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Abstract. We show a direct equivalence between the category of analytic/completed prismatic
F -crystals on the absolute prismatic site of a small (unramified at p) base ring and the category of
relative Wach modules from the theory of (φ, Γ)-modules. The result is obtained by showing that the
data of the Galois action on a Wach module is equivalent to the data of a prismatic stratification on
the underlying φ-module.

1. Introduction
Recent groundbreaking advances in integral p-adic Hodge theory have been brought on by the seminal
works of Bhatt, Morrow and Scholze on Ainf -cohomology in [BMS18; BMS19], and of Bhatt and
Scholze on prismatic cohomology in [BS22]. In the latter theory, the study of prismatic F -crystals has
led to exciting applications towards the classification of p-divisible groups [AL23], and more generally,
of all p-adic crystalline local systems over smooth p-adic formal schemes [BS23; DLMS24; GR24].
However, similar to the crystals appearing in the theory of crystalline cohomology of Grothendieck
and Berthelot, the prismatic F -crystals are mysterious objects.

To unravel these objects, a common idea is to describe them is terms of certain equivalent and
computable data, for example, in the crystalline cohomology theory, one usually replaces crystals
with modules equipped with a flat connection as in [Ber74]. In the prismatic theory, several successful
attempts have been made to understand prismatic crystals in terms of more explicit data in various
settings, for example, crystals on the relative prismatic site in terms of generalised representations,
q-de Rham complexes and q-Higgs fields in [MT20; Tsu24], crystals on the relative/absolute prismatic
site in terms of twisted/absolute differential calculus in [GLQ22; GLQ23], Hodge-Tate crystals in
terms of Higgs fields in [Tia23] and prismatic (Laurent) F -crystals in terms of étale (φ, Γ)-modules
and similar objects in [Wu21; DL21; MW21].

The aim of this article is to describe analytic/completed prismatic F -crystals of [DLMS24; GR24]
in terms of more explicit data. More precisely, our main result provides a direct equivalence between
the category of prismatic F -crystals over the absolute prismatic (ringed) site of a small (unramified
at p) base ring and the category of relative Wach modules (certain (φ, Γ)-modules) introduced in
[Abh23b] (see Theorem 1.1). Morally, our result is obtained by showing that the data of the Galois
action (i.e. Γ-action) on a Wach module is equivalent to the data of a prismatic stratification on
the underlying φ-module (see Theorem 1.3). Note that the proof of the preceding equivalence is
highly non-trivial and constitutes the heart of this article. Moreover, our approach is different and
independent of all previous methods and (categorical equivalence) results in [BS23; DLMS24; GR24]
and [Wu21; DL21; MW21].

Let us note that in the case that the base ring is a complete discrete valuation ring with perfect
residue field, Wach modules were studied in [Fon90], [Wac96; Wac97], [Col99] and [Ber04]. In this
case, using our methods, we also show that the classical Wach modules from [Wac96; Ber04] descend
to a smaller ring, beyond the Fontaine-Laffaille case treated in [Wac97] (see Theorem 1.5 and Remark
1.6). Furthermore, let us note that the theory of Wach modules (in the context of (φ, Γ)-modules) and
its relationship with crystalline representations in different settings was studied in [Abh21; Abh23a;
Abh23b].
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Besides being an explicit description of prismatic F -crystals, the usefulness of Wach modules stems
from its applications towards the computation of p-adic vanishing cycles via syntomic complexes. In-
deed, in order to generalise the computation of p-adic vanishing cycles via crystalline syntomic com-
plexes of [CN17], to the case of crystalline coefficients, in [Abh23c] we used the theory of Wach modules
from [Abh21] as an important ingredient. However, the results obtained in [Abh21] and [Abh23c] were
restrictive. Furthermore, note that in [BMS19], the authors defined a prismatic syntomic complex
for smooth p-adic formal schemes and compared it to the complex of p-adic vanishing cycles inte-
grally. Beyond the smooth case, similar comparison results have also been obtained in [AMMN22]
and [BM23], where the latter uses the theory of prismatic cohomology. The preceding results were
obtained for the case of constant coefficients and it is natural to ask the following: is it possible to
generalise [BMS19, Theorem 10.1] to arbitrary crystalline coefficients, i.e. can one define a prismatic
syntomic complex with coefficients in a prismatic F -crystal and compare it to the complex of p-adic
vanishing cycles? In our approach to providing an answer to the preceding question, the prismatic
interpretation of Wach modules from the current paper and the relationship between Wach modules
and crystalline representations from [Abh23b] will serve as crucial inputs.

1.1. A categorical equivalence. Let p be a fixed prime, κ a perfect field of characteristic p
and OF := W (κ), the ring of p-typical Witt vectors with coefficients in κ and equipped with the
natural Witt vector Frobenius endomorphism. Let R denote the p-adic completion of an étale algebra
over the p-adically complete Laurent polynomial ring OF ⟨X±1

1 , . . . , X±1
d ⟩ such that its special fiber

Spec (R/pR) is connected. We take X := Spf R to be an affine p-adic formal scheme and consider its
absolute prismatic ringed site (X∆,O∆) in the sense of [BS22] (see Section 2.1). Let Vectan,φ(X∆)
denote the category of analytic prismatic F -crystals from [GR24] (note that one could also work
with the equivalent notion of completed prismatic F -crystals from [DLMS24], see Subsection 2.3 for
definitions and explanations).

Let R∞ denote the R-algebra obtained by adjoining to R all p-power roots of unity and p-power
roots of Xi, for all 1 ≤ i ≤ d. Then R∞[1/p] is Galois over R[1/p] with the Galois group ΓR :=
Gal(R∞[1/p]/R[1/p]) ∼−→ Zp(1)d ⋊ Z×

p . Let Ainf(R∞) := W (R♭
∞), where R♭

∞ denotes the tilt of R∞
(see Subsection 1.6). Note that Ainf(R∞) is equipped with a Witt vector Frobenius endomorphism
φ and a continuous action of ΓR (see Subsection 3.1). Moreover, we have a subring AR ⊂ Ainf(R∞)
which is stable under the the action of (φ, ΓR) on the latter (see Subsection 3.1.1); we equip AR with
the induced structures. Let ε := (1, ζp, . . .) denote a compatible system of p-power roots of unity in
R♭

∞ and let q := [ε] denote its Teichmüller lift in Ainf(R∞); set µ := q−1 and [p]q := (qp−1)/(q−1) in
Ainf(R∞). We denote the category of Wach modules over AR (see Definition 4.1) as (φ, ΓR)-Mod[p]q

AR
.

Now, let us note that the pair (AR, [p]q) is a prism, an object of X∆ (see Lemma 3.10) and a cover
of the final object of the topos Shv(X∆) (see Lemma 3.11). Moreover, the action of ΓR on AR induces
automorphisms of (AR, [p]q) in X∆ (see Lemma 3.12). Evaluating an analytic prismatic F -crystal on
the prism (AR, [p]q) gives a Wach module (see Proposition 5.1), and we have a well-defined evaluation
functor,

ev∆
AR

: Vectan,φ(X∆) −→ (φ, ΓR)-Mod[p]q
AR

F 7−→ F(AR, [p]q).
(1.1)

Our main result is the following claim:

Theorem 1.1 (Theorem 5.5). The evaluation functor in (1.1) induces an equivalence of categories
ev∆

AR
: Vectan,φ(X∆) ∼−→ (φ, ΓR)-Mod[p]q

AR
.

Our proof of Theorem 1.1 is direct, in particular, we do not assume the equivalence between crys-
talline Zp-representations and Wach modules over AR from [Abh23b], or the catgeorical equivalence
results from [BS23; GR24; DLMS24]. As mentioned earlier, we show that “the Galois action on a Wach
module, i.e. the action of ΓR, is equivalent to a prismatic stratification on the underlying φ-module”.
Our approach is inspired by the work of [MT20], where the authors study coefficients for relative
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prismatic cohomology. However, the results obtained and the techniques employed in our proofs are
vastly diffferent from loc. cit. This stems largely from the fact that our respective settings are quite
different: we work over the absolute prismatic site of R and consider analytic prismatic F -crystals,
whereas in loc. cit., the authors work over the relative prismatic site and consider prismatic F -crystals
of vector bundles.

1.2. Crystals as modules with stratification. In order to prove Theorem 1.1, our first
course of action is to bring the source of the functor ev∆

AR
in (1.1) on an equal footing with the target

of that functor. This is achieved by interpreting analytic prismatic F -crystals crystals as certain
modules with stratification.

More precisely, let us note that (AR, [p]q) is a cover of the final object of the topos Shv(X∆) (see
Lemma 3.11). We set AR(•) to be the cosimplicial ring obtained by taking the prismatic Čech nerve
(AR(•), I(•)) of (AR, [p]q) in X∆. Then, it is possible to describe the nth-term of AR(•) in the site X∆
(see Construction 3.13), and in case n = 1, 2, we can describe AR(n) very explicity (see the discussion
after Lemma 3.14). Now, let Stratan,φ(AR(•)) denote the category of “analytic” φ-modules over AR

equipped with a stratification with respect to AR(•) (see Definition 5.6). Then by the general theory of
crystals, evaluation of analytic F -crystals on the simplicial object (AR(•), I(•)) induces the following
natural equivalence of categories (see Construction 5.7 and Proposition 5.8).

ev∆
AR(•) : Vectan,φ(X∆,O∆) ∼−→ Stratan,φ(AR(•)). (1.2)

1.3. Prismatic stratifications and Galois action on Wach modules. Our next course
of action is to relate φ-modules over AR equipped with a stratification to Wach modules over AR. So
let (N, ε) denote an object of the category Stratan,φ(AR(•)), where N is a finitely generated AR-module
satisfying certain conditions and ε is a stratification on N with respect to AR(•). Moreover, let us
note that the action of ΓR on (AR, [p]q) induces a natural action of Γ×(n+1)

R on AR(n), for each n ∈ N.
Then, by using the action of Γ2

R on AR(1) and the stratification ε, we equip N with a continuous
action of ΓR satisfying the properties of a Wach module over AR from Definition 4.1 (see Construction
5.10). In particular, we have a well-defined natural functor,

evStrat
AR

: Stratan,φ(AR(•)) −→ (φ, ΓR)-Mod[p]q
AR

, (1.3)

and we show the following:

Proposition 1.2 (Proposition 5.11). The following diagram is commutative up to canonical isomor-
phisms:

Vectan,φ(X∆) Stratan,φ(AR(•))

(φ, ΓR)-Mod[p]q
AR

.

