of V, i.e. we have natural isomorphisms
H¥(D*(Deris (V) = H’J?(GF,V) for each k € N.

1.2. Syntomic complexes and Galois cohomology. Let p > 3 and set Fio := UpF(pipn)
with T := Gal(Fy/F) — Z;, via the p-adic cycolotomic character x. Note that I'p fits into the
following exact sequence:

1—Ty—Tpr —Ttexr —1,

where T'g — 1+ pZ,, and I'to — F,{, and the projection map in (2.1) admits a section T'tor — F —
Zy <= T'r, where the second map is given as a ~ [a], the Teichmiiller lift of a. We also fix a topological
generator vy of I'g.

Let ¢ be an indeterminate and set A}, := Op[g — 1], equipped with a Frobenius endomorphism ¢
extending the Frobenius on Op by setting ¢(q) = ¢?, and an Op-linear and continuous action of '
defined by setting g(¢) = ¢X(9 for any g in T'x (see Subsection 2.1). Set p := ¢ — 1 and fix the following
elements inside AJPC:

plg = L5 po = —p+ Laer, 4, D= po+p.
Now, we set S := Op[uo] = (A;)F; C A}, which is stable under the action of ¢ and I'g; we equip S
with the induced (¢, I'g)-action. Our goal is to define syntomic complexes with coefficients in Wach
modules over AL (resp. S).

cris

1.3. Syntomic complex over Af. Let Repz °(Gr) denote the category of Z-lattices inside
p-adic crystalline representations of G and let (¢, I‘)—Modz)]f denote the category of Wach modules
F

over A} (see Definition 3.1). Then by [Fon90; Wac96; Col99; Ber04], we have an equivalence of
categories Rep%rgs(Gp) == (¢, I‘F)—Mod[:]f, by sending T' — Np(T) (see Theorem 3.9). Moreover,
after inverting p, i.e. upon passing to assogiated isogeny categories, the Wach module functor induces
an exact equivalence of categories (see Remark 3.11).

Let T' be a Z,-representation of G such that V := T[1/p] is crystalline. Let N := Np(T') denote
the Wach module over A} associated to T' by Theorem 3.9. Define a decreasing filtration on IV called

the Nygaard filtration as Fil*N := {z € N such that p(z) € [p]EN}, for k € Z. Define an operator on
NasV,:= % : N — N. Then for each k € Z we have that V,(Fil*N) C Fil*"!N (see Remark 3.17).

Definition 1.2. Define the syntomic complex with coeffcients in N as

(thlfﬂo)

S*(N) : Fil'N Yol=9, g1y g y LTPee V)T,

N,

where the first map is 2 — (V4(z), (1 — ¢)x) and the second map is (z,y) — (1 — [plgp)z — V4(y).
Our first main result is as follows:

Theorem 1.3 (Theorem 4.2). For each k € N, we have a natural isomorphism

H*(S*(N)[1/p] = Hf(Gp, V).
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The proof of Theorem 1.3 is subtle. For computing H°(S*(N)), we first show that Wach modules
over A}, canonically descend to Wach modules over S (see Theorem 1.7), and then we study the action
of Tg on N (see Lemma 4.4). To prove the claim for H!, we show that our complex computes the
extension classes of AF by N in the category of Wach modules over AJI,C, and after inverting p, each
class gives rise to a crystalline extension class of Q, by V, and vice versa (see Proposition 4.5). Finally,
by explicitly studying the action on N, of the generator « of I'g, we show that H?(S®*(N))[1/p] vanishes
(see Proposition 4.6).

Remark 1.4. Note that (N/uN)[1/p] is a ¢-module over F since [p], = p mod pAL and N/uN
is equipped with a filtration Fil*(N/uN) given as the image of Fil*N under the surjection N —»
N/uN. We equip (N/uN)[1/p] with the induced filtration Fil*((N/uN)[1/p]) := Fil*(N/uN)[1/p],
and note that it is a filtered p-module over F. Then, from [Ber04, Théoréme I11.4.4] and [Abh23a,
Theorem 1.7 & Remark 1.8] we have that (N/uN)[1/p] — Deis(V) as filtered ¢p-modules over F' (see
Theorem 3.15). The preceding comparison enables us to define a morphism of complexes S*(N)[1/p] —
D°(Deyis(V)), which induces a quasi-isomorphism (see Remark 4.3). In particular, the complex S*(V)
may be regarded as a “lifting to AL” of the complex @*(Deis(V)).

Remark 1.5. Definiton 1.2 can be modified (upto isomorphism) to obtain a subcomplex of the
Fontaine-Herr complex from [Her98] (see Remark 4.3 and Remark 4.14). Note that the Fontaine—
Herr complex computes the Galois cohomology of a representation, while the complex in Definition 1.2
or Remark 4.3 is concerned with capturing the crystalline part of the Galois cohomology. Complexes
similar to the modified complex in Remark 4.3 were studied in [Abh23c] and named syntomic com-
plexes. Hence, we refer to the complex in Definition 1.2 as the syntomic complex with coefficients in
N.

Remark 1.6. In [Bha23, Chapter 6], Bhatt and Lurie have defined syntomic cohomology of prismatic
F-gauges on the stack ZJ™ and, in case of reflexive F-gauges, compared it to the Bloch-Kato Selmer
groups of the associated crystalline representation of Gal(F/Q,) (see [Bha23, Proposition 6.7.3]). In
the light of Theorem 1.3 and the prismatic interpretation of Wach modules (see [Abh24]), a natural and
interesting question is to ask for a direct (integral) relationship between Definition 1.2 and the definition
of [Bha23]. The aforementioned question and generalisation of the theory above to the relative case,
i.e. Definition 1.2 and its relationship with Galois cohomology, will be investigated in a future work.

1.4. Syntomic complex over S. Let (¢, I‘O)-Modg denote the category of Wach modules over
S (see Definition 3.4). Our second main result establishes the following descent statement for Wach
modules:

Theorem 1.7. The following natural functor induces an exact equivalence of ®-categories,

(2. T} Mod§ > (. I'p)-Mod W
M — A} ®Rs M.

with an exact ®-compatible quasi-inverse functor given as N — N Fo.

By combining Theorem 1.7 and Theorem 3.13, we obtain a natural equivalence of categories
Repz *(Gr) =5 (¢,Tp)-Mod%, by sending T +— Mp(T) := Np(T)F» (see Theorem 3.13).

Let T be a Zy-representation of G such that V := T[1/p] is crystalline. Let M := Mp(T) denote
the Wach module over S associated to T' by Theorem 3.13. Define a decreasing filtration on M called
the Nygaard filtration as Fil* M = {x € M such that p(x) € pFM}, for k € Z. Define an operator on

M as Vj := 77_01 : M — M. Then for each k € Z we have Vo(Fil* M) c Fil*"P*1 M (see Remark 3.25).

Definition 1.8. Define the syntomic complex with coeffcients in M as

- _gp—1
S* (M) : FiOM S0 pyptt gy g pp (SPTOVOTG

where the first map is x — (Vo(z), (1 — ¢)z) and the second map is (x,y) — (1 — PP~ Lo)z — Vo(y).
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Our third main result is as follows:

Theorem 1.9 (Theorem 4.13). For each k € N, we have a natural isomorphism
H*(S*(M))[1/p] = Hf (Gp, V).

To prove Theorem 1.9, we first define a morphism of complexes S*(M) — S*(N), where N =
AL ®g M is a Wach module over AL (see Theorem 1.7). Then using the F,-decomposition of N (see
Remark 2.1), we show that the natural map on cohomology H*(S*(M)) — H¥(S*(N)) is bijective for
k = 0,1 and injective for k = 2 (see Proposition 1.7). Combining this with Theorem 1.3, yields the
claim.

Remark 1.10. Note that (M/uoM)[1/p] is a ¢-module over F' since p = p mod ppS and M/uoM

is equipped with a filtration Fil*(M/ugM) given as the image of Fil*M under the surjection M —

M /oM. We equip (M /poM)[1/p] with the induced filtration Fil* (M /puoM)[1/p]) := Fil* (M /puoM)[1/p],
and note that it is a filtered p-module over F. Then, in Theorem 3.23 we show that (M /uoM)[1/p] —
D¢yis(V) as filtered ¢-modules over F. The preceding comparison enables us to define a morphism
of complexes S*(M)[1/p] = D°*(Deris(V')), which induces a quasi-isomorphism (see Remark 4.14). In
particular, the complex S®*(M) may be regarded as a “lifting to S” of the complex 9®(Dcyis(V)).