∼
ev∆

AR(•)(1.2)

ev∆
AR

(1.1)
evStrat

AR
(1.3)

From the diagram in Proposition 1.2, we see that in order to show that (1.1) induces a categorical
equivalence, it is enough to show that (1.3) induces a categorical equivalence. Therefore, we show the
following:

Theorem 1.3 (Theorem 5.12). The functor in (1.3) induces a natural equivalence of categories

evStrat
AR

: Stratan,φ(AR(•)) ∼−→ (φ, ΓR)-Mod[p]q
AR

.
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In order to prove Theorem 1.3, we define a quasi-inverse to the functor in (1.3). More precisely,
given a Wach module N over AR, we use the action of ΓR on N to build a stratification on N with
respect to AR(•) and obtain a natural quasi-inverse to the functor in (1.3),

StratAR(•) : (φ, ΓR)-Mod[p]q
AR
−→ Stratan,φ(AR(•)). (1.4)

The construction of the stratification on a Wach module, using the action of ΓR on it, is the main
technical heart of the paper. Our construction is given via a “3-step” argument. The three steps
correspond to the three subgroups of different nature making up the Galois group ΓR. More precisely,
recall that ΓR

∼−→ Zp(1)d ⋊ Z×
p . Furthermore, Z×

p fits into the following exact sequence:

1 −→ Γ0 −→ Z×
p −→ Γtor −→ 1,

where, for p ≥ 3, we have that Γ0
∼−→ 1+pZp and for p = 2, we have that Γ0

∼−→ 1+4Z2. Moreover, for
p ≥ 3, we have that Γtor

∼−→ F×
p , and for p = 2, we have that Γtor

∼−→ {±1}, as groups. Then the three
steps of our argument correspond to the groups Zp(1)d, Γtor and Γ0. The case p = 2 is different from
the cases p ≥ 3 and requires entirely different and quite technical arguments. While the arguments
involving Zp(1)d and Γ0 are “prismatic/crystalline” in nature and feature q-de Rham complexes, the
arguments involving the group Γtor feature some techniques commonly used in Iwasawa theory (see
Appendix A.2). We refer the reader to Subsection 5.2 for precise details on the construction of the
functor in (1.4).

1.4. Some descent results for Wach modules. The most important input for the con-
struction of the functor in (1.4) is the following comparison result (notations are explained after the
statement):

Theorem 1.4 (Theorem 4.5). Let N be a Wach module over AR and consider the R-module M :=
(AR(1)/p1(µ)⊗p2,AR

N)ΓR , equipped with the tensor product Frobenius. Then M is a finitely generated
p-torsion free R-module and we have a natural (φ, ΓR)-equivariant isomorphism

AR(1)/p1(µ)⊗p1,R M
∼−→ AR(1)/p1(µ)⊗p2,AR

N.

Moreover, the preceding isomorphism induces a φ-equivariant (after inverting p) isomorphism of
R-modules M

∼−→ N/µN .

In Theorem 1.4, note that (AR(1), [p]q) denotes the self product of (AR, [p]q) in X∆ and p1, p2 :
AR → AR(1) are the two projection maps to the two components (see Construction 3.13).

The statement in Theorem 1.4 is a descent statement for the action of ΓR and involves the ring
AR(1)/p1(µ). Therefore, in order to prove the statement, one requires an understanding of the action
of ΓR on the objects appearing in the statement and an explicit description of the ring AR(1)/p1(µ).
The latter is achieved in Proposition 3.25, where we use some computations of Tsuji on prismatic
envelopes and divided power rings (see Appendix B). Next, similar to the discussion in the previous
subsection, note that the descent for the action of ΓR is quite technical. Our strategy is to prove the
statement via a “3-step descent” argument. The case p = 2 is different from the cases p ≥ 3 and
requires entirely different and quite technical arguments. Note that while the arguments involving
Zp(1)d and Γ0 are “crystalline” in nature and feature de Rham complexes, the arguments involving
the group Γtor feature some techniques commonly used in Iwasawa theory. We refer the reader to
Subsections 4.2 and 4.3 for precise details on the descent isomorphism.

Now, let us assume that p ≥ 3 and note that as a consequence of the proof of Theorem 1.4 (namely,
the descent step for the action of Γtor = F×

p ), we obtain a descent statement for (classical) Wach
modules (see Remark 1.6). More precisely, note that we have AR

∼−→ RJµK as rings (see Subsection
3.1.1), and by transport of structrure, we equip the target with a Frobenius endomorphism and an
R-linear action of ΓF . Let N be a Wach module over AR, i.e. a finitely generated module over RJµK,
equipped with an RJµK-linear Frobenius isomorphism φ∗(N)[1/[p]q] ∼−→ N [1/[p]q] and an R-linear and
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continous action of ΓF commuting with Frobenius and such that the action of ΓF is trivial on N/µN .
Let us set,

µ0 := −p + ∑
a∈Fp

(1 + µ)[a] and p̃ := µ0 + p,

as elements of RJµKF×
p . Then, from Lemma 3.4, we have a (φ, Γ0)-equivariant isomorphism of rings

RJµ0K
∼−→ RJµKF×

p and we show the following:

Theorem 1.5 (Proposition 4.19). Let N be a Wach module over AR. Then N0 := NF×
p is a finitely

generated RJµ0K-module, equipped with a continuous and R-linear action of Γ0 such that the action
of Γ0 is trivial on N0/µ0N0

∼−→ N/µN , and we have a natural (φ, ΓF )-equivariant isomorphism of
RJµK-modules RJµK ⊗RJµ0K N0

∼−→ N . Moreover, N0 is equipped with an RJµ0K-linear isomorphism
φ∗(N0)[1/p̃] ∼−→ N0[1/p̃], compatible with the action of Γ0.

Remark 1.6. In Theorem 1.5, setting R = OF shows that classical Wach modules over AF = OF JµK

canonically descend to Wach modules over OF Jµ0K
∼−→ A

F×
p

F . Using somewhat different arguments,
this claim has also been proven in [Abh24, Theorem 1.7].

1.5. Relation to previous works. The theory of prismatic F -crystals was introduced in [BS23]
and its generalisation to analytic/completed prismatic F -crystals was studied in [DLMS24; GR24].
The theory of classical Wach modules was introduced and developed in [Fon90; Wac96; Col99; Ber04]
and its generalisation to the relative case was introduced and developed in [Abh21; Abh23a; Abh23b].
Now, let us consider the following diagram (notations explained immediately afterwards):

Vectφ,an(X∆) Vectφ(X∆,O∆[1/I∆]∧p )

Repcris
Zp

(GR) RepZp
(GR)

(φ, ΓR)-Mod[p]q
AR

(φ, ΓR)-Modét
BR

.

E 7→E [1/I∆]⊗O[1/I∆]O∆[1/I∆]∧p

T an
ét

∼

ev∆
AR

(1.1) ≀ ev∆
AR

≀

Tét
∼

∼
NR

∼
DR

N 7→N⊗AR
BR

(1.5)

In top row of the diagram (1.5), the top right corner denotes the category of Laurent F -crystals over
X∆ (see [BS23] or Definition 1.5); in the middle row, GR denotes the étale fundatmental group of
R[1/p] (see Subsection 1.6), the right-hand-term denotes the category of Zp-representations of GR

and the left-hand-term denotes the category of lattices inside p-adic crystalline representations of
GR (see [Bri08]); in the bottom row we have BR := AR[1/µ]∧p equipped with an induced action
of (φ, ΓR) and the bottom right corner denotes the category of étale (φ, ΓR)-modules over BR (see
[And06]). The top horizontal arrow is a natural embedding from [GR24], the middle horizontal arrow
is easily seen to be a natural embedding and the bottom horizontal arrow is a natural embedding from
[Abh23b, Proposition 3.15]. From the first to the second row, the slanted arrow Tét is the natural étale
realisation functor and an equivalence from [BS23] (see Lemma 2.13), and the slanted arrow T an

ét is an
equivalence from [GR24] (see Definition 2.25 and Remark 2.27); the upper square commutes using loc.
cit. From the middle row to the bottom row, the slanted arrow DR is the natural étale (φ, Γ)-module
functor and an equivalence from [And06], and the slanted arrow NR is the natural Wach module
functor and an equivalence from [Abh23b, Theorem 1.7]; commutativity of the bottom square follows
from the compatibility between the results of [Abh23b] and [And06]. Next, in the diagram (1.5), the
leftmost and the rightmost vertical arrows are evaluation functors, i.e. evaluation of an analytic (resp.
Laurent) prismatic F -crystal over the prism (AR, [p]q); the left vertical arrow is an equivalence from
Theorem 1.1. Note that the left-hand-side triangle commutes by comparing the explicit formulas for
the slanted arrow T an

ét in Definition 2.25 and the composition of the left vertical arrow ev∆
AR

in (1.1)
with the quasi-inverse of the slanted arrow NR described in [Abh23b, Theorem 1.7], and similarly, for
the right-hand-side triangle. In particular, we obtain that the right vertical arrow is an equivalence
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(also see [Wu21; MW21]) and the outer square commutes by the definition of the arrows. Hence, it
follows that the results of this article are compatible with previous constructions.

As mentioned earlier, our proof of Theorem 1.1 is direct and we do not assume the equivalence
between crystalline Zp-representations and Wach modules over AR from [Abh23b], or the catgeorical
equivalence results from [BS23; GR24; DLMS24] and [Wu21; MW21; DL21]. Furthermore, our ap-
proach is inspired by the work of [MT20], however, the results obtained and the techniques employed
in our proofs are different: we work over the absolute prismatic site of R and consider analytic pris-
matic F -crystals, whereas in loc. cit., the authors work over the relative prismatic site and consider
prismatic F -crystals of vector bundles, in particular, in this article we work with a non-commutative
group ΓR which has an “arithmetic” part (see ΓF in Subsection 1.6), in contrast with the commutative
and “geometric” Γ considered in loc. cit.

1.6. Setup and notations. In this subsection we will describe the setup for this paper and fix
some notations which are essentially the same as in [Abh23b, Subsection 1.4]. We will work under the
convention that 0 ∈ N, the set of natural numbers.

Let p be a fixed prime number, κ a perfect field of characteristic p, let OF := W (κ) denote the
ring of p-typical Witt vectors with coefficients in κ and F := OF [1/p], the fraction field of OF . In
particular, F is an unramified extension of Qp with ring of integers OF . Let F denote a fixed algebraic
closure of F so that its residue field, denoted as κ, is an algebraic closure of κ. Further, we denote by
GF := Gal(F/F ), the absolute Galois group of F .

Let Z = (Z1, . . . , Zs) denote a set of indeterminates and k = (k1, . . . , ks) in Ns be a multi-index
and set Zk := Zk1

1 · · ·Zks
s . We will write k → +∞ to denote ∑

ki → +∞. For a topological algebra
S, define

S⟨Z⟩ :=
{ ∑

k∈Ns akZk, where ak ∈ S and ak → 0 as k→ +∞
}
.

Fix d ∈ N and let X1, X2, . . . , Xd be some indeterminates. Let R be the p-adic completion of an
étale algebra over R□ = OF ⟨X±1

1 , . . . , X±1
d ⟩ with non-empty and connected special fiber. We fix an

algebraic closure Frac(R) of Frac(R) containing F . Let R denote the union of finite R-subalgebras
R′ ⊂ Frac(R), such that R′[1/p] is étale over R[1/p]. Let η denote the fixed geometric point of
the generic fiber SpecR[1/p] (defined by Frac(R)) and let GR denote the étale fundamental group
πét

1
(
SpecR[1/p], η

)
. We can write this étale fundamental group as the Galois group (of the fraction

field of R[1/p] over the fraction field of R[1/p]), i.e.

GR = πét
1 (Spec (R[1/p]), η) = Gal(R[1/p]/R[1/p]).

Next, set F∞ := F (µp∞), R∞ := ∪d
i=1R[µp∞ , X

1/p∞

i ] ⊂ R and we will consider the following groups
(see [Abh21, Subsections 2 & 3] and [Abh23a, Section 2]),

HR := Gal(R[1/p]/R∞[1/p]), HF := Gal(F/F∞)
ΓR := GR/HR = Gal(R∞[1/p]/R[1/p]) ∼−→ Zp(1)d ⋊ Z×

p , ΓF := Gal(F∞/F ) ∼−→ Z×
p

Γ′
R := Gal(R∞[1/p]/R(µp∞)[1/p]) ∼−→ Zp(1)d, Gal

(
R(µp∞)[1/p]/R[1/p]) = ΓR/Γ′

R
∼−→ ΓF .

Note that the isomorphism χ : ΓF
∼−→ Z×

p is given via the p-adic cyclotomic character, and therefore,
ΓF fits into the following exact sequence:

1 −→ Γ0 −→ ΓF −→ Γtor −→ 1, (1.6)

where, for p ≥ 3, we have Γ0
∼−→ 1 + pZp and for p = 2, we have Γ0

∼−→ 1 + 4Z2. Moreover, for p ≥ 3,
we have Γtor

∼−→ F×
p , and the projection map in (1.6) admits a section Γtor

∼−→ F×
p → Z×

p
∼←− ΓF ,

where the second map is given as a 7→ [a], the Teichmüller lift of a. Furthermore, note that for p = 2,
we have Γtor

∼−→ {±1}, as groups.
Let φ : R□ → R□ denote a morphism extending the natural Witt vector Frobenius on OF by

setting φ(Xi) = Xp
i , for all 1 ≤ i ≤ d. The endomorphism φ of R□ is flat by [Bri08, Lemma 7.1.5] and

faithfully flat since φ(m) ⊂ m, for any maximal ideal m ⊂ R□. Moreover, it is finite of degree pd using
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Nakayama Lemma and the fact that φ modulo p is evidently of degree pd. Recall that the OF -algebra
R is given as the p-adic completion of an étale algebra R□, therefore, the Frobenius endomorphism
φ on R□ admits a unique extension φ : R → R such that the induced map φ : R/p → R/p is
the absolute Frobenius x 7→ xp (see [CN17, Proposition 2.1]). Similar to above, we again note that
the endomorphism φ : R → R is finite and faithfully flat of degree pd. Next, for k ∈ N, let Ωk

R

denote the p-adic completion of module of k-differentials of R relative to Z. Then, we have that
Ω1

R = ⊕d
i=1R d logXi and Ωk

R = ∧k
RΩ1

R.
Finally, let A = R∞ or R. Then the tilt of A is defined as A♭ = limφ A/p and the tilt of A[1/p]

is defined as A[1/p]♭ = A♭[1/p♭], where p♭ = (1, p1/p, . . .) in A♭ (see [Fon77, Chapitre V, Subsection
1.4]). Finally, let B be a Zp-algebra equipped with a Frobenius endomorphism φ lifting the absolute
Frobenius on B/p, then for any B-module M , we set φ∗(M) := B ⊗φ,B M .

1.7. Outline of the paper. In Section 2 we recall some basic definitions and results from
the prismatic theory. In particular, in Subsection 2.1, we recall the definition of prismatic site and
prismatic crystals from [BS22; BS23], and in Subsections 2.2 and 2.3 we recall the notion of prismatic
F -crystals and its variations from [BS23; DLMS24; GR24], as well as, describe the étale realisation
functors. Section 3 is devoted to the study of the prism (AR, [p]q) in detail. In Subsection 3.1, we
describe the ring AR and study the structural properties of some of its subrings. In Subsection 3.2, we
show that (AR, [p]q) is an object of (Spf R)∆, explicitly compute first few terms of its prismatic Čech
nerve (AR(•), I(•)) in (Spf R)∆, and then study the action of Γ×(n+1)

R on AR(n). Then in Subsection
3.3 we provide an explicit description of the ring AR(1)/p1(µ), where p1 : A → A(1) is the first
projection map, and study the action of 1 × ΓR ⊂ Γ2

R on it. Finally, in Subsection 3.4 we study the
action of Γ2

R on AR(1) and carry out the “3-step” argument, described after Theorem 1.3, for constant
coefficients, i.e. the ring AR, in order to compute various rings that will appear at various stages of
the proof of Theorem 1.3 in Section 5.

The goal of Section 4 is to state and prove Theorem 1.4. We begin by recalling the definition
of Wach modules and some of its properties from [Abh23b] and in Subsection 1.4 we describe the
q-connection on a Wach module and its scalar extensions originating from the natural action of ΓR.
Then, in Subsection 4.2, we carry out the first step of the proof of Theorem 1.4, i.e. the descent for
the action of Γ′

R, and in Subsection 4.3 we show the second and third steps, i.e. the descent for the
action of ΓF

∼−→ Γ0 ⋊ Γtor. Note that the Subsection 4.3 is divided into two parts: the first part
deals with the case p ≥ 3 where we also prove Theorem 1.5, and the second part deals with p = 2
which requires completely different arguments. Finally, in Subsection 4.4 we put everything together
to prove Theorem 1.4.

In Section 5, we state and prove Theorem 1.1. We begin by describing the functor ev∆
AR

and then in
Subsection 5.1 we describe the relation between analytic/completed prismatic F -crystals and modules
with stratification, as well as, prove Proposition 1.2. Subsection 5.2 is dedicated to the construction
of stratification on Wach modules using the action of ΓR via the “3-step” argument. This completes
the proof of Theorem 1.1.

In Appendix A.1, we recall some standard definitions that have been used throughout in the text.
Then in Appendix A.2 we describe the structure of modules admitting a continuous action of Z×

p by
recalling some standard constructions of Iwasawa [Iwa59]. Appendix B has been adapted from some
notes of Tsuji and in that section we study the structure of certain δ-rings and their reduction modulo
µ, which is a crucial input for determining the structure of AR(1)/p1(µ) is Subsection 3.3.

Acknowledgements. I would like to sincerely thank Takeshi Tsuji for various discussions and for
generously sharing his ideas during the course of this project and some of his computations which
have been included in Appendix B. I would also like to thank Michel Gros for some helpful remarks.
This research was supported by JSPS KAKENHI Grant numbers 22F22711 and 22KF0094.



Prismatic F -crystals and Wach modules 8

2. Prismatic site and Prismatic F -crystals
In this section, we will recall some fundamental definitions and results on prismatic site and pris-
matic F -crystals from [BS22; BS23] and analytic/completed prismatic F -crystals from [DLMS24] and
[GR24]. For some standard definitions used in this section, we refer the reader to Appendix A.1. We
start with the following:

Definition 2.1. A δ-ring is a pair (A, δ) where A is a commutative ring and δ : A → A is a map of
sets with δ(0) = δ(1) = 0 and satisfying:

δ(xy) = xpδ(y) + ypδ(x) + pδ(x)δ(y),

δ(x + y) = δ(x) + δ(y) + xp + yp − (x + y)p

p
.

(2.1)

Remark 2.2. Given a δ-ring (A, δ) define φ : A→ A by the formula φ(x) = xp + pδ(x), for any x in
A. This determines a lift of the absolute Forbenius on A/pA. Conversely, if A is p-torsion-free then
any lift φ : A→ A of the absolute Frobenius on A/pA determines a unique δ-structure on A.

Definition 2.3. An element d of a δ-ring A is distinguished if δ(d) is a unit.

2.1. Prismatic site and crystals. Let A be a δ-ring, I ⊂ A an ideal; we will refer to (A, I) as
a δ-pair.

Definition 2.4 (Prism, [BS22, Definition 3.2]). A δ-pair (A, I) is called a prism if I ⊂ A defines a
Cartier divisor on Spec (A) such that A is derived (p, I)-complete and p ∈ I + φ(I)A. The category of
all prisms is the corresponding full subcategory of all δ-pairs. The prism (A, I) is called perfect if A is
a perfect δ-ring, i.e. φ : A→ A is bijective. Finally, (A, I) is bounded if A/I has bounded p∞-torsion.
A map (A, I)→ (B, J) of prisms is (faithfully) flat if the map A→ B is (p, I)-completely (faithfully)
flat.

Remark 2.5. If (A, I) is a bounded prism then A is classically (p, I)-complete (see [BS22, Lemma
3.7]). A morphism of prisms (A, I)→ (B, J) we induces an isomorphism I ⊗A B

∼−→ J , in particular,
we have that IB = J (see [BS22, Lemma 3.5]).

Lemma 2.6 (Absolute prismatic site, [BS22, Corollary 3.12]). Let Spf (Zp)∆ denote the category
opposite to that of the category of all bounded prisms (A, I) and endow it with a topology for which
covers are determined by faithfully flat maps of prisms. Then, Spf (Zp)∆ forms a site. Moreover, the
functor O∆ : Spf (Zp)∆ → Rings (resp. I∆) defined via (A, I) 7→ A (resp. (A, I) 7→ I) forms a sheaf
for this topology with vanishing higher Čech cohomology.

Definition 2.7 (Absolute prismatic site of X, [BS23, Definition 2.3]). Let X be a p-adic formal
scheme. Define the absolute prismatic site of X, denoted as X∆, to be the category opposite to that
of bounded prisms (A, I) which are equipped with a map Spf (A/I) → X, and endow X∆ with the
topology induced by the flat topology on prisms. We will write O∆ for the structure sheaf and denote
the ideal sheaf of the Hodge-Tate divisor by I∆ ⊂ O∆. Denote by Shv(X∆) the∞-category of sheaves
on X∆.

Proposition 2.8 ([BS23, Proposition 2.7]). Let X be a p-adic formal scheme and let Vect(X∆,O∆)
denote the category of vector bundles of O∆-modules. Then there is a natural equivalence

Vect(X∆,O∆) ∼−→ lim
(A,I)∈X∆

Vect(A).

Moreover, a similar statement holds after replacing O∆ with O∆[1/I∆]∧p .

Let X be a quasisyntomic p-adic formal scheme. Then one can describe crystals on (X∆,O∆)
using the quasisyntomic site of X.
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Definition 2.9 (Quasisyntomic site of X, [BS23, Definition 2.9]). Define the quasisyntomic site of X,
denoted as Xqsyn, to be the category opposite to that of quasisyntomic morphisms Spf (R)→ X and
endow Xqsyn with the topology induced by the quasisyntomic topology (see [BMS19, Definition 4.10
and Variant 4.35]). Define Xqrsp ⊂ Xqsyn to be the full subcategory spanned by objects Spf (R)→ X
with R quasiregular semiperfectoid (see [BMS19, Definition 4.20 and Variant 4.35]).

Remark 2.10. By [BMS19, Proposition 4.31 and Variant 4.35], restriction of sheaves induces an
equivalence Shv(Xqsyn) ∼−→ Shv(Xqrsp). The functor defined by sending any (Spf (R)→ X) in Xqrsp
to the initial prism ∆R (see [BS22, Proposition 7.2]) gives a sheaf of rings ∆• on Xqsyn; we write
I∆•
⊂ ∆• for the ideal sheaf of the Hodge-Tate divisor.

Lemma 2.11 ([BS23, Proposition 2.14]). Let X be a quasisyntomic p-adic formal scheme. Then
there are natural equivalences Vect(X∆,O∆) ∼−→ Vect(Xqsyn, ∆•) ∼−→ limR∈Xqrsp Vect(∆R).