1.5. Outline of the paper. This article consists of three main sections. In Section 2, we quickly
recall the necessary definitions and results on period rings, p-adic representations and Galois cohomol-
ogy. We begin by fixing some notations and recalling several period rings in Subsection 2.1 and the
theory of p-adic crystalline representations and (¢, I')-modules in Subsection 2.2. In Subsection 2.3, we
recall the Fontaine-Herr complex and its relationship with the Galois cohomology of p-adic represen-
tations; in Subsection 2.4 we recall the definition of Bloch—Kato Selmer groups and the construction of
the Bloch—Kato complex from Theorem 1.1. Section 3 is devoted to the study of Wach modules and the
Nygaard filtration on Wach modules. In Subsection 3.1, we first recall the definition of Wach modules
over AF and S, and then prove the descent claim of Theorem 1.7. In Subsection 3.2, we recall the
relationship between Wach modules and crystalline representations, and in Subsection 3.3 we define
the Nygaard filtration on Wach modules and prove several properties of the filtration that are to be
used later. In Section 4, we arrive at the main results on the computation of Galois cohomology. We
begin Subsection 4.1 by defining the syntomic complex over A} (see Definition 1.2) and then state and
prove Theorem 1.3. The proof for each cohomological degree k = 0, 1,2 is carried out separately (see
Lemma 4.4, Proposition 4.5 and Proposition 4.6). Finally, in Subsection 4.2 we define the syntomic
complex over S (see Definition 1.8) and prove Theorem 1.3.

Acknowledgements. The work presented here was partially carried out during my PhD at Université
de Bordeaux. I would like to sincerely thank my advisor Denis Benois for several discussions around
the content of this article and Takeshi Tsuji for helpful discussions around Theorem 3.8. I would also
like to thank Luming Zhao for helpful remarks on a previous version of the article. This research is
partially supported by JSPS KAKENHI grant numbers 22F22711 and 22KF0094.

2. p-ADIC REPRESENTATIONS

Let p > 3 be a fixed prime number and let x denote a perfect field of characteristic p; set Op := W (k)
to be the ring of p-typical Witt vectors vzith coefficients in x and F := Frac(Op). Let F denote
a fixed algebraic closure of F, let C, := F denote its p-adic completion and Gy := Gal(F/F) the
absolute Galois group of F. Moreover, let Fi := U, F(ppn), and set I'p := Gal(Fy/F) — Z} and
Hp := Gal(F/F). Note that the isomorphism y : I'p — Z; is given via the p-adic cyclotomic
character, and therefore, I'p fits into the following exact sequence:

1—Ty—Tpr—Tior—1, (2.1)

where we have that I'g — 1+ pZ, and Tyor — F,, and the projection map in (2.1) admits a section
Tior — F—Zy +— T'p, where the second map is given as a + [a], the Teichmiiller lift of a. We fix
a topological generator v of I'y.
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Remark 2.1. Let N be a compact Z,-module admitting a continuous action of I'p. Then from [Iwa59,

Section 3|, the module N admits an F;—decomposition N = EB%:& N;, where Nyg = N Fp Moreover,
since I'p is commutative, therefore, each N; is equipped with an induced continuous action of I'y.

2.1. Period rings. In this subsection we will quickly recall the period rings to be used later
(see [Fon90; Fon94] for details). Let O (resp. O, ) denote the ring of integers of F' (resp. Fu)
and let Obf := limg, 00 Of/p (vesp. O%oo := limg.» Op_ /p) denote its tilt (see [Fon94]). Let us set
Aing(Op,) = W(O%OO) and A (OF) = W(O%) admitting the natural Frobenius on Witt vectors
and continuous (for the weak topology) actions of I'r and G, respectively. We fix i := & — 1, where
€= (1,(p, G2, ...) isin O%oo, and let ¢ = [¢], p := ¢ — 1 and & := /¢~ (p) in Ape(Or,). Then,
for any g in Gp, we have that g(1 + p) = (1 + ,u)X(g), where x is the p-adic cyclotomic character.
Moreover, note that we have a G p-equivariant surjective homomorphism of rings 6 : Ay, (Oz) — C,

with Kerf = {Ajys(O%). The map 6 restricts to a I'p-equivariant surjective homomorphism of rings
0 : Ainf(OFoo) — 01’5 with Kerf = fAinf(OFoo).

We set Aeis(OF,) := Aint(OF.,, ) (¥ /k!, k € N) and note that ¢ := log(1+u) = ZkeN(_l)k% con-
verges in Aeis(OF,, ). The ring Auis(OF, ) is p-torsion free and t-torsion free, and we set BI. (Op, ) 1=
Aeis(Op,)[1/p] and Beis(Or,,) := B (Or,)[1/t]. These rings are equipped with a Frobenius endo-
morphism ¢, a continuous I'-action and a decreasing filtration; the ring At (Og,) and BE. (Or.)
are further equipped with an appropriate extension of the map . Next, let us define Bj;(OF,.) =
lim, (Ainf(Or,.)[1/p])/(Kerf)™ and Byr(Op..) = Biz(Or,)[1/t]. These rings are equipped with a
I'p-action and a decreasing filtration; the ring B:{R(OFOO) is further equipped with an appropriate
extension of the map 6. Moreover, we have (¢, 'p)-equivariant and filtration compatible injective ho-
momorphism of F-algebras Bl (Op.. ) — Biz(Or.) and Beis(Or.) — Bar(Op..). One can define
variations of all the aforementioned rings and their properties over O as well. Furthermore, from
[Fon94, Théoréme 5.3.7] we have the following (¢, Gr)-equivariant fundamental exact sequence:

0 — Qp — Fil®Beyis(O5) —2+ Beris(O5) — 0. (2.2)

Let us set A} := Op[u] and we equip it with a Frobenius endomorphism ¢, given as the Witt vector
Frobenius on Op and by setting ¢(u) = (1 + )P — 1, and an Op-linear and continuous action of I'p,
given as g(u) = (1+u)X9 —1, for any g in I'r. Note that we have a natural embedding A} C Au¢(OF..)
compatible with Frobenius and I' p-action. Set Ap := A; [1/p]”, where ”* denotes the p-adic completion.
The Frobenius endomorphism ¢ and the continuous action of I'z on AIJS naturally extend to respective

actionson Ap. Let W(C;b)) denote the ring of p-typical Witt vectors with coefficients in CII’J = Frac(O%),

and note that W(CZ) is equipped with the natural Frobenius on Witt vectors and a continuous (for
the weak topology) action of Gp. The the natural (¢, T'r)-equivariant embedding AL C Aine(OF,)
extends to a natural (¢, r)-equivariant embedding Ap C W(C?,)HF = W(F2).

Next, we recall some definitions and observations from [Abh24, Subsection 3.1] by fixing the follow-
ing elements inside AF:

[plq = q;__ll = %’
0 = Cers (1407 = 1) = —p+ e, (1+ )1, (23)

b= p10 +p = Yger, (1 + @)l

From loc. cit. note that the element p is the product of [p], with a unit in Ap and the element p is the
product of yP~! with a unit in Af.. Now, we consider the subring S := Op[uo] = (A;)Fg C Aj, which
is stable under the action of ¢ and I'y; we equip S with the induced (¢, I'g)-action. Moreover, from loc.
cit., for any g in T'g, we have that (g — 1)uo is an element of oS and we can write (o) = upop? !,
for some unit u in S. Furthermore, we have that S = (MA;)FPX and the natural (¢, I'r)-equivariant
injective map S — AFL is faithfully flat and finite of degree p — 1. Finally, we set Apg := S[1/uo]",
where ”* denotes the p-adic completion, and note that Ap is equipped with an induced action of ¢ and
To.
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Remark 2.2. For consistency, one should denote the ring Op[uo] as AJPCO. However, this ring will
appear frequently in the rest of the text and the aforementioned notation is too clunky. So we have
chosen to denote the ring O[] simply by S.

2.2. p-adic representations. Let 7" be a finite free Z,-representation of Gp. By the theory of
étale (o, I'p)-modules (see [Fon90]), we can functorially associate to T" a finite free étale (¢, I'r)-module
Dp(T) over Ap of rank = rkz, T'. Moreover, by taking I'to-invariants of Dp(T), we obtain a finite
free étale (p,I'g)-module Dpo(T) := D F(T)Ftof over Ar of rank = rkz T'. These constructions are
functorial in Z,-representations and induce an exact equivalence of ®-categories

Repzp (GF) ; ((107 FF)'MOdi:Fa

N ;] (2.4)
Repz,(Gr) — (,T'0)-Mody,, .

with an exact ®-compatible quasi-inverse given as Tr(D) = (W(C’) ®4, D)¥=! and Tr(Dy) :=
(W(C") @4 0 D0)?=1, respectively. Similar statements are also true for p-adic representations of Gp.
Next, from the p-adic Hodge theory of G (see [Fon82]), one can attach to a p-adic representation
V, a filtered ¢-module over F' of rank < dimg, V, given as Deis(V) 1= (Beis(Of) ®q, V)&r. The
representation V' is said to be crystalline if the natural map Be;is(Oz) ®F Deris(V) = Beris(OF) ®q, V
is an isomorphism, or equivalently, dimp Deyis(V) = dimg, V. Restricting Deis to the category of
crystalline representations of G and writing MF}*(p) for the category of weakly admissible filtered
p-modules over F' (see [CF00]), we obtain an exact equivalence of ®-categories (see [CF00, Théoréme
Al):
Deris : Repg, (Gr) = MF (), (2.5)

with an exact ®-compatible quasi-inverse given as Viys(D) := (FilO(BmS(OF) ®@p D))¥=1.