2.2. Laurent F -crystals. Let X be a bounded p-adic formal scheme and let Xη denote the
generic fiber of X, regarded as a presheaf on perfectoid spaces over Qp.

Definition 2.12 (Laurent F -crystals, [BS23, Definition 3.2]). Define the category of Laurent F -crystals
of vector bundles on (X∆,O∆[1/I∆]∧p ) as

Vect(X∆,O∆[1/I∆]∧p )φ=1 := lim
(A,I)∈X∆

Vect(A[1/I]∧p )φ=1,

i.e. any E in Vect(X∆,O∆[1/I∆]∧p ) is equipped with an isomorphism φE : φ∗E ∼−→ E .

Lemma 2.13 ([BS23, Corollary 3.8]). Let Loc(Xη, Zp) denote the category of étale Zp-local systems
on Xη. Then there is a natural equivalence

Tét : Vect(X∆,O∆[1/I∆]∧p )φ=1 ∼−→ LocZp(Xη).

Passing to the associated isogeny categories we obtain

Vect(X∆,O∆[1/I∆]∧p )φ=1 ⊗Zp Qp
∼−→ LocZp(Xη)⊗Zp Qp.

2.3. Prismatic F -crystals. In this subsection we will recall the definition of prismatic F -crystals
and its analytic/completed variants.

2.3.1. Vector bundles. Let X be a p-adic formal scheme and let (A, I) denote a prism with φ its
Frobenius endomorphism.

Definition 2.14 (Prismatic F -crystals, [BS23, Definition 4.1]). Define the category Vectφ(A) of
prismatic F -crystals of vector bundles on A as follows: an object is a pair (M, φM ) with M a finite
projective A-module equipped with an A-linear isomorphism φM : (φ∗M)[1/I] ∼−→ M [1/I]. Mor-
phisms between two objects are given as A-linear maps compatible with φM . Say that (M, φM ) is
effective if φM carries φ∗M into M .

Define the category Vectφ(X∆,O∆) of prismatic F -crystals of vector bundles on X∆ as follows:
an object is a pair (E , φE ) with E a vector bundle on (X∆,O∆) equipped with an isomorphism φE :
(φ∗E)[1/I∆] ∼−→ E [1/I∆]. Morphisms between two objects are maps of vector bundles compatible
with φE . Say that (E , φE ) is effective if φE carries φ∗E into E .

Remark 2.15. From Proposition 2.8 and Lemma 2.11 we have equivalences Vectφ(X∆,O∆) ∼−→
lim(A,I)∈X∆

Vectφ(A) ∼−→ limR∈Xqrsp Vectφ(∆R).
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2.3.2. Completed F -crystals. Let OK be a finite ramified extension of OF and take π in OK to
be a uniformizer and E(u) in OF [u] to be its minimal polynomial.

Definition 2.16 (Completed prismatic crystals, [DLMS24, Definition 3.11]). Let X be a smooth
p-adic formal scheme over OK . Define the category CR∧(X∆) of finitely generated completed crystals
of O∆-modules on X∆ as follows: an object is a sheaf E of O∆-modules on X∆ satisfying the following:

(1) For each (A, I) in X∆, the evaluation of E on (A, I), i.e. E(A) := E(A, I), is a finitely generated
and (p, I)-complete A-module.

(2) For every morphism (A, I)→ (B, IB) in X∆, the natural map B⊗̂AE(A)→ E(B) is an isomor-
phism, where we set B⊗̂AE(A) := limn(B ⊗A E(A))/(p, I)n.

Morphisms between two objects are morphisms of O∆-modules compatible with completed base
change.

Remark 2.17. The category of completed crystals on X∆, denoted as CR∧(X∆), satisfies descent for
Zariski and étale topologies on X (see [DLMS24, Lemma 3.39, Remark 3.40]).

A p-adically completed OK-algebra S is called small if it is p-adically completed étale over a
p-adically complete Laurent polynomial OK-algebra OK⟨X±1

1 , . . . , X±1
d ⟩, for some d ∈ N. For such an

S there exists a unique OF -algebra R such that OK ⊗OF
R

∼−→ S and R admits a lift of the absolute
Frobenius modulo p, which we take to be the one extending the Witt vector Frobenius on OF and
such that φ(Xi) = Xp

i ; denote the lift of Frobenius as φ : R → R. Let S = RJuK equipped with a
Frobenius endomorphism φ which extends the Frobenius on R by setting φ(u) = up. Then (S, E(u))
is an object of (Spf S)∆ and called the Breuil-Kisin prism ([DLMS24, Example 3.4]).

Definition 2.18 (Completed prismatic F -crystals, [DLMS24, Definition 3.16, Definition 3.42]). Let
X := Spf S for S a small OK-algebra. Define the category CR∧,φ(X∆) of completed F -crystals of
O∆-modules on X∆ as follows: an object is a pair (E , φE ) with E a completed prismatic crystal on
X∆ such that we have an isomorphism φE : φ∗E [1/I∆] ∼−→ E [1/I∆]. Moreover, for the Breuil-Kisin
prism (S, E) in X∆, assume that the S-module E(S) is torsionfree, E(S)[1/p] (resp. E(S)[1/E]) is
finite projective over S[1/p] (resp. S[1/E]) and E(S) = E(S)[1/p] ∩ E(S)[1/E] ⊂ E(S)[1/p, 1/E].
Morphisms between two objects are given as maps of O∆-modules compatible with φE . Say that
(E , φE ) is effective if φE carries φ∗E into E .

Let X be a smooth p-adic formal scheme over OK . Define the category CR∧,φ(X∆) of completed
F -crystals of O∆-modules on X∆ as follows: an object is a pair (E , φE ) with E a completed prismatic
crystal on X∆ such that we have an isomorphism φE : φ∗E [1/I∆] ∼−→ E [1/I∆]. Moreover, there
exists an affine open covering X = ∪λ∈ΛUλ by affine p-adic formal schemes, where Uλ = Spf (Sλ) is
connected and small over OK , and such that (E , φE )|Uλ,∆

is an object of CR∧,φ(Uλ,∆). Morphisms
between two objects are given as maps of O∆-modules compatible with φE . Say that (E , φE ) is effective
if φE carries φ∗E into E .

Remark 2.19. Note that Definition 2.18 is slightly more general than loc. cit. in the sense that we
do not restrict ourselves to effective completed F -crystals.

2.3.3. Analytic F -crystals. Let X be a p-adic formal scheme.

Definition 2.20 (Analytic prismatic crystals, [GR24, Definition 3.1]). Define the category of analytic
prismatic crystals of vector bundles over X as

Vectan(X∆) := lim
(A,I)∈X∆

Vect(Spec (A) \ V (p, I)).

Lemma 2.21 ([GR24, Lemma 3.3]). Let X be a quasisyntomic p-adic formal scheme. Then, there
is a natural equivalence Vectan(X∆) ∼−→ Vectan(Xqsyn) := limR∈Xqrsp Vect(Spec (∆R) \ V (p, I)).
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Let (A, I) be a prism and let φ denote the Frobenius endomorphism on A. Then we have that
φ(I) ⊂ (p, I), since φ(x) = xp + pδ(x) is in (p, I), for each x in I. In particular, the Frobenius
endomorphism φ on A preserves the subscheme Spec (A) \ V (p, I) and we will denote the induced
endomorphism on Spec (A) \ V (p, I) again by φ.

Definition 2.22 (Analytic prismatic F -crystals, [GR24, Definition 3.6]). Define the category Vectan,φ(A)
as follows: an object is a pair (M, φM ) with M a vector bundle on Spec (A) \ V (p, I) equipped with
an A-linear isomorphism φM : (φ∗M)[1/I] ∼−→M [1/I]. Morphisms between two objects are given as
maps of vector bundles compatible with φM . Say that (M, φM ) is effective if φM carries φ∗M into M .

Define the category of analytic prismatic F -crystals on X∆ as follows:

Vectan,φ(X∆) := lim
(A,I)∈X∆

Vectφ(Spec (A) \ V (p, I)).

Say that (E , φE ) is effective if φE carries φ∗E into E .

Remark 2.23. From Lemma 2.11 we have an equivalence Vectan,φ(X∆) ∼−→ Vectan,φ(Xqsyn) :=
limR∈Xqrsp Vectφ(Spec (∆R) \ V (p, I)).

Remark 2.24. Let X = Spf (OF ), then from [GR24, Proposition 3.8] note that the restriction functor
induces equivalence of categories Vectφ(X∆,O∆) ∼−→ Vectan,φ(X∆).

2.3.4. Étale realisation functors. Now we introduce the étale realisation functors from the cate-
gory of (completed/analytic) prismatic F -crystals using Lemma 2.13. Let X be a p-adic formal scheme
and (E , φE ) and object of Vectan,φ(X∆). Consider the open embedding Spec (A[1/I]) ⊂ Spec (A) \
V (p, I), for any prism (A, I) in X∆, and let E [1/I∆] denote the pullback of E along this embedding, i.e.
it is an object of Vectφ(X∆,O∆[1/I∆]). Using the equivalence Vectφ(X∆,O∆[1/I∆]∧p ) ∼−→ LocZp(Xη)
from Lemma 2.13, we have the following:

Definition 2.25. Define the étale realisation functor for completed F -crystals as,

T ∧
ét : CR∧,φ(X∆) −→ LocZp(Xη)

(E , φE ) 7−→
(
E [1/I∆]⊗O[1/I∆] O∆[1/I∆]∧p

)φ=1
,

Similarly, define the étale realisation functor for analytic F -crystals as,

T an
ét : Vectan,φ(X∆) −→ LocZp(Xη)

(E , φE ) 7−→
(
E [1/I∆]⊗O[1/I∆] O∆[1/I∆]∧p

)φ=1

Remark 2.26. The étale realisation functor from Vectφ(X∆,O∆) in [BS23, Construction 4.8] natu-
rally factors through the functor T ∧

ét (see [DLMS24, Proposition 3.43]) and T an
ét (see [GR24, Construc-

tion 3.9]) in Definition 2.25.

Remark 2.27. The essential images of T ∧
ét and T an

ét coincide and we have natural equivalences of
categories (see [DLMS24, Theorem 1.3] and [GR24, Theorem A]):

CR∧,φ(X∆)
T ∧

ét−−−−→
∼

Loccris
Zp

(Xη)
T an

ét←−−−−
∼

Vectan,φ(X∆),

where Loccris
Zp

(Xη) is the category of Zp-local systems L on Xη such that L⊗Zp Qp is crystalline.

3. The prism (AR, [p]q)

In this section, we will define and study a prism (AR, [p]q), which is of fundamental importance in
stating and proving the results in Sections 4 and 5. We will use the setup and notations from Subsection
1.6.
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3.1. Some important rings. Let R♭
∞ and R

♭ denote the tilt of R∞ and R, respectively (see
Subsection 1.6). Set Ainf(R∞) := W (R♭

∞) and Ainf(R) := W (R♭) to be the ring of p-typical Witt
vectors with coefficients in R♭

∞ and R
♭, respectively, and equipped with the Frobenius endomorphism

on Witt vectors and continuous (for the weak topology) ΓR-action and GR-action, respectively (see
[And06, Proposition 7.2]). Moreover, from loc. cit., we have that Ainf(R∞) = Ainf(R)HR . We fix
µ := ε− 1, where ε := (1, ζp, ζp2 , . . .) is in R♭

∞ and let q := [ε] be the Teichmüller lift of ε in Ainf(R∞).
Let µ := q − 1 and ξ := µ/φ−1(µ) be some fixed elements of Ainf(R∞) and note that µ = µ mod p.
Then from the description of the weak topology on Ainf(R∞) and Ainf(R) in loc. cit., it is easy to see
that the weak topology on these rings is the same as the (p, µ)-adic topology. Next, let us note that
we have φ(q) = qp and for any g in GR, we have that g(q) = qχ(g), where χ is the p-adic cyclotomic
character, in particular, we see that φ(µ) = (1 + µ)p − 1 and g(1 + µ) = (1 + µ)χ(g). Furthermore, we
have a GR-equivariant surjection θ : Ainf(R) → C(R), where C(R) := R̂[1/p] and Ker θ = ξAinf(R).
The map θ further induces a ΓR-equivariant surjection θ : Ainf(R∞)→ R̂∞, with Ker θ = ξAinf(R∞).

For 1 ≤ i ≤ d, we fix X♭
i = (Xi, X

1/p
i , X

1/p2

i , . . .) in R∞ and we take {γ1, . . . , γd} to be topological
generators of Γ′

R, such that γj(X♭
i ) = εX♭

i , if i = j and 0 otherwise. Moreover, we may view ΓF as
a subgroup of ΓR and for any g in ΓF , we have gγig

−1 = γ
χ(g)
i , for all 1 ≤ i ≤ d. Let us also fix

Teichmüller lifts [X♭
i ] in Ainf(R∞).

3.1.1. The ring AR. Let A□ denote the (p, µ)-adic completion of the ring OF JµK
[
[X♭

1]±1, . . . , [X♭
d]±1]

.
Note that we have a natural embedding A□ ⊂ Ainf(R∞) and A□ is stable under the induced Frobenius
endomorphism φ and the action of ΓR (see [Abh21, Section 3]); we equip A□ with induced structures.
Moreover, we have an embedding ι : R□ → A□, via the map Xi 7→ [X♭

i ], for 1 ≤ i ≤ d, and it extends
to an isomorphism of rings R□JµK ∼−→ A□. Equip R□JµK with a Frobenius endomorphism φ extending
the Frobenius on R□ by setting φ(µ) = (1 + µ)p − 1 and note that the map φ is finite and faithfully
flat of degree pd+1. Additionally, equip R□JµK with an R□-linear continuous action of ΓF by setting
g(1 + µ) = (1 + µ)χ(g), for g in ΓF . Then the embedding ι and the isomorphism R□JµK ∼−→ A+

□ are
Frobenius and ΓF -equivariant.

Let AR denote the (p, µ)-adic completion of the unique extension of the embedding A+
□ → Ainf(R∞)

along the p-adically completed étale map R□ → R (see [Abh21, Subsection 3.3.2]). Then we have a
natural embedding AR ⊂ Ainf(R∞) and note that AR is stable under the Frobenius and ΓR-action on
the latter; we equip it with induced structures. Moreover, note that the embedding ι : R□ → A+

□ ⊂ AR

and the isomorphism R□JµK ∼−→ A+
□ ⊂ AR extend to a unique embedding ι : R → AR and an

isomorphism of rings RJµK ∼−→ AR. Equip RJµK with a Frobenius endomorphism φ uextending the
Frobenius on R by setting φ(µ) = (1 + µ)p − 1 and note that the map φ is finite and faithfully
flat of degree pd+1. Additionally, equip RJµK with an R-linear continuous action of ΓF by setting
g(1 + µ) = (1 + µ)χ(g), for g in ΓF . Then, it is clear that the embedding ι and the isomorphism
RJµK ∼−→ AR are Frobenius and ΓF -equivariant. In particular, the Frobenius endomorphism φ on AR

is finite and faithfully flat of degree pd+1 and we have φ∗(AR) = AR⊗φ,AR
AR

∼−→ ⊕αφ(AR)uα, where
uα = (1 + µ)α0 [X♭

1]α1 · · · [X♭
d]αd and α = (α0, α1, . . . , αd) is a (d + 1)-tuple with αi taking values in

{0, 1, . . . , p− 1} for each 0 ≤ i ≤ d.

Remark 3.1. For R = OF , we will denote the ring AR by AF which is equipped with a Frobenius
endomorphism φ and a continuous action of ΓF .

Next, let us fix the following elements inside AF :

[p]q := qp−1
q−1 = φ(µ)

µ ,

µ0 := ∑
a∈F×

p
((1 + µ)[a] − 1) = −p + ∑

a∈Fp
(1 + µ)[a],

p̃ := µ0 + p = ∑
a∈Fp

(1 + µ)[a].

(3.1)

Remark 3.2. Note that for p = 2, we have µ0 = µ and [p]q = µ + 2 = p̃. However, such equalities do
not hold for p ≥ 3. Let us also remark that we denote the sum −p + ∑

a∈Fp
(1 + µ)[a] as µ0 following
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[Fon94, Subsection 5.2.5], where Fontaine denotes our µ by π and µ0 by π0. Moreover, the notation
for p̃ = µ0 + p comes from [BL22, Subsection 3.8].

Lemma 3.3. The element p̃ is the product of [p]q with a unit in AF , in particular, both p̃ and [p]q
generate the same ideal inside AF .

Proof. Note that AF /[p]q = OF [ζp] and we have [a] = a mod pZp. Since ζp
p = 1 and p̃ = ∑

a∈Fp
(1 +

µ)[a], we see that p̃ = ∑
a∈Fp

ζ
[a]
p = ∑p−1

a=0 ζa
p = 0 mod [p]q. In particular, p̃ = [p]qx, for some x in AF .

Moreover, since [p]q = p mod µ and µ0 = 0 mod µ, we conclude that x = 1 + µy for some y in AF , i.e.
x is a unit in AF . This proves the claim.

3.1.2. The ring RJµ0K. From Subsection 3.1.1, recall that the ring RJµK is equipped with a contin-
uous and R-linear action of ΓF . Moreover, note that µ0 = ∑

a∈Fp
(1 + µ)[a] is an element of RJµK and

it is invariant under the action of the subgroup F×
p of ΓF (see the discussion after (1.6)). Furthermore,

from Lemma 3.3, the element p̃ is the product of [p]q with a unit in RJµK.
Now, consider an injective morphism of R-algebras RJzK → RJµK defined by sending z 7→ µ0.

Denote the image inside RJµK by RJµ0K and we will view the latter as the ring of formal power
series over R in the variable µ0. Note that the canonical injective homomorphism of R-algebras
RJµ0K → RJµK is continuous for the (p, µ0)-adic topology on the former and (p, µ0) = (p, µ)-adic
topology on the latter. Moreover, from the explicit description of µ0 in (3.1), it follows that RJµ0K is
stable under the Frobenius endomorphism and the continuous action of Γ0 on RJµK; we equip RJµ0K
with the induced Frobenius endomorphism and continuous action of Γ0.

Lemma 3.4. Taking invariants of RJµK under the action of F×
p induces a (φ, Γ0)-equivariant iso-

morphism of rings RJµ0K
∼−→ RJµKF×

p . Similarly, we have a (φ, Γ0)-equivariant and RJµ0K-linear
isomorphism µ0RJµ0K

∼−→ (µRJµK)F×
p .

Proof. Note that the map in the claim is (φ, Γ0)-equivariant by definition. Moreover, by Remark 3.2,
the claim is trivial for p = 2. So, assume that p ≥ 3 and consider the following (φ, ΓF )-equivariant
diagram:

0 RJµ0K RJµ0K R 0

0 RJµK RJµK R[ζp] 0,

p̃

p̃

(3.2)

where the vertical arrows are natural inclusions and the bottom row is exact since we have RJµK/[p]q ∼−→
R[ζp] and [p]qRJµK = p̃RJµK using Lemma 3.3. Now, note that the top row is F×

p -invariant and for the
bottom row, consider the associated long exact sequence for the cohomology of F×

p -action and observe
that H1(F×

p , RJµK) = 0, since p− 1 is invertible in Zp, and R[ζp]F×
p = R. In particular, from the long

exact sequence we obtain that RJµ0K/(p̃) ∼−→ RJµKF×
p /(p̃). Since, RJµ0K and RJµKF×

p are p̃-adically
complete and p̃-torsion free, it follows that RJµ0K

∼−→ RJµKF×
p .

For the second claim, we consider the following (φ, ΓF )-equivariant diagram:

0 µ0RJµ0K RJµ0K R 0

0 µRJµK RJµK R 0,

where the vertical arrows are natural inclusions. Now, note that the top row is F×
p -invariant and for

the bottom row, consider the associated long exact sequence for the cohomology of F×
p -action and

observe that H1(F×
p , µRJµK) = 0, since p− 1 is invertible in Zp and we have RF×

p = R and RJµ0K
∼−→

RJµKF×
p from the first part. Hence, it follows that the left vertical arrow induces a (φ, Γ0)-equivariant

isomorphism µ0RJµ0K
∼−→ (µRJµK)F×

p .
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Remark 3.5. Note that from (A.1), we have an F×
p -decomposition as RJµK = ⊕p−2

i=0 RJµKi. Moreover,
from Lemma 3.4, it follows that we have RJµ0K

∼−→ RJµKF×
p = RJµK0 and the preceding decomposition

is RJµ0K-linear. In particular, for each 0 ≤ i ≤ p− 2, we have that RJµKi is a (p, µ0)-adically complete
module over RJµ0K, equipped with a continuous action of Γ0.

Lemma 3.6. Let g be any element of Γ0, then (g − 1)µ0 is an element of p̃µ0OF Jµ0K.

Proof. Recall that OF Jµ0K ⊂ AF is stable under the action of Γ0. So if g is any element of Γ0, then
(g − 1)µ0 is an element of (µAF )F×

p
∼←− µ0OF Jµ0K (see Lemma 3.4). So let us write (g − 1)µ0 = µ0x.

Now, let us consider the diagram in (3.2) with R = OF , where the projection map OF Jµ0K → OF

sends µ0 to −p. In particular, we see that (g − 1)µ0 = −px mod p̃OF Jµ0K. Moreover, from the
ΓF -equivariance of the diagram, it follows that (g − 1)µ0 = 0 mod p̃OF Jµ0K. As OF is p-torsion free,
therefore, we conclude that x must be an element of p̃OF Jµ0K. Hence, (g − 1)µ0 is an element of
p̃µ0OF Jµ0K.

Lemma 3.7. The element µ0 is the product of µp−1 with a unit in AF , in particular, both µ0 and
µp−1 generate the same ideal inside AF .