2.3. Galois cohomology and Fontaine—Herr complex. Let T' be a Z,-representation of
Gp, and let D := Dpo(T) denote the associated étale (¢,I'r)-module over App. In [Her98], Herr
defined a three term complex in terms of D, which computes the continuous G g-cohomology of T
More precisely, recall that ~y is a generator of I'g and consider the following complex:

¢*(D): D LMD pgp (e T g (2.6)

where the first map is ¢ — ((y—1)z, (1 —¢)y) and the second map is (z,y) — (1 —¢)x —(y—1)y. Then
the complex 6°*(D) computes the continuous G p-cohomology of T" in each cohomological degree, i.e. for
each k € N, we have natural (in T') isomorphims H*(6*(D)) = HE .(Gp,T). From the complex it is
clear that HX (G, T) = 0, for k > 3. To ease notations, from now onwards we will write H*(Gp,T)
instead of HE (GF,T).

Note that for a Z,-representation T" of G, the space H YGF,T) classifies all extension classes of Z,
by T in the category of Z,-representations of Gp. Similarly, for an étale (¢, I'g)-module D, the space
H'(6*(D)) classifies all extension classes of Arg by D in the category of étale (¢, g)-modules over
Afr. Therefore, by the exact equivalence in (2.4), we have natural isomorphisms

HYGp,T) = Extlgepzp(GF)(zp, T) = Exté%rp)_Mo as (Apo, D) <~ H'(6*(D).

2.4. Bloch—Kato Selmer groups. In this subsection, we will recall the definition of Bloch—
Kato Selmer groups from [BIK90]. Let V be a p-adic crystalline representation of Gr. Then we have a
natural G p-equivariant morphism of Q,-vector spaces V' — Beis(Of) ®q, V, sending z — 1 ® x. By
considering the continuous G p-cohomology groups, we obtain natural homomorphisms H*(Gp, V) —
H*(GF, Bais(OF) ®q, V), for each k € N.

Definition 2.3. Define the Bloch-Kato Selmer groups of V' denoted H}“(GF,V) C H¥(Gp,V), for
k € N, by setting,
HY(GR, V), if k=0
H{(Gp,V) = Ker (HY(GF,V) = HYGF, Bais(Oz) ®q, V),  ifk=1
0, if k> 2.
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Remark 2.4. For k € N, the subspace H]]?(GF, V) C H*(GF,V) are also referred to as the crystalline
part of the Galois cohomology of V. Notably, the subspace H}(GF,V) C HYGF,V) classifies all
crystalline extension classes of Q, by V, i.e. we have natural isomorphisms

H{(Gp,V) = Extﬁcpg;s @m @, V) = Extll\/[FvP!a(w)(F, Dais(V)),

where the last isomorphism follows from the exactness of D5 and Vs (see Subsection 2.2).

Note that we have a natural Q,-linear and G'r-equivariant morphism V' — FilOBcriS(Of) ®q, V,
sending z + 1®x, and it induces a natural homomorphism H*(Gg,V) — HY(GFr,F ﬂOBcriS(OF)®Qp V).

Proposition 2.5. The following natural map is an isomorphism:
Ker (H'(Gp,V) = H' (G, Fil’ Bais(OF) ®q, V)) = H{ (G, V).
Proof. By the naturality of the action of G, we have the following commutative diagram:

HYGp,V) —— HY(Gp,Fil’ Buis(05) ®q, V)

\ | (2.7)

Hl(GF, Bcris(of) ®Q, V)

To show the claim, it is enough to show that the right vertical arrow is injective. Now consider the
following exact sequence:

00— FilOBcris(Of) — Bcris(of) — BcriS(Of)/FﬂOBcriS(Of) — 0.

Upon tensoring this exact sequence with V' and taking continuous G g-cohomology, we obtain an
injective map of F-vector spaces:

0 Dexis (V) /Fil° Deyis (V) — (Beris(O5) /Fil’ Beyis(O5) g, V)7, (2.8)

and it is clear that the vertical map in (2.7) is injective if and only if (2.8) is bijective. Now, as we
have Bqr(Of) = Fil’Bar(O%) + Beris(O7)?~! (see [BK90, Proposition 1.17]), therefore, we obtain
G p-equivariant isomorphisms
Beris(O5) /Fil® Beyis(O) — Bar(0%)/Fil’ Bar (05) — @r<oCp - t*,
where the last isomorphism follows from [Fon94, Subsection 1.5.5]. Therefore, the codomain of the map
. . G
(2.8) can be written as (Bcris(Of)/FlloBcris(Of) ®q, V)TF = (@k<0tkcp ®Q, V)GF = @0t Deis (V).
Counting dimensions, we note that we have
dim 5 (Fil° Deyis (V) + dim - (@k<08r* Deris (V) = dimp Deyis (V),

so the domain and the codomain of the F-linear injective map in (2.8) have the same dimension. Hence,
(2.8) is bijective allowing us to conclude. [ |
Corollary 2.6. Let V be a p-adic crystalline representation of Gg. Then the following complex

D*(Dexis (V) : Fil° Deyis (V) =25 Degio(V), (2.9)

computes the crystalline part of the Galois cohomology of V, i.e. H¥(9D*(Dgis(V))) — H}“(GF,V)
for each k € N.

Proof. Tensoring the fundamental exact sequence in (2.2) with V| we obtain a G p-equivariant exact
sequence
0 — V — Fil’Beis (Op) ®q, V ——2 Beyis(O5) ®q, V — 0.
By computing the continuous Galois cohomoloy, we obtain the following long exact sequence:
0 — HYGp,V) — Fil® Derig(V) =2 Deis(V) — HY(Gp, V) —> 2.10)
— H'(Gp,Fil’ Bais(OF) ®q, V).

The claim now follows from Proposition 2.5. |
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3. WACH MODULES

In this section, we will recall the definition of Wach modules, their relationship with p-adic crystalline
representations and prove some results on the Nygaard filtration on Wach modules. From Subsection
2.1 recall that we have the ring A; = Op[p] equipped with a Frobenius endomorphism ¢ and a
continuous action of I'r. Moreover, we fixed = ¢ — 1 and [p], = ¢(u)/u in Af.

Definition 3.1. Let a,b € Z with b > a. A Wach module over A}, with weights in the interval [a, b]
is a finite free AJFr—module N equipped with a continuous and semilinear action of I'p satisfying the
following:

(1) T'r acts trivially on N/uN.

(2) There is a Frobenius-semilinear operator ¢ : N[1/u] — N[1/¢(p)] commuting with the action of
' such that o(u?N) C u’N and the cokernel of the induced injective map (1 ® ) : @*(u’N) —
PN is killed by [p]h—e.

Say that N is effective if one can take b = 0 and a < 0. Denote the category of Wach modules over AJPC
as (¢, F)-Modj[f;]f with morphisms between objects being A;—linear, I’ p-equivariant and p-equivariant
F

(after inverting p) morphisms.

Remark 3.2. Let N be a finitely generated Af-module. Then from [Abh23h, Lemma 3.10] we have that
the condition (2) of Definition 3.1 is equivalent to giving an A}—linear and I'p-equivariant isomorphism

o 2 (" N1/ plg] = (Ap @, 4 N)[1/[plg] = N[1/[plg]

Remark 3.3. Extending scalars along A} — Ap induces a fully faithful functor (¢,T F)—Modf]f —

(ga,FF)—Mod‘fsz (see [Abh23a, Proposition 3.3]).

3.1. Descent of Wach modules. In this subsection, we will show that Wach modules over A7,
descend to a certain subring of A} (see [Fon90; Wac97]). From Subsection 2.1 recall that we have the
ring S = Op[uo] equipped with a Frobenius endomorphism ¢ and a continuous action of I'y. Moreover,
we fixed the elements pg = ZGGF; (1+ e —1)and p=po +pin S.

Definition 3.4. Let a,b € Z with b > a. A Wach module over S with weights in the interval [a, b] is a
finite free S-module M equipped with a continuous and semilinear action of I'g satisfying the following:

(1) Ty acts trivially on M /uoM.

(2) There is a Frobenius-semilinear operator ¢ : M[1/ug] — M[1/¢(po)] commuting with the action
of [y such that p(ud M) C pd M and the cokernel of the induced injective map (1®¢) : ¢*(u M) —
pb M is killed by pP—e.

Say that M is effective if one can take b = 0 and a < 0. Denote the category of Wach modules over S as
(¢, F)—Modg with morphisms between objects being S-linear, I'g-equivariant and p-equivariant (after
inverting 1i9) morphisms.

Lemma 3.5. Let M be a finitely generated S-module. Then (2) of Definition 3./ is equivalent to
giving an S-linear and To-equivariant isomorphism oar = (9*M)[1/p] = (S ®,,5 M)[1/p] = M[1/p].