Proof. The idea of the proof is motivated from [Fon94, Proposition 5.2.6]. Let µ1 = ∏
a∈F×

p
((1+µ)[a]−

1) be an element of AF . Then, by expanding the product, it is easy to see that µ1 = µp−1u for some
unit u in AF . Moreover, µ1 is invariant under the action of F×

p on AF . Therefore, we get that µ1 is
also an element of OF JµKF×

p
∼←− OF Jµ0K (see Lemma 3.4). So, let us write µ1 = ∑

k∈N akµk
0, where ak

is an element of OF for each k ∈ N. But since µ1 = 0 mod µAF and µ0 = 0 mod µAF , we conclude
that a0 must be 0. In particular, in AF , we have

µp−1u = µ1 = µ0(a1 + ∑
k≥2 akµk−1

0 ). (3.3)

Since AF is µ0-adically complete, it is enough to show that in (3.3), the element a1 is a unit in OF .
Note that from the expression of µ0, it is easy to see that we have µ0 = µp−1 mod pAF . There-
fore, reducing (3.3) modulo p, and using the preceding observation, we get that µ0u = µ0(a1 +∑

k≥2 akµk−1
0 ) mod pAF . Now note that AF /p = κJµK is µ0-torsion free. Therefore, from the pre-

ceding equation, we conclude that u = a1 + ∑
k≥2 akµ(p−1)(k−1) mod pAF . In particular, a1 =

u −
∑

k≥2 akµ(p−1)(k−1) mod pAF , is a unit in AF /p = κJµK. Since a1 is an element of OF , it fol-
lows that a1 mod p is a unit in κ and therefore a1 is a unit in OF . Hence, from (3.3) we obtain that
µp−1 is the product of µ0 with a unit in AF .

Remark 3.8. From Lemma 3.7 and its proof, it follows that AF is a free OF Jµ0K-module of rank
p − 1. In particular, the natural ring homomorphism OF Jµ0K → AF is faithfully flat and finite of
degree p− 1. Similarly, the natural ring homomorphism RJµ0K→ RJµK is faithfully flat and finite of
degree p− 1.

Lemma 3.9. Let us consider the ring AF equipped with Frobenius endomorphism φ and its subring
OF Jµ0K equipped with the induced Frobenius. Then we have the following:

(1) The ideal µAF ⊂ AF is δ-stable in the sense of [BS22, Example 2.10].

(2) The ideal µ0OF Jµ0K ⊂ OF Jµ0K is δ-stable.

(3) We can write φ(µ0) = uµ0p̃p−1, for some unit u in OF Jµ0K.

Proof. To prove (1), note that we have δ(µ) = φ(µ)−µp

p belongs to µAF . Then, using the product
formula for the δ-structure from (2.1), it follows that for any x in AF , we have δ(µx) = µpδ(x) +
xpδ(µ) + pδ(µ)δ(x), i.e. δ(µx) belongs to µAF . Next, by induction on m ∈ N and using the preceding
observation, it easily follows that δm(µx) also belongs to µAF .

To show (2), let us first note that since the action of ΓF on AF commutes with the Frobenius,
therefore, the action of ΓF also commutes with the δ-map, i.e. for any x in AF and g in ΓF , we have
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g(δ(x)) = δ(g(x)). Now using (1), we have that for any y in OF Jµ0K, the element µ0y belongs to µAF .
Therefore, for any m ∈ N, we get that δm(µ0y) belongs to µAF . But δm(µ0y) also belongs to OF Jµ0K,
so we get that δm(µ0y) is an element of OF Jµ0K ∩ µAF = (µAF )F×

p
∼←− µ0OF Jµ0K (see Lemma 3.4).

In particular, the ideal µ0OF Jµ0K ⊂ OF Jµ0K is δ-stable.
The proof of (3) is similar to that of [Fon94, Proposition 5.2.6]. Using Lemma 3.3 and Lemma 3.7,

let us write [p]q = vp̃ and µ0 = wµp−1, for some units v, w ∈ AF . Then, we have

φ(µ0) = φ(wµp−1) = φ(w)φ(µ)p−1 = φ(w)µp−1[p]p−1
q = φ(w)vp−1µp−1p̃p−1 = uµ0p̃p−1,

where u = φ(w)w−1vp−1 is a unit in AF . Since, µ0 and p̃ belong to OF Jµ0K, it follows that u =
φ(µ0)/(µ0p̃p−1) is an element of OF JµKF×

p
∼←− OF Jµ0K (see Lemma 3.4).

3.2. The prism (AR, [p]q). In this subsection, we will show that (AR, [p]q) is an object of the
site (Spf R)∆, covering the final object of the topos Shv((Spf R)∆). Moreover, we will compute the
first few terms of its prismatic Čech nerve and study the induced action of ΓR on these terms.

3.2.1. An object of (Spf R)∆. We begin with the following important observation:

Lemma 3.10. The pair (AR, [p]q) is a prism and an object of (Spf R)∆.

Proof. Note that the ring AR is p-torsion free and equipped with a Frobenius endomorphism φ. So
from Remark 2.2 we get that AR is a δ-ring. Moreover, we have [p]q = µp−1 + pµp−2 + · · · + p,
so AR is (p, [p]q)-adically = (p, µ)-adically complete. Now, since φ(µ) = [p]qµ, therefore, we can
write p = φ([p]q)− (µp−1[p]p−1

q + pµp−2[p]p−2
q + · · ·+ p(p− 1)µ[p]q/2), in particular, p is an element of

[p]qAR+φ([p]q)AR. So we obtain that (AR, [p]q) is a prism in the sense of Definition 2.4. Next, we have
a ΓR-equivariant surjective map A+

□ ↠ A+
□/[p]q ∼−→ R□[

ζp, X
1/p
1 , . . . , X

1/p
d

]
, where the isomorphism

is obtained by sending µ 7→ ζp− 1 and [X♭
i ] 7→ X

1/p
i , for 1 ≤ i ≤ d. The surjective map above extends

uniquely along the p-adically completed étale map R□ → R, i.e. we have a ΓR-equivariant surjective
map

AR ↠ AR/[p]q ∼−→ R
[
ζp, X

1/p
1 , . . . , X

1/p
d

]
. (3.4)

Clearly, we have the structure map R → R
[
ζp, X

1/p
1 , . . . , X

1/p
d

]
and AR/[p]q is p-torsion free. Hence,

(AR, [p]q) satisfies the axioms of Definition 2.7 and it is an object of (Spf R)∆.

From Lemma 3.10 we have that (AR, [p]q) is regarded as a prism via AR ↠ AR/[p]q ← R. Moreover,
we have the following:

Lemma 3.11. The object (AR, [p]q) is a cover of the final object of the topos Shv((Spf R)∆).

Proof. Let us first note that R̂∞ is a perfectoid R-algebra (see [BMS19, Definition 4.18]) and the pair
(Ainf(R∞), [p]q) is a prism and an object of (Spf R)∆ since Ainf(R∞)/[p]q ∼−→ R̂∞. Furthermore, the
natural map AR → Ainf(R∞) is compatible with the prism structure on both rings, in particular, we
have a map (AR, [p]q)→ (Ainf(R∞), [p]q) of prisms in (Spf R)∆. So, to show that (AR, [p]q) is a cover
of the final object of the topos Shv((Spf R)∆), it is enough to show that (Ainf(R∞), [p]q) is a cover of
the final object of the topos Shv((Spf R)∆). Now, note that the natural map R → R̂∞ is faithfully
flat and the p-complete Tor amplitude of the cotangent complex L

R̂∞/R
in D(R̂∞) (see Appendix

A.1), is in [−1, 0] because R is a p-complete smooth Zp-algebra and R̂∞ is a perfectoid Zp-algebra,
hence, quasisyntomic by [BMS19, Proposition 4.19]. Therefore, from [BS22, Proposition 7.11], we
obtain that (Ainf(R∞), [p]q) is a cover of the final object of the topos Shv((Spf R)∆). This allows us
to conclude.

Lemma 3.12. Let g ∈ ΓR, then the action of g on AR induces an automorphism of (AR, [p]q) in
(Spf R)∆. Moreover, we have (g − 1)AR ⊂ µAR.
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Proof. As the action of ΓR on AR is continuous, it is enough to check the claim for the topological
generators {γ1, . . . , γd} of Γ′

R and each g ∈ ΓF . Note that for 1 ≤ i ≤ d, using the description of AR

from Subsection 3.1.1 and explicit computations, it easily follows that we have (γi−1)AR ⊂ µAR and
γi([p]qAR) ⊂ [p]qAR. For any g in ΓF , note that we have (g− 1)µ = (1 + µ)χ(g)− 1−µ = χ(g)µu−µ,
for some unit u in AR, therefore, it follows that (γ − 1)AR ⊂ µAR. Similarly, note that g([p]q) =
g(φ(µ)/µ) = φ(µu)/(µu), which belongs to [p]qAR. This proves both the claims.

3.2.2. Prismatic Čech nerve of (AR, [p]q). In this subsubsection, we will provide a description
of the simplicial object (AR(•), I(•)) in (Spf R)∆. Such a description wowuld help in describing any
prismatic F -crystal over (Spf R)∆ in terms of an AR-module with stratification.

Construction 3.13. Let AR(•) denote the cosimplicial ring obtained by taking the prismatic Čech
nerve (AR(•), I(•)) of (AR, [p]q) in (Spf R)∆. Clearly, we have that AR(0) = AR. As products in
(Spf R)∆ are computed by prismatic envelopes (which exist in our case), we can describe AR(n) a bit
more explicitly. For n ∈ N, let (AR)⊗(n+1) denote the (n + 1)-fold tensor product of AR over OF and
we consider the AR-algebra structure on (AR)⊗(n+1) via the first component, i.e. a 7→ a ⊗ 1⊗n. Let
(AR)⊗̂(n+1) denote the (p, [p]q)-adic completion of (AR)⊗(n+1), which can be given as the (p, [p]q)-adic
completion of an étale algebra over a polynomial ring in finitely many variables defined over a power-
series AR-algebra in finitely many variables, in particular, we see that (AR)⊗̂(n+1) is (p, [p]q)-completely
flat over (AR, [p]q). In other words, for each m ∈ N≥1, we have that the natural map AR/(p, [p]q)m →
(AR)⊗̂(n+1)/(p, [p]q ⊗ 1)m is flat. Since AR is noetherian, from [Sta23, Tag 0912], it follows that the
map AR → (AR)⊗̂(n+1) is flat. Now, for each n ∈ N, we have a surjection

(AR)⊗̂(n+1) ↠ R
[
ζp, X

1/p
1 , . . . , X

1/p
d

]⊗(n+1)
, (3.5)

where on the right hand term, the tensor product is taken over R. For 1 ≤ i ≤ n + 1, let ni : AR →
(AR)⊗̂(n+1) denote the map, sending a 7→ 1⊗ · · · ⊗ a⊗ · · · ⊗ 1, in the ith position. Then the kernel of
(3.5) is given by the ideal

J(n) = (ni([p]q), nj([X♭
s]p)− nk([X♭

s]p) for 1 ≤ s ≤ d, 1 ≤ i, j, k ≤ d, j ̸= k) ⊂ (AR)⊗̂(n+1).