Proof. Suppose M satisfes condition (2) of Definition 3.4. Then, the map 1 ® ¢ : @*(udM) — u§M
induces an isomorphism 1 ® ¢ : (u8*M)[1/p] — (u§M)[1/p]. Hence, we obtain an isomorphism
. S b o 1®e b 5 M 5
om (9" M)[1/p] — (o™ M)[1/p] —— (nuoM)[1/p] «— M[1/p].

Since, 1 ® ¢ commutes with the action of I'g, we deduce that ¢y is I'g-equivariant.
Conversely, suppose that M is equipped with an S-linear and I'p-equivariant isomorphism ¢, :
(¢*M)[1/p] = M[1/p]. Then note that for some a,b € Z with b > a we can write poy(0*M) C M C
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Yo (p*M). So we get an S-semilinear and I'g-equivariant map as the composition ¢ : MSM =2
2

*

(M) s pdM. This extends to an S-semilinear and Tg-equivariant map ¢ : M[1/ug] —
[1/¢(po)], and we have,

on (@ (g M) = pbp P Vo (p* M) C pbpP VDAL € 52 P (" (1b M)

Then it follows that 1 ® ¢ = @ar : @*(u§M) — u§M is injective, its cokernel is killed by p*~ and it
commutes with the action of I'g. Hence, M satisfies condition (2) of Definition 3.4. |

Remark 3.6. Similar to Remark 3.3, it is easy to see that extending scalars along S — Ap induces
a fully faithful functor (p, T'p)-Mod% — (¢, FO)—ModifFO.

Next, we will compare the two notions of Wach modules over S and A;,C, respectively. We start with
the following observation:

Proposition 3.7. Let N be a Wach module over AJ},C. Then M = N%5 is a Wach module over S,
and A;C—lz'nearly extending the S-linear inclusion M C N, induces a natural isomorphism

AL ®sM =5 N, (3.1)

of Wach modules over A;E. Moreover, the isomorphism in (3.1) induces a natural isomorphism of
Op-modules M /oM — N/uN compatible with the respective Frobenii.

Proof. The claim follows from [Abh24, Theorem 1.5]. However, we will give another self-contained
proof. Let A := A} and from Remark 2.1, note that for the A-module N we have an F}-decomposition
N = @f:_g N;, where M = N Fp = Ny and each Nj is a (p, ug)-adically complete S-module equipped
with a continuous and semilinear action of I'g. Moreover, recall that A is flat and finite of degree p — 1
over the noetherian ring S, so it follows that N is finite free over S, and the S-submodule M C N is
finitely generated. Now, let us consider the following natural commutative diagram:

A®s M —— N

l l (3.2)

A®s M[1/p] —— NI[1/p],

where the right vertical arrow is the natural inclusion, the left vertical arrow is injective because M is
p-torsion free (since the same is true for N) and the natural map S — A is flat.

We claim that the top horizontal arrow of (3.2) is bijective. First, note that to show the injectivity of
the top horizontal arrow, it is enough to show that the injectivity of the bottom horizontal arrow in (3.2).
The module N[1/p] is finite free over A[1/p] and the map S — A is faithfully flat and finite of degree
p — 1, so we see that N[1/p] is finite free over S[1/p] as well. As N[1/p] is equipped with an induced
action of ', therefore, from the decomposition in Remark 2.1, it follows that M[1/p] — (N[1/p])o as
S[1/p]-modules, in particular, M[1/p] is finite projective over S[1/p], hence finite free because S[1/p]
is a principal ideal domain. As the natural map S — A is flat, it follows that the bottom horizontal
arrow in (3.2) is injective. Next, let us show that the top horizontal arrow in (3.2) is surjective. Note
that we have an Op-linear and I'p-equivariant surjection N — N/uN and using the decomposition
in Remark 2.1, it can be rewritten as a I'p-equivariant surjection @f:_oz N; — EB%’:_OZ (N/uN);. In
particular, the latter map is surjective on each term, i.e. the induced Op-linear map N; — (N/uN); is
surjective, for each 0 < ¢ < p — 2. However, recall that I'p acts trivially on N/uN, therefore, we see
that N/uN = @f;g(N/uN)i = (N/uN)p. In particular, the natural Op-linear map M — N/uN is
surjective. Since p belongs to the Jacobson radical of A, therefore, Nakayama Lemma implies that the
natural (o, 'r)-equivariant map A ® ¢ M — N is also surjective. Hence, it follows that the A-linear
extension of the S-linear inclusion M C N induces the natural (o, T'p)-equivariant isomorphism in
(3.1),i.e. A®s M = N.

Next, we will compute the kernel of the surjective map M — N/uN, which is given as uN N M
inside N. Using the decomposition in Remark 2.1, we get that uN N M = (uM)o, and we claim that
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poM — (1uN)g as S-modules. As the natural map oM — (uN)g is injective, we need to show that
it is surjective as well. Note that we can write,

(uN)o = > (nA); @5 Nj.
i+j=0 mod p—1

Moreover, using the (¢, I'p)-equivariant isomorphism A®gM — N, note that we have A;®gM — Nj,
for each 0 < j < p — 2. Therefore, for each pair 4, j such that i + j = 0 mod p — 1, we see that

(nA); ®s Nj +— (pA); @5 A; ®g No C (pA)o @5 No.

Now, recall that we have, pgS = (,LLA)F; = (uA)o. Hence, from the preceding discussion, we get that
poM — (uN)o. Subsequently, we have also obtained that M/ugM — N/uN as Op-modules, and
therefore, the action of 'y is trivial on M/ugM. Moreover, note that the S-module M is p-torsion free
and po-torsion free and M/ugM — N/uN is p-torsion free. Therefore, from [Abh23b, Lemma 3.5]
and [Fon90, Proposition B.1.2.4], it follows that M is finite free over A.

Finally, we will show the Frobenius condition on M (see Definition 3.4 and Lemma 3.5). Recall
that p is the product of [p], with a unit in A, so the Frobenius on N can also be given as an A-linear
isomorphism ¢*(N)[1/p] — N[1/p] (see Definition 3.1 and Remark 3.2). Moreover, the Frobenius
on N commutes with the action of I'r. Therefore, by taking invariants under the action of F, of
the isomorphism ¢*(N)[1/p] — N[1/p], and using the (o, 'r)-equivariant isomorphism in (3.1), we
conclude that M is equipped with an S-linear isomorphism ¢*(M)[1/p] — M]1/p], compatible with
the natural action of I'y. This allows us to conclude. |

Now, let M be a Wach module over S and let N := A} ®g M be a finite free module over A;.
Then using the natural (p,T'g)-action on M, we see that N is naturally equipped with a semilinear
and continuous action of I'r and an Af-linear isomorphism ¢y : (¢*N)[1/§] — N[1/p]. As p is the
product of [p], with a unit in AJ},C, therefore, using Remark 3.2 we conclude that N is a Wach module
over A}:. More generally, we have that,

Theorem 3.8. The following natural functor induces an exact equivalence of ®-categories,

(i, To)-Modly = (¢, FF)'MOdE]T: (3.3)
M +— AL ®s M.

with an exact ®-compatible quasi-inverse functor given as N NF7.

Proof. Note that the natural (¢, 'r)-equivariant map S — A; is faithfully flat and finite of degree
p — 1, in particular, the functor in (3.3) is exact and fully faithful. Moreover, by Proposition 3.7 we see
that (3.3) is essentially surjective and its compatibility with tensor products is obvious. It remains to
show that the quasi-inverse functor is exact and compatible with ®-products. So, consider an A;,C-linear
and (i, I'p)-equivariant exact sequence of Wach modules over A}, as

0— Ny — Ny —» N3 —> 0.

X
Setting M; := NZ-F” , for each ¢ = 1,2, 3, and considering the associated long exact exact sequence for
the cohomology of the F)-action and noting that H 1(F;,Nl) = 0, since p — 1 is invertible in Z,, we
obtain an S-linear and (¢, I'p)-equivariant exact sequence of Wach modules over S as

00— My — My — Mg — 0.

X
Finally, for any two Wach modules N; and Ny over A;, set M; = Nin , for each ¢ = 1,2, and using
Proposition 3.7, note that we have

(V1 ® a4t NQ)F; = (A} ®s My) ® 4t (Af ®s Mz))Fg = M ®g M.

This allows us to conclude. [ |
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3.2. Wach modules and crystalline representations. Let RepC“S(G r) denote the category
of Z,-lattices inside p-adic crystalline representations of Gr. To any 7' in Repms(G r), Berger func-

torially associated a unique Wach module Np(T) over A} in [Ber04]. More generally, we have the
following;:

Theorem 3.9 ([Fon90; Wac96; Col99; Ber04]). The Wach module functor induces an equivalence of
®-catgeories

Repg™(Gr) = (0,Tr)- ModPls

A+’ T'_>NF(T)7

with a ®-compatible quasi-inverse given as N — Tp(N) = (W(Clbj) ® 4+ N)wzl.
F

Remark 3.10. Let us recall an important comparison result from [Ber04, Théoreme I11.3.1], between
a Wach module N and its associated Z,-representation Tr(N), which will be useful later. To recall
the result, we need to introduce some notations. Let A denote the p-adic completion of the maximal
unramified extension of Ap inside W(C;). The ring A is stable under the (¢, Gr)-action on W(CZ,),

and we equip it with induced structures. Then, we have that A#F = Ap and A¥=! = Z,. Moreover,
we set AT == Aj(Op) NA C W(CZ), which is stable under the (p, Gp)-action on A, and we have
that (AT)Hr = AL and (AT)?=! = Z,. Now, the result in loc. cit. states that we. have a natural
AT[1/p]-linear and (¢, Gp)-equivariant comparison isomorphism A*[1/u] ® ar N — At1/p] ®z,

Tp(N).

Remark 3.11. In Theorem 3.9, note that we do not expect the functor Np to be exact. However,
by passing to the associated isogeny categories, the Wach module functor induces an exact equiva-

lence of ®-categories RepQ S(Gr) = (p,1)- ModE’iL[l/ X via T'[1/p] = Np(T')[1/p] and with an exact

®-compatible quasi-inverse given as N[1/p| — Vr(N[1/p]) = (W(CZ,) D4t N[l/p])go:1 (see [Abh23a,
Corollary 4.3]).

Remark 3.12. Let N be a Wach module over A; and T = Tp(N) the associated Z,-representation
of Gp from Theorem 3.9. Then for each r € Z, it is straightforward to verify that =" N(r) is a Wach
module over Af. and Tr(u~"N(r)) — T(r), where (r) denotes a twist by x".

By combining Theorem 3.8 and Theorem 3.9, we obtain the following:

Theorem 3.13. The following functor induces an equivalence of ®-catgeories
RepZ™(Gr) = (¢,T0)-Mod2, T ~— Mp(T) := Np(T)"7,
with a ®-compatible quasi-inverse given as M — Tp(M) = (W(CZ) ®s M)cp:1

3.3. Nygaard filtration on Wach modules. In this subsection, we will study the Nygaard
filtration on Wach modules over A} and over S. We begin with the former case.

3.3.1. Filtration on Wach modules over A}. Let N be a Wach module over AJ},C. We equip N
with a decreasing filtration called the Nygaard filtration as,

Fil*N := {z € N such that ¢(z) € [p]];N}, for k € Z. (3.4)

From the definition it is clear that N is effective if and only if Fil°N = N. Similarly, we equip the
AL[1/p]-module N[1/p] with a Nygaard filtration and it is easy to see that Fil*(N[1/p]) = (Fil*N)[1/p].

Lemma 3.14 ([Abh23c, Lemma 3.3 & Lemma 3.4]). Let N be a Wach module AF.

(1) For any k,r € Z, and the Wach module "N (r) over AL, we have that Fil*(u™"N(r)) =
p T (RN ().
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or all j,k € Z, we have that pIFi Np™l = il C . stmilar
2) For all j,k € Z h hat pIFilFN N 91N = p7HFIFIN ¢ N1/ A 1
statement is true for the AL[1/p]-module N[1/p].

Proof. For the claim (1), note that the inclusion p~" (Fil"**N)(r) C Fil*(u~"N(r)) is obvious. For the
converse, let 1~ 2 ® €2 be an element of Fil* (4~ "N (r)), with z in N and €®" a Z,-basis of Z,(r). By
assumption, we have that o(u "z ® €27) = ([plgu) " (x) ® € belongs to [p]5p~"N(r). Therefore, we
see that p(x) belongs to [p]g““N, i.c. z is in Fil't* N,

For (2), note that it is enough to show the claim for j = 0, i.e. Fil*N N uN = pFil* "' N ¢ N. Now,
using (1) we can assume that N is effective. The claim is obvious if Fil*"1N = N. So, we may further
assume that Fil* "N C N, i.e. k > 2. Let = be an element of Fil* N N uN and write z = uy, for some
y in N. We claim that y is in Fil*"!N. Indeed, note that o(z) is in [p]’;N, therefore, we get that pe(y)
is in [p}’;_lN, ie. pp(y) = [p]’;_lz, for some z in N. In particular, [p]/ ™'z = p"~'z = 0 mod uN. But,
we have that N/uN is p-torsion free, so it follows that z = 0 mod N, i.e. y belongs to Fil*~'N. The
other inclusion is obvious, as we have that uFilk_lN C Fil*N. This concludes our proof. |

Next, we note that (N/uN)[1/p] is a p-module over F since [p], = p mod uAf, and N/uN is
equipped with a filtration Fil®*(N/uN) given as the image of Fil* N under the surjection N — N/uN.
We equip (N/uN)[1/p] with the induced filtration Fil*((N/uN)[1/p]) := Fil*(N/uN)[1/p], and note
that it is a filtered ¢-module over F. From [Ber04, Théoreme I11.4.4] and [Abh23a, Theorem 1.7 &
Remark 1.8] we have the following:

Theorem 3.15. Let N be a Wach module over A} and V := Tr(N)[1/p] the associated crystalline
representation of Gg from Theorem 3.9. Then we have that (N/uN)[1/p] — Deis(V) as filtered
p-modules over F.

From Theorem 3.15 we have a surjection Fil* N[1/p] = Fil¥ Dis(V) and we would like to determine
its kernel.

Lemma 3.16. Let N be a Wach module over AJ},C. Then, for any k € Z, the following sequence is
exact:

0 — Fil* "IN £ Filk N — Fil*(N/uN) — 0. (3.5)
In particular, we have that Ker (Fil*N[1/p] - Fil*Des(V)) = pFil*"IN[1/p]. Moreover, by taking
the associated graded pieces, we get that gt* N = gr*(N/uN) and gr* N[1/p] = gt* Deris (V).

Proof. Exactness of (3.5) easily follows from Lemma 3.14 (2). Then, by taking the associated graded
pieces, we obtain the following exact sequence:

0 — gr* N L ol N — ar*(W/uN) — 0.
It is clear that the map gr* "IN SN grf N is trivial, i.e. grf*N = gr*(N/uN). Rest is obvious. |

Remark 3.17. The Nygaard filtration on a Wach module N over A; is stable under the action of I'g.
Therefore, for any g in I'r and k € Z, using Lemma 3.14 (2) we see that (g — 1)Fil* N C (Fil*N)nuN =
pFilF 1N,

Finally, we will check the compatibility of the Nygaard filtration with exact sequences of Wach
modules over A;. So consider the following A;—linear and (¢, I'r)-equivariant exact sequence of Wach
modules over A;:

0 — Ny — Ny — N3 — 0. (3.6)

Lemma 3.18. For k € Z, we have that N1 N Fil* Ny = Fil* Ny .

Proof. Let D; :== Ap ® 4+ N;, for i = 1,2. Note that we have Ny := D1 N Ny C Ds. So, if z is in
F

N1 NFil* Ny, then we see that ¢(x) is in Dy N [p]’;Ng, ie. [p]q_kcp(x) is in D; N Ny = Nj. Hence, we get

that z in Fil* V. [
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Remark 3.19. For any j,k € Z, we have that N; N @/Fil* Ny = p/Fil*N;. Indeed, using the same
notation as in the proof of Lemma 3.18, we note that if 2 is in Ny N u/ No, then we can write x = p/y
for some y in Ny and we see that y = u‘jx isin D1 N Ny = Ny, i.e. x is in ,ule. Combining this with
Lemma 3.18 we get the claim.

The statement of Lemma 3.18 can be strengthened after inverting p. More precisely, we have,

Lemma 3.20. The following sequence is exact for each k € Z:
0 — Fil*Ny[1/p] — Fil*Ny[1/p] — Fil*N3[1/p] — 0. (3.7)

Proof. For each i =1,2,3 and r € Z, from Remark 3.12 note that u=" N;(r), where (r) denotes a twist
by x", is again a Wach module over A} and (3.0) is exact if and only if the following is exact

0 — pu "Ni(r) — p "Na(r) — p~"N3(r) — 0.

Now, let P; := N;[1/p] fori = 1,2, 3, and by using Lemma 3.14 (1), note that we have Fil* =" (=" P;(r)) =
1~ "Filk Py(r). Therefore, we see that (3.7) is exact if and only if the following is exact:

0 — Fil* " (4" P (r)) — Fil* " (u" " Py(r)) — Fil* " (" Py(r)) — 0.
In particular, without loss of generality we may assume that each INV; is an effective Wach module over

A;C, for i = 1,2, 3, in particular, Fil’N; = N; and Fil’P; = P;. We will prove the claim by induction on
k € N. So let us assume the claim for k¥ — 1 and consider the following diagram

0 0 0
0 —— pFilF'Pp — FilkP, ———— Fil*(P,/uP)) —— 0
0 —— uFilF'p, — S Filkpy — Fil"(Py/uPy) —— 0 (3-8)

0 —— uFil*'Py —— (Fil*R,)/(Fil*P,) —— Fil*(Py/uP3) —— 0

0 0 0.