Note that from the proof of Lemma 3.10, we have that AR/[p]q ∼−→ R
[
ζp, X

1/p
1 , . . . , X

1/p
d

]
(see

(3.4)). Therefore, it easily follows that the sequence {p, ni([p]q), nj([X♭
s]p) − nk([X♭

s]p) for 1 ≤ s ≤
d, 1 ≤ i, j, k ≤ d, j ̸= k} is regular on (AR)⊗̂(n+1). So, from [BS22, Proposition 3.13], we get that
(AR(n), n1([p]q)) is the prismatic envelope of ((AR)⊗̂(n+1), J(n)) over the bounded prism (AR, [p]q).
By the universal property of prismatic envelopes, the maps ni from above extend uniquely to ni :
AR → AR(n), for 1 ≤ i ≤ n + 1. Let us denote the cosimplical ring AR(•) by the usual diagram

AR(•) : AR(0) AR(1) AR(2) · · · ,

p2

p1

∆

p23

p13

p12

where explicitly we write p1 = 11 : AR(0)→ AR(1) for the map a 7→ a⊗1 and p2 = 12 : AR(0)→ AR(1)
for the map a 7→ 1 ⊗ a. Similary, we define maps p12, p13 and p23. To avoid confusion, we will write
rj = 2j : AR → AR(2) for the map sending a to the jth position for j = 1, 2, 3.

Lemma 3.14. The pair (AR(n), n1([p]q)) is a prism and an object of (Spf R)∆. Moreover, we have
that (AR(n), n1([p]q)) is the n-fold self product of (AR, [p]q) over the final object of Shv((Spf R)∆).

Proof. From [BS22, Proposition 3.13] we have that (AR(n), n1([p]q)) is a prism and moreover, it is
(p, [p]q)-completely flat over (AR, [p]q), in particular, (AR(n), n1([p]q)) is a bounded prism by [BS22,

https://stacks.math.columbia.edu/tag/0912
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Lemma 3.7]. Furthermore, we have that AR(n)/(n1([p]q)) ∼−→ R
[
ζp, X

1/p
1 , . . . , X

1/p
d

]⊗(n+1) ← R,
i.e. (AR(n), n1([p]q)) is an object of (Spf R)∆. Finally, from [BS22, Proposition 3.13], self products
are computed via prismatic envelopes (when they exist), so from Construction 3.13, it follows that
(AR(n), n1([p]q)) is the n-fold self product of (AR, [p]q) over the final object of Shv((Spf R)∆).

For later calculations it will be convenient to have an explicit presentation of AR(1) and AR(2).
Recall that the ideal J(1) = ([p]q ⊗ 1, 1 ⊗ [p]q, [X♭

i ]p ⊗ 1 − 1 ⊗ [X♭
i ]p for 1 ≤ i ≤ d) ⊂ AR⊗̂OF

AR, is
the kernel of the map in (3.5) for n = 1. Consider a free δ-algebra over AR⊗̂OF

AR in d + 1 variables
given as (AR⊗̂OF

AR)
{

1⊗[p]q
[p]q⊗1 ,

[X♭
1]p⊗1−1⊗[X♭

1]p
[p]q⊗1 , . . . ,

[X♭
d]p⊗1−1⊗[X♭

d]p
[p]q⊗1

}
δ
. Then, from [BS22, Proposition

3.13], we have

AR(1) = (AR⊗̂OF
AR)

{
1⊗[p]q
[p]q⊗1 ,

[X♭
1]p⊗1−1⊗[X♭

1]p
[p]q⊗1 , . . . ,

[X♭
d]p⊗1−1⊗[X♭

d]p
[p]q⊗1

}∧

(p,[p]q⊗1)
, (3.6)

i.e. AR(1) is the (p, [p]q ⊗ 1)-adic completion of the free δ-algebra (AR⊗̂OF
AR)

{
J(1)

[p]q⊗1

}
δ
. Similarly,

using the ideal J(2) ⊂ (AR)⊗̂3, from [BS22, Proposition 3.13], we have

AR(2) = (AR)⊗̂3
{

J(2)
[p]q⊗1

}∧

(p,[p]q⊗1)
,

i.e. AR(2) is the (p, [p]q ⊗ 1)-adic completion of the free δ-algebra (AR)⊗̂3
{

J(2)
[p]q⊗1

}
δ
.

Lemma 3.15. The AR-linear morphisms ni : AR → AR(n), for 1 ≤ i ≤ n + 1, are faithfully flat.
In particular, the morphisms pi for i = 1, 2 and rj for j = 1, 2, 3 are faithfully flat. Moreover, the
element ni([p]q)

n1([p]q) is a unit in AR(n), for 1 ≤ i ≤ n + 1. In particular, 1⊗[p]q
[p]q⊗1 is a unit in AR(1).

Proof. Note that from Lemma 3.14 and [BS22, Proposition 3.13], the map ni : AR → AR(n) is
(p, [p]q)-completely flat. In particular, ni : AR/(p, [p]q)m → AR(n)/(p, [p]q ⊗ 1)m, is flat for each
m ∈ N≥1. Since AR is noetherian, from [Sta23, Tag 0912], it follows that ni is flat. Moreover, as we
have ∆◦ni = id, therefore for an AR-module M , we see that AR(n)⊗ni,AR

M = 0 if and only if N = 0.
Hence, the morphisms ni for 1 ≤ i ≤ n + 1 are faithfully flat. Finally, it is easy to see that ni([p]q)
is a distinguished element of AR(n) and writing ni([p]q) = n1([p]q) ni([p]q)

n1([p]q) , from [BS22, Lemma 2.24],
we get that ni([p]q)

n1([p]q) is a unit in AR(n).

Remark 3.16. From now on we will denote the prism (AR(1), [p]q ⊗ 1) simply as (AR(1), [p]q). In
light of Lemma 3.15 this simplification should not cause any confusion to the reader.

3.2.3. Galois action on (AR, [p]q). Note that for n ∈ N, the product Γ×(n+1)
R of n+1 copies of ΓR,

naturally acts on the δ-ring (AR)⊗̂n and the ring homomorphism (AR)⊗̂n ↠ R
[
ζp, X

1/p
1 , . . . , X

1/p
d

]⊗(n+1)

from (3.5) is easily checked to be Γ×(n+1)
R -equivariant. So, by the universal property of prismatic en-

velopes, the continuous action of Γ×(n+1)
R on (AR)⊗̂n naturally extends to a continuous action on

AR(n). Moreover, since the action of ΓR is identity on AR/µ, we claim the following:

Proposition 3.17. The action of the ith-component of Γ×(n+1)
R is trivial on AR(n)/(ni(µ)).

Proof. From the definition of the action of Γ×(n+1)
R on (AR)⊗̂n, it is easy to see that the ith-component

acts trivially on (AR)⊗̂n/(ni(µ)). Then, from Construction 3.13, we note that to get the claim, it is
enough to show that for any x in the set of generators {nj([p]q), nk([X♭

s]p)−nl([X♭
s]p)}, for 1 ≤ s ≤ d,

1 ≤ j, k, l ≤ d and k ̸= l, of the ideal J(n) ⊂ (AR)⊗̂n, we have that

(g − 1)δm(
x

n1([p]q)
)
∈ ni(µ)AR(n), (3.7)

https://stacks.math.columbia.edu/tag/0912
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for each m ∈ N and any g in the ith-component of Γ×(n+1)
R . We can reduce this claim further as follows.

Using Lemma 3.9 (1), let us first note that ni(µ)AR(n) is a δ-stable ideal of AR(n) in the sense of
[BS22, Example 2.10]. Then, by using Lemma 3.19 for A = AR(n) and α = ni(µ), we see that to
prove our main claim, it is enough to show (3.7) for m = 0, i.e. (g−1)( x

n1([p]q)) belongs to ni(µ)AR(n).
Let us first assume 1 < i ≤ n+1 and since the action of ΓR = ith-component of Γ×(n+1)

R , on AR(n)
is continuous, it is enough to check the preceding claim for the topological generators {γ1, . . . , γd} of
Γ′

R and each g ∈ ΓF . Now, take x = nk([X♭
s]p) − nl([X♭

s]p) in J(n). Then, the claim is obvious for
k ̸= i and l ̸= i. So, assume k = i and l ̸= k and note that we have

(γs − 1)
(

x
n1([p]q)

)
= (1+ni(µ))pni([X♭

s]p)−ni([X♭
s]p)

n1([p]q) = ni([p]q)ni(µ)ni([X♭
s]p)

n1([p]q) ∈ ni(µ)AR(n),

where we have used the fact that ni([p]q)
n1([p]q) is a unit in AR(n) (see Lemma 3.15). Next, let x = ni([p]q),

then for any g in ΓF , we have that

(g − 1)
(

x
n1([p]q)

)
= ni([p]q)ni(µ)y

n1([p]q) ∈ ni(µ)AR(n),

where the first equality follows from Lemma 3.18. Therefore, by using Lemma 3.19 for A = AR(n)
and α = ni(µ), it follows that we have shown (3.7) for all generators of J(n) and 1 < i ≤ n + 1.

Let us now assume i = 1 and again note that since the action of ΓR = 1st-component of Γ×(n+1)
R , on

AR(n) is continuous, therefore, it is enough to check the preceding claim for the topological generators
{γ1, . . . , γd} of Γ′

R and each g ∈ ΓF . An argument similar to above, shows that for all x in J(n) and
1 ≤ s ≤ d, we have that (γs − 1)( x

n1([p]q)) belongs to n1(µ)AR(n). Now take any g ∈ ΓF and x an
element of J(n). Then we have that

(g − 1)
(

x
n1([p]q)

)
= x

( 1
g(n1([p]q)) −

1
n1([p]q)

)
∈ ni(µ)AR(n),

using Lemma 3.18. Therefore, by using Lemma 3.19, it follows that we have shown (3.7) for all
generators of J(n) and i = 1. This allows us to conclude.

The following observation was used above:

Lemma 3.18. Let g ∈ ΓF , then (g − 1)[p]q belongs to [p]qµAF and (g − 1)( 1
[p]q ) belongs to µ

[p]q AF .

Proof. Let us first observe that g(µ) = χ(g)ugµ, where χ is the p-adic cyclotomic character, and
ug = 1 + xgµ, for some xg ∈ AF , is a unit in AF . Then we have

(g − 1)[p]q = (g − 1)φ(µ)
µ = φ(g(µ))

g(µ) −
φ(µ)

µ =
(φ(ug)

ug
− 1

)
[p]q ∈ [p]qµAF .

Next, observe that

(g − 1)
( 1

[p]q
)

= (g − 1) µ
φ(µ) = g(µ)

φ(g(µ)) −
µ

φ(µ) =
( ug

φ(ug) − 1
) 1

[p]q ∈
µ

[p]q AF .

This proves the lemma.

We prove a general statement for δ-rings admitting an action of ΓR, which also be useful in
Subsection 3.4.3.

Lemma 3.19. Let A be a p-adically complete p-torsion free δ-ring such that A admits a continuous
and φ-equivariant action of ΓR and let α be an element of A such that the ideal (α) ⊂ A is δ-stable
in the sense of [BS22, Example 2.10]. Assume that for some x ∈ A and g an element of Γ×(n+1)

R , we
are given that (g − 1)x is in (α). Then for each m ∈ N, we have that (g − 1)δm(x) belongs to (α) as
well.
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Proof. Let us fix some x ∈ A and g an element of Γ×(n+1)
R such that (g − 1)x lies in (α). We will

proceed by induction on m ∈ N. So for some m ∈ N, let us write (g − 1)δmx = αy. Then, observe
that

(g − 1)(δm+1x) = (g − 1)φ(δmx)−(δmx)p

p

= 1
p(φ((g − 1)δmx)− (g − 1)(δmx)p)

= 1
p(φ(αy)− ((g − 1)δmx + δmx)p + (δmx)p)

= 1
p(φ(αy)−∑p

k=1
(p

k

)
(αy)k(δmx)p−k)

= δ(αy)− 1
p

∑p−1
k=1

(p
k

)
(αy)k(δmx)p−k.

(3.8)

Using the product formula for the delta map from (2.1), it follows that δ(αy) belongs to (α). Hence,
(g − 1)(δm+1x) belongs to (α), thus proving the claim.

Remark 3.20. For n ∈ N, the δ-ring (AR)⊗̂n is equipped with a Frobenius endomorphism given as
tensor product of Frobenius on each component. By compatibility of δ-structures between (AR)⊗̂n

and AR(n), we deduce that the Frobenius endomorphism on AR(n) is compatible with the one on
(AR)⊗̂n. Then, by the description of the Galois action on AR(1), it easily follows that the natural map
pi : AR → AR(1) is (φ, Γ2

R)-equivariant for i = 1, 2, where Γ2
R acts on the source via projection on to

the ith coordinate. Similarly, the natural map rj : AR → AR(2) is (φ, Γ3
R)-equivariant for j = 1, 2, 3,

where Γ3
R acts on the source via projection on to the jth coordinate.

3.3. The ring AR(1)/p1(µ). From Remark 3.20 recall that we have a (φ, Γ2
R)-equivariant maps

pi : AR → AR(1) for i = 1, 2, where AR is equipped with a Γ2
R-action via projection on to the ith

coordinate. Moreover, we note that there is an induced action of Γ2
R on AR(1)/p1(µ), where the

action of the first component is identity. Additionally, from Subsection 3.1 recall that we have fixed
topological generators {γ1, . . . , γd} of Γ′

R. The goal of this subsection is to give an explicit description
of the ring AR(1)/p1(µ) and explain some of its properties. We start with some computations.

3.3.1. Some divided power calculations. The goal of this subsubsection is to show the following
claim:

Proposition 3.21. The following natural map is a φ-equivariant isomorphism of p-torsion free rings

β : ΛR := R[µ, (µp−1/p)[k], k ∈ N]∧p
∼−→ RJµK[(µp−1/p)[k], k ∈ N]∧p . (3.9)

Notation. For any element x, we use x[k] to denote xk/(k!), for all k ∈ N.

Proof. Let B denote the divided power envelope of the R[µ]-subalgebra R[µ, µp−1/p] ⊂ R[µ][1/p],
with respect to the ideal (µp−1/p) ⊂ R[µ, µp−1/p], i.e. B = R[µ, (µp−1/p)[k], k ∈ N]. Similarly,
let B′ denote the divided power envelope of the RJµK-subalgebra RJµK[µp−1/p] ⊂ RJµK[1/p], with
respect to the ideal (µp−1/p) ⊂ RJµK[µp−1/p], i.e. B′ = RJµK[(µp−1/p)[k], k ∈ N]. Note that the
source and target of (3.9) are the p-adic completions of B and B′, respectively. Moreover, we have a
natural morphism of rings B → B′ induced by the inclusion R[µ][1/p] ⊂ RJµK[1/p]. Evidently, the
rings B and B′ are p-torsion free, the natural map B → B′ is injective and to show that (3.9) is an
isomorphism, it is enough to show that the natural map B → B′ induces an isomorphism of rings
B/p

∼−→ B′/p. Since, µp−1 = p(µp−1/p) in B and B′, therefore B/p = B/(µp−1, p) = (B/µp−1)/p and
B′/p = B′/(µp−1, p) = (B′/µp−1)/p. Now, from Lemma 3.22, using the explicit description of B and
B′, we have a natural commutative diagram(

(R[µ]/µp−1)[Y0, Y1, . . .]/(pY0 − µp−1, pYk+1 − Yk)k∈N)/p B/p

(
(RJµK/µp−1)[Y0, Y1, . . .]/(pY0 − µp−1, pYk+1 − Yk)k∈N)/p B′/p,

∼

∼
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where the vertical arrows are natural maps, the top horizontal arrow is reduction modulo p of the
isomorphism in (3.10) and the bottom horizontal arrow is reduction modulo p of the isomorphism in
(3.11). Since R[µ]/µp−1 ∼−→ RJµK/µp−1, it follows that the left vertical map is an isomorphism as well.
So we obtain that B/p

∼−→ B′/p and hence (3.9) is an isomorphism of p-torsion free rings. Finally,
note that by definition the map β in (3.9) is φ-equivariant. This concludes our proof.

The following descriptions of B and B′ were used in the proof of Proposition 3.21:

Lemma 3.22. The following natural map is an isomorphism of rings

R[µ][Y0, Y1, . . .]/(pY0 − µp−1, pYk+1 − Yk)k∈N
∼−→ B, (3.10)

where Yk 7→ (µp−1/p)[pk]. Similarly, the following natural map is an isomorphism of rings

RJµK[Y0, Y1, . . .]/(pY0 − µp−1, pYk+1 − Yk)k∈N
∼−→ B′, (3.11)

where Yk 7→ (µp−1/p)[pk].

Proof. We will only show that the map in (3.10) is bijective, the claim for (3.11) follows by a similar
argument. Define an R[µ]-linear map

R[µ][Y0, Y1, . . .] −→ B, Yk 7−→ (µp−1

p )[pk]. (3.12)

Let us first note that this map is surjective. Indeed, let n ∈ N and write n = ∑r
i=0 nip

i in base p, with
0 ≤ ni ≤ p− 1. Then we have,

(µp−1

p )[n] = 1
n!(

µp−1

p )
∑r

i=0 nip
i

= 1
n!

∏r
i=0(pi!)ni

∏r
i=0(µp−1

p )[pi].

An easy computation shows that the p-adic valuation of ∏r
i=0(pi!)ni equals the p-adic valuation of

n!. So, it follows that (3.12) is surjective and it is clear that the kernel of (3.12) is given by the ideal
(pY0 − µp−1, pYk+1 − Yk)k∈N ⊂ R[µ][Y0, Y1, . . .]. This proves the claim.

Remark 3.23. Let ΛF := OF [µ, (µp−1/p)[k], k ∈ N]∧p
∼−→ OF JµK[(µp−1/p)[k], k ∈ N]∧p and from Propo-

sition 3.21 note that it is a p-torsion free algebra over AF = OF JµK. We equip ΛF with a continuous
(φ, ΓF )-action by extending the (φ, ΓF )-action on AF and using the formulas φ(µp−1) = [p]p−1

q µp−1

and g(µp−1) = χ(g)p−1µp−1u, for some unit u in (AF )×. Now recall that from Subsection 3.1.1 we have
a (φ, ΓF )-equivariant isomorphism of rings ι : RJµK ∼−→ AR. This extends to a (φ, ΓF )-equivariant
isomorphism

ι : RJµK⊗̂OF JµKΛF
∼−→ AR⊗̂AF

ΛF , (3.13)

where we take tensor product action of φ and ΓF and completion is with respect to the p-adic topology.
Furthermore, using the completed tensor product description, we get that the isomorphism (3.9) in
Proposition 3.21 is a (φ, ΓF )-equivariant isomorphism of rings

β : ΛR := R⊗̂OF
ΛF

∼−→ RJµK⊗̂OF JµKΛF . (3.14)

For any k ∈ N, let k = (p − 1)f(k) + r(k), with r(k), f(k) in N and 0 ≤ r(k) < p − 1. Set
µ{k} = µk

f(k)!pf(k) , and note that we have ΛF = OF [µ, (µp−1/p)[k], k ∈ N]∧p = OF [µ, µ{k}, k ∈ N
]∧
p

. In
particular, for any x in ΛF we have a unique presentation x = ∑

k∈N akµ{k} in ΛF with ak in OF for
all k ∈ N and p-adically ak → 0 as k → +∞. We note an important observation which will be used
throughout.

Lemma 3.24. The element t = log(1 + µ) = ∑
k∈N(−1)k µk+1

k+1 converges in µΛF . Moreover, the
elements t/µ, [p]q/p and p̃/p are units in ΛF .
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Proof. Formally, write t/µ = ∑
k∈N(−1)k µk

k+1 = ∑
k∈N akµk and µ/t = µ

log(1+µ) = ∑
k∈N bkµk, with

υp(ak), υp(bk) ≥ − k
p−1 , for all k ∈ N. From the discussion before the lemma, recall that µ{k} =

µk

f(k)!pf(k) . Then we have

υp
( ak

f(k)!pf(k)

)
≥ − k

p−1 + υp(f(k)!) + f(k) > υp
(
⌊ k

p−1⌋!
)
− 1,

which goes to +∞ as k → +∞. Similar claim holds with ak replaced by bk above. Hence, we conclude
that t/µ and µ/t converge in ΛF as inverse to each other. Moreover, we have [p]q = φ(µ)/µ =
pφ(µ/t)t/µ in ΛF , so [p]q/p is a unit in ΛF . Furthermore, using Lemma 3.3, we get that p̃/p is a unit
in ΛF .

3.3.2. Explicit description of AR(1)/p1(µ). In the subsubsection, the AR-algebra structure
on AR(1)/p1(µ) is given by the composition AR

p2−→ AR(1) → AR(1)/p1(µ) and the ΓR-action on
AR(1)/p1(µ) means the continuous (for the p-adic topology) action of 1 × ΓR on AR(1)/p1(µ). Let
us consider the divided power AR-algebra AR

[ ∏
k∈Nd+1(µp−1/p)[k0]T

[k1]
1 · · ·T [kd]

d

]
, where T1, . . . Td are

variables. We equip this ring with a continuous (for the p-adic topology) action of ΓR by extending
the ΓR-action on AR by setting γj(Ti) = µ[X♭

i ] + Ti, for j = i or Ti otherwise. Moreover, we have
φ(µp−1) = [p]p−1

q µp−1, so we can further equip this ring with a Frobenius endomorphism φ, extending
the Frobenius on AR by setting φ([X♭

i ]− Ti) = ([X♭
i ]− Ti)p. Then we have the following description

of AR(1)/p1(µ):

Proposition 3.25. There exists a natural (φ, ΓR)-equivariant isomorphism of p-adically complete
and p-torsion free AR-algebras

α : AR(1)/p1(µ) ∼−→ AR

[ ∏
k∈Nd+1(µp−1/p)[k0]T

[k1]
1 · · ·T [kd]

d

]∧
p

, (3.15)

where p2(µ) 7→ µ, p2([X♭
i ]) 7→ [X♭

i ] and p1([X♭
i ]) 7→ [X♭

i ]− Ti.

Proof. The map in (3.15) is evidently (φ, ΓR)-equivariant and we need to show that it is bijective. To
show the bijectivity of (3.15), we will use the results of Appendix B. Let A := AF ⊗̂OF

AF denote the
(p, p1(µ))-adic completion of AF ⊗OF

AF equipped with the tensor product Frobenius, in particular,
A is a p-torsion free δ-ring. Moreover, note that φn(p1(µ)) is a nonzerodivisor on A, for each n ∈ N,
and A/p1(µ)A ∼−→ AF is p-torsion free. Therefore, by setting q to be p1(µ) + 1, we see that the
ring A satisfies Assumption B.1. Next, let B := AR⊗̂OF

AR denote the (p, p1(µ))-adic completion of
AR⊗OF

AR equipped