In (3.8), note that the first and the second rows are exact by Lemma 3.16 and the first column is exact
by the induction assumption. In the second column, using that P, = (Arp® At P)NP, C Ap® 4t Py it
F F

easily follows that Fil*P; ¢ Fil*P,. Now, let V; := Vr(F;), for each i = 1,2, 3 (see Remark 3.11). Then,
from Theorem 3.15, we have filtered isomorphisms Filk(B /uP;) — FilchriS(%). Recall that Dgyis
is an exact functor and in the category ME7?(p) (see Subsection 2.2) exact sequences are compatible
with filtration. So we get that the rightmost column in (3.8) is also exact. Hence, it follows that the
last row in (3.8) is exact and from Lemma 3.16 we conclude that (Fil*P,)/(Fil* P) = Fil* Py, proving
the claim. |

3.3.2. Filtration on Wach modules over S. Let M be a Wach module over S. We equip M
with a decreasing filtration called the Nygaard filtration as,

Fil*M := {z € N such that p(z) € p*M}, for k € Z. (3.9)

From the definition it is clear that M is effective if and only if Fil’M = M. Now, let N := AF ®s M
and note that the natural S-linear map M — N is injective and (¢, 'p)-equivariant. Moreover, it is
easy to see that Fil*AM = M NFil*N C N, where the Nygaard filtration on N was defined in (3.4).
Similar to Lemma 3.14, we claim the following;:
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Lemma 3.21. For all k € Z, we have that Fil* M N pgM = poFil*PTIM < M[1/ o).

Proof. From Lemma 3.21, note that we have Fil*"N N uN = pFil* "' N. Moreover, recall that pq is
given as the product of yP~! with a unit in A}t. Therefore, it follows that Fil* N N uoN = Fil*N N
pP AN = pP FiIFPTIN = Fil*PHIN. Hence, we obtain that Fil*AM N poM = Fil*N N poM =
poFilFPTIN O oM = poFil* P+, |

Next, we equip the Op-module M /oM with a filtration Fil* (M /M), for k € Z and given as the
image of Fil* M under the surjection M — M /uoM. Moreover, we equip the Op-module N/uN with
a filtration Fil*(N/uN), for k € Z and given as the image of Fil* N under the surjection N — N/uN.
From Proposition 3.7, we have that the natural S-linear and (¢, I'r)-equivariant map M — N induces
an Op-linear isomorphism M/ugM —~ N/uN compatible with the respective Frobenii. We claim the
following;:

Lemma 3.22. The natural isomorphism M/ugM — N/uN induces an Op-linear isomorphism
Fil*(M/poM) == Filk*(N/uN), for each k € Z.

Proof. Consider the following diagram:

0 —— peFil* PN —— Fil*M —— Fil*(M/puoM) —— 0

J J J (3.10)

0 — pFil* !N —— FiI*N —— Fil*(N/uN) —— 0,

where the top row is exact by Lemma 3.21 and the bottom row is the exact sequence (3.5) in Lemma
3.16. Now, it is clear that poFil* " P*1M ¢ pFil* N N Fil* M (since g is the product of uP~! with a
unit in A;) Conversely, note that we have pFil* !N NFil* M ¢ uN N M NFil*M = poM NFil* M =
poFil*"PTL 0. Therefore, it follows that the right vertical arrow in (3.10) is injective and we claim that
it is surjective as well. Indeed, let 2 be an element of Fil*(N/uN) and let 4 in M be a lift of z, under the
composition M — M /oM —~+ N/uN. Then via the natural S-linear and (¢, I'p)-equivariant injective
map M — N, we see that y is in N and a lift of z. In particular, we get that y is in Fil* NN M = Fil*M.
Taking the image of y under the map Fil* M — Fil¥(M/puoM) gives a lifting of  under the right vertical
map of (3.10). Hence, we obtain that Fil*(M/ugM) = Fil*(N/uN). |

Now, note that (M/uoM)[1/p] is a p-module over F since p = p mod uoM and M/ugM is
equipped with a filtration Fil*(M/ugM) as above. We equip (M/puoM)[1/p] with the induced fil-
tration Fil* (M /puoM)[1/p]) := Fil*(M/puoM)[1/p], and note that it is a filtered p-module over F. By
combining Theorem 3.15 and Lemma 3.22, we get the following;:

Theorem 3.23. Let M be a Wach module over S and V := Tp(M)[1/p] the associated crystalline
representation of Gg from Theorem 5.13. Then we have that (M/uoM)[1/p] — Deis(V) as filtered
p-modules over F'.

From Theorem 3.23 we have a surjection Fil* M[1/p] — Fil* Di5(V') and we would like to determine
its kernel.

Lemma 3.24. Let M be a Wach module over S. Then, for any k € Z, the following sequence is exact:
0 — Filk=PHipr 290 Filk M — Filk(M/puoM) — 0. (3.11)

In particular, we have that Ker (Fil* M[1/p] — Fil* Dois(V)) = poFil* P M[1/p]. Moreover, by taking
the associated graded pieces, we get that gt* M — gr*(M/puoM) and gr* M[1/p] = gr* Deys (V).

Proof. Exactness of (3.11) easily follows from Lemma 3.21. Then, by taking the associated graded
pieces, we obtain the following exact sequence:

0 — gr" M 2% erf M — e (M /) — 0.
It is clear that the map gr* 1M %5 gr* M is trivial, i.e. gr* M —» gr®(M /o M). Rest is obvious. W

Remark 3.25. The Nygaard filtration on a Wach module M over S is stable under the action of I'y.
Therefore, for any ¢ in Ty and k € Z, using Lemma 3.21 we see that (g — 1)Fil* M c (Fil*M) N poM =
poFilF—PHIAL
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4. SYNTOMIC COMPLEXES AND GALOIS COHOMOLOGY

In this section, we will define syntomic complexes with coefficients in a Wach module over A} and S,
respectively, and show that, after inverting p, our complexes compute the crystalline part of the Galois
cohomology of the associated crystalline representation (see Theorem 4.2 and Theorem 4.13).

4.1. Syntomic complex over A}f. Let N be a Wach module over A7 and define an operator
Vg = ”T_l : N — N. From Remark 3.17, note that we have V,(Fil*N) C Fil* "' N, for each k € Z.

Definition 4.1. Define the syntomic complex with coeffcients in N as

(qul_(p)

S*(N) : Fil'N Yol=9, gty gy Pee VT,

N, (4.1)
where the first map is z — (V4(z), (1 — ¢)x) and the second map is (x,y) — (1 — [plyp)z — V4(y).
The goal of this subsection is to show the following claim:

Theorem 4.2. Let N be a Wach module over A} and V = Tp(N)[1/p] the associated p-adic crystalline
representation of Gg from Theorem 3.9. Then we have a natural isomorphism, for each k € N,

H*(S*(N))[1/p] = Hf(GF.V).

Proof. The claim for H}) follows from Lemma 4.4. For H} recall that from Remark 2.4 we have a
natural (in V') isomorphism

Moreover, from Remark 3.11 the functors Ng and its quasi-inverse Vg are exact. Therefore, we have a
natural (in V) isomorphism

1 + ~ .
Ext(%rF)_Mod%M (AF[L/p], N[1/p]) = Extypen ) (Qp V).
P

Combining these observations with Proposition 4.5 and after inverting p, we get a natural (in N)
isomorphism

HY(S*(N)[1/p) = Hj(GF,V).

Finally, note that the Wach module N over A; can always be written as a twist of an effective Wach
module over A}, and similarly, the representation V' = Tr(N)[1/p], is the twist of the corresponding
positive crystalline representation by a power of the cyclotomic character (see Remark 3.12). Therefore,
the claim for H]% follows from Proposition 4.6. |

Remark 4.3. Let us consider the following diagram of complexes:

JFiIN OO piiN g v 2Dy

| ! |

Fioy 07N p-iv g N TN (4.2)

| l

Fil°(N/uN) —=%  N/uN,

where the complex in the middle row is isomorphic to the complex S®*(N) in (4.1). Let V := Tp(N)[1/p]
from Theorem 3.9. Then, after inverting p and using Theorem 3.15, we see that the complex in the
bottom row of (4.2) is the same as the complex D°®(Deis(V)) in (2.9). Moreover, note that in (4.2), the
middle column is exact by Theorem 3.15 and the left-hand side column is exact by Lemma 3.16. Hence,

by Theorem 4.2 and Corollary 2.6, it follows that the diagram (4.2) induces a natural quasi-isomorphism
of complexes S®*(N)[1/p] =~ D*(Deyis(V)).

In the rest of this subsection, we will compute the cohomology of the complex S®(N) from (4.1).
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4.1.1. Comparing H° and H'. In this subsubsection, we will compute H" and H' of the complex
S°*(N).

Lemma 4.4. Let N be a Wach module over Ay and T = Tr(N) the associated Z,-representation of
Gr from Theorem 5.9 such that T[1/p] is crystalline. Then we have a natural isomorphism

H°(S*(N)) = (Fil°N)#=1Va=0 =, 7Cr,

Proof. Note that a simple computation shows that we have (Fil’N)#=LVe=0 — (Fil'N)e=17=1 =
Ne=17=1" Now, let M := N F7 and recall that we have an A;—linear and (¢, 'p)-equivariant isomor-
phism AL ®g M 5 N (see Proposition 3.7). Therefore, we see that N¥=17=1 = (AL ®g M)¥=17=1 =
Me=tr=l = ppe=LTo — N9=LTr where the second to last equality follows from the continuity of the
action of 'y on M. Moreover, note that (A%[1/u])’= = Op, therefore, a similar argument shows that
we have (N[1/pu])?=17=1 = (N[1/u])¥=5FF. We claim that N¥=17=1 = (N[1/p])$=17=L. Indeed, let
(z/1*) be in N[1/u]?=17=1 for some x in N and k € Z. Then it is enough to show that z is in u*N.
Note that v is a topological generator of I'g and we have v(x) = (y(u)*/p*)x. So, reduction modulo
gives () = x(7)¥2 mod uN. Since I'p acts trivially on N/uN and x(7)¥ — 1 is a unit in AL[1/p], we
obtain that x is in uN[1/p] " N = uN. Tterating this k times, we obtain that z is in u* N, as claimed.
In particular, we have that N¥=1I'F = (N[1/u])9=11'F and it remains to compute the latter term.
From Remark 3.10, recall that for a certain ring A" equipped with a natural action of (¢, GF),
we have an AT[1/u]-linear and (¢, Gp)-equivariant comparison isomorphism A*[1/u] ® ar N =

AT[1/p) ®z, T. Moreover, we have that (AT)#r = A} and (AT[1/p])#=! = Z, and the action of
p and G commute with each other, therefore, by taking the fixed points of the preceding isomorphism
under the action of ¢ and G, yields

(NTL/))#=10F = (A [L/p] @ 4 N)PTHCF 5 (AF[1/4] 97, T)#=1GF = T6r
This allows us to conclude. |

Proposition 4.5. Let N be a Wach module over Af.. Then, we have a natural (in N ) isomorphism

1o (Af ). (4.3)

+
F

1 . ~ 1
HY(S*(N)) = BX ey bod?

Proof. We will construct a map

a: HY(S*(N)) — Ext!

+
(.7 )-Mod "8 (Ag, N),

Ap

and show that it is bijective by constructing an inverse map. Let (z,y) represent a class in H!(S*(N)),
i.e. we have z in Fil™'N and y in N such that (1 — [pl,p)r = V,(y). Set Ey := N @ AL - e with
v(e) = px + e, p(e) = y + e and g(e) = e, for g a generator of I'yo, — F). Clearly, Ey is a Wach
module over AIJS. Moreover, by sending e to the identity element in A}, we obtain an exact sequence
of Wach modules over A;

0— N— FE; — Af — 0,

This represents an extension class of A}, by IV in the category (¢, FF)—ModETf and we set o[ (x, y)] = [E1],
F

where we represent cohomological classes with “[]”. To show that « is well-defined we need to show that
the extension class [F] is independent of the choice of the presentation (z,y). Indeed, let (2/,y") be
another presentation such that 2’ — z = V,(w), ¢ —y = (1 — p)w for some w in Fil’N. Then, similar
to above note that Fy := N @ A} - €/, with y(e') = pa’ + ¢, g(¢/) = ¢’ and p(e’) =y + €, is a Wach
module over AIJE and an extension of A} by N. Let us define an A;—linear map [ : F; — E5 given as
identity on N and we set f(e) = ¢/ —w. Then f is bijective because we can define f~! : Ey — Ej,
given as the identity on N and we set f~!(e/) = e + w, and it is easy to verify that f o f~! = id and
f~'o f =1id. From the formulas 2’ — z = Vy(w) and 3y — y = (1 — ¢)y it follows that f and f~! are
(¢, T'r)-equivariant. Now consider the following diagram with A}-linear maps and exact rows
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0 N E, AL 0
L
0 N Ey Af 0.

The left square commutes by the definition of f. Moreover, the A;—linear map Fp — A} sends e — 1
and the A;—linear map FEy — A} sends €/ — 1, therefore, it follows that the right square commutes as

well. Hence, Fy and E» represent the same extension class of A} by N, in the category (¢, T F)—Mod[j]}?.

In particular, « is well-defined.
Next, we will construct an inverse of a which we will denote by 8. Consider an extension of Wach
modules over Alfﬂ as
0— N— E; — AL — 0.

We write E1 = N @ AL e, where e in F) is a lift of the identity element in A%, and we have (y—1)e = 2
and (1 — p)e = y for some ¥, z in N. But then we have that ¢(e) = e — y in Ey, i.e. e is in Fil’E;.
Therefore, we get that z = (v — 1)e isin N N pFil™ E; = pFil !N, where the last equality follows
from Remark 3.19. In particular, we obtain that V,(e) = Zte = z, for some z in Fil"'N. By the
commutativity of the action of ¢ and -, we get that (1 — [p]yp) 0 V4(e) = Vg0 (1 —p)e, or equivalently,

(1= [plgp)r = V(y).

Therefore, we see that (z,y) represents a cohomological class in H(S*(N)) and we set 3([E1]) = [(x, y)].
Let us first show that the class [(z,y)] is independent of the lift e in Ej of the identity element in AFf.
So let €’ in E denote another lift of the identity element in A}:. Then, similar to above we have that
e is in Fil’F and there exist 2’ in Fil™'N and ¢ in N such that V,(¢/) = 2/, (1 — ¢)e/ = ¢/ and
(1 — [plgp)2’ = V4(y'). Moreover, from Lemma 3.18, we note that w = ¢’ — e is in Fil’EN N = Fil°N,
in particular, we get that ' = x4+ V,(w) and ¥/ = y + (1 — ¢)w. Since (1 — [plyp) 0 Vg = V40 (1 —¢),
therefore, we conclude that (z,y) and (2/,y') represent the same class in H'(S*(N)). Now, to show
that g is well-defined, we must show that the class [(z,y)] is independent of the presentation Fj of
the extension class [E1]. So let Ey denote another presentation of the extension class [F1], i.e. Es is a
Wach module over AL and there exists a (¢, I'r)-equivariant isomorphism f : By — E fitting into
the following commutative diagram with exact rows:

0 N Ey A 0
|
0 N Es A 0.

Let € in Ey denote a lift of the identity element in A} and arguing as above we have that €” is in
Fil’Ey and there exist some 2” in Fil"'N and y” in N such that V,(e”) = 2", (1 — p)e” = y" and
(1—[plgp)x” = V4(y"). Then, from the commutative diagram above we have that f~!(e”) in Ey denotes
a lift of the identity element in A}, therefore, it follows that f~!(e”) is in Fil° Ay and V,(f~!(e")) = 2",
(1—@)f (") =y" and (1 — [plgp)fH(z") = V,(f~1(y")). Using that the extension class [E1] is
independeent of the choice of a lift in £ of the identity element in A}, it follows that (z,y) and (2", y")
represent the same cohomological class in H'(S*(N)). In particular, we obtain that 3 is well-defined.

Finally, it remains to show that the two constructions described above are inverse to each other,
i.e. o8 =idand o a = id. Note that starting with a class [(x,y)] in H'(S*(NV)) we can construct

an extension E of AL by N in (cp,FF)—ModEf]}‘_’, such that [E] = «f(x,y)], i.e. E can be described
using the pair (z,y). After applying 3 we obtain a class B([E]) = [(z/,%')] in H(S*(N)) with a
presentation (2’,y") depending on the choice of some lift in F of the identity element in AJIS. Note
that by construction, F admits two descriptions using (x,y) and (2, '), respectively, depending on the
choice of the lift in E of the identity element in A}.. As we have shown that the class [E] is independent

of this choice, therefore, it follows that [(x,y)] = [(2/,9')] = B o a[(z,y)] in H!(S®*(N)). Next, starting

with an extension E of AL by N in (@,FF)—ModE;]f, we can construct a class [(z,y)] = S([£]) in
F
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HY(S*(N)). After applying a, we obtain an extension class [E'] = a[(x,y)], where E’ is an extension

of AL by N in (gp,Fp)-Mod[ﬁ]f. By construction, we can write E = N & A} - e, with V,(e) = =,
F

gle) =eand (1 — ple =y, and E' = N & AL - € with V,(¢/) =z, g(e) = e and (1 — ¢)e’ = y. Now,

note that the A;—linear map f : E — E’, defined using identity on N and by setting f(e) = ¢, is a
(¢, T'p)-equivariant isomorphism, in particular, we have that [E] = [E'] = a o B([E]). Hence, we have
shown that the map « is a natural (in N) isomorphism. [ |

4.1.2. Comparing H? rationally. For convenience in computations in this subsubsection, we will
rephrase our goal. Let V be a p-adic positive crystalline representation of G, i.e. all its Hodge-
Tate weights < 0, and let T C V' be a Gp-stable Z-lattice. Set V(r) := V ®q, Qp(r) and T'(r) :=
T ®z, Zp(r), for any r € Z. From Theorem 3.9, recall that we have Wach modules Np(T') and
Np(T(r)) = p"Np(T)(r) over AL, and Af[1/pl-modules Np(V) = Np(T)[1/p] and Np(V(r)) =
p~"Np(V)(r). Let us denote the complex S®(u~"Ng(T)(r))[1/p] by S®*(Np(V),r). Then our goal is
to show the following claim:

Proposition 4.6. The cohomology group H*(S*(Np(V),r)) vanishes. In particular, we have that
H?(S*(Np(V),r)) = H{(Gp,V(r)) = 0.

Proof. Let « be in Np(V(r)) and to prove the claim note that it is enough to show that we can write
z = Vy(y) — (1 = [plgp)z, for some y in Np(V(r)) and z in Fil"'Np(V(r)). Write z = ;’—; ® €, for
some 2’ in Np(V) and €®” a Qp-basis of Q,(r). Then, from Lemma 4.7 there exist ' and 2’ in Np(V)
satisfying the following:

i @ = V(e @) = (1= [plop) (2 ® ).

Letting z = 2/ @ €®" and y = uﬁél ® e®", we see that z = V4 (y) — (1 — [plep)z, with y in Ng(V (r)) and
zin Np(V)(r) € Np(V(r)). However, note that [plop(2) =+ 2+ V,4(y) is in Np(V(r)), in particular,
zis in Fil"!Np(V(r)). Hence, we get the claim. |

Let €?” denote a Q,-basis of Q,(r) and note that the following was used in Proposition 4.6:

Lemma 4.7. Let x in Np(V), then for 1 < k <r there exist some y and z in Np(V) such that

20 = V(s © ) — (1 plyp) (2 @ 7).

Proof. Note that v is a topological generator of I'g, in particular, we have that x(v) is in 1 + pZ,.
Moreover, note that up to multiplying by some power of p we may assume that x is in Np(T"). Therefore,
to prove the claim, it is enough to show that for any x in Np(7T) there exist some y and z in Np(V)
such that

£ @ e = (- @ ) — (1 - [plgp) (2 ® ). (4.4)

Let (v — 1)z = pxy for some x1 in Np(T') and we will prove the claim by induction on k. So let k =1
and consider the following;:
—1 ™
VT(X(W’;:T—l ® €®T) = (% + ;(C((;/))Tfll) ® " = (% + (1 - [p]qtp)zl) ® 6®r7
where z; is in Np(V) following Remark 4.8. Upon rearranging the terms, we see that (4.4) holds for
k = 1. Now, we write u = (x(y)p)/v(1) in 1 + puAf, take 1 < k < r and assume that (4.4) holds for
k — 1. Then we have that,

k—1 r—k+1
TR 4 U x(7)

T )

®ry __ uk71X(7)7'7k+1—1
®e) = uF (x(y)r=FH1-1)

= (r + tr) @

m ph=t
= £ @+ L1y @) — (1— [plyp) (2 © €7,

v—1

xl ®6®T

(u’“*l(x(vgc“’““—l)

for some xy, yr and z; in Np(V') and note that the last equality follows by the induction hypothesis. By
rearranging the terms, we see that (4.4) also holds for any 1 < k < r. This allows us to conclude. W
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Remark 4.8. For any = in Np(T'), there exists some y in Np(T") such that (1 — [plq¢)y = . Indeed,
note that the series (1 + [ply + ([plgp)? + - - ) converges as series of operators on Np(T') since we have
that [17_o ¢"([ply) is in (p, u)"*1, for each n € N. In particular, we see that ([p],p)™ is (p, p)-adically
nilpotent and we can take y = (1 + [ply¢ + ([plgp)* + -+ )z in Np(T). A similar claim is also true for
Np(V).

4.2. Syntomic complex over S. Let M be a Wach module over S and define an operator

Vo := 2L : M — M. From Remark 3.17 note that we have Vo(Fil* M) C Fil*" 7" M, for each k € Z.

Definition 4.9. Define the syntomic complexr with coeffcients in M as

(Vo,1—¢)

_gp—1
S* (M) : Fil'M Y072 py-ptipg g gy TPV,

M, (4.5)
where the first map is = — (Vg(z), (1 — ¢)z) and the second map is (z,y) — (1 — pP~Lp)z — Vo(y).

Proposition 4.10. Let M be a Wach module over S. Then, we have a natural (in M ) isomorphism

HY(S*(M)) = Ext!

(¢.00)-Mod? (S, M). (4.6)

Proof. Note that the arguments given in the proof of Proposition 4.5 easily adapts to our current setting.
In particular, in the proof of Proposition 4.5 we can replace A; with S and N with M by working in

the category (¢, Fo)-Modg instead of (¢, T’ F)—Mod[j}f. We omit the details to avoid repetition. |
F

Now, recall that N := A} ®g M is a Wach module over A; from Theorem 3.8. We will compare
the syntomic complexes defined in (4.5) and (4.1) with coefficients in M and N, respectively.

Proposition 4.11. The natural S-linear and (p,1'o)-equivariant map M — N induces a natural
morphism of complexes S*(M) — S*(N). Moreover, the natural map on cohomology H*(S*(M)) —
HF(S*(N)) is bijective for k = 0,1 and injective for k = 2.

Proof. Let us consider the following diagram:

o o L)Y e o S VR Ve B AN

J l J (4.7)

p* =Ry O Ry g v T N

where the top row is isomorphic to the complex §®*(M) in (4.5), the bottom row is isomorphic to the com-
plex S®*(N) in (4.1) and the vertical maps are induced by the natural S-linear and (¢, I'g)-equivariant
map M — N. In particular, we have obtained a natural morphism of complexes S*(M) — S*(N).

Now, note that each term of the complex D® in (4.7) admits an action of T'yy — F,, which
commutes with the action of ¢ and I'g. So, by Remark 2.1, the complex D® admits a decomposition as
@f:_& D7, where

e _ (10 (=1,1-¢) q—1 (I—py—1T

Using that M — Ny as (¢, g)-modules over S and the description of filtration on M in Subsection
3.3.2, it follows that C* =+ D§. Moreover, it is clear that we have H¥(D®) = @fz_olHk(Di’). In
particular, the natural map H*(S®(M)) = H*(C*) — H*(D®) <= H¥(S*(N)) is injective for each
k =0,1,2. Now, for k = 0, note that since we have Fil’M =~ (Fil’N)F7 as (i, [g)-modules over S,
therefore, by using Lemma 4.4 we get that

HO(S*(M)) = (Fil'M)#=10=1 2 (Fil0 N)#=10=LFp
= N¥=17=LF = Ne=LTr .2 FO(S*(N)).

Finally, for £ = 1, let us consider the following diagram:
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. (4.6)
HY(S (AI))—44;74»fExtaZF0}Nbdg(

J |

1/ ce (4.3) 1
H (S (N)) — EXt(¢7FF)-ModE:J

S, M)

lq (A;’ N)’
+

F
where the left vertical arrow is the natural map constructed above and the right vertical arrow is
an isomorphism induced by the exact categorical equivalence in (3.3) of Theorem 3.8. The diagram
commutes by definition and it follows that the left vertical arrow is an isomorphism. This allows us to
conclude. |

Remark 4.12. From the injectivity of H?(S*(M)) — H?(S*(N)), it follows that H?(S®*(M))[1/p] =
H?(S*(N))[1/p] = 0 (see Proposition 4.6).

Theorem 4.13. Let M be a Wach module over S andV = Tr(N)[1/p] the associated p-adic crystalline
representation of Gg from Theorem 3.15. Then we have a natural isomorphism, for each k € N,

H(S*(M)[1/p] = Hf(Gp, V).
Proof. The claim follows by combining Proposition 4.11, Remark 4.12 and Theorem 4.2. |

Remark 4.14. Similar to Remark 4.3, let us consider the following diagram of complexes:

PN 2 Y L DN - EE AR VS g G AN

| ! |

Filopr 0N et e v TR o (4.8)

| l

Fil® (M /M) ———*—— M/uoM,

where the complex in the middle row is isomorphic to the complex S*(M) in (4.5), and it can be seen
as a subcomplex of the Fontaine-Herr complex in (2.6). Now, let V' := T (M )[1/p] from Theorem 3.13.
Then, after inverting p and using Theorem 3.23, we see that the complex in the bottom row of (4.8)
is the same as the complex 9°®(Deis(V)) in (2.9). Moreover, note that in (4.8) the middle column is
exact by Theorem 3.23 and the left-hand side column is exact by Lemma 3.24. Hence, by Theorem 4.13
and Corollary 2.6, it follows that the diagram (4.8) induces a natural quasi-isomorphism of complexes
S'(M)[l/p] = @.(Dcris(v))'
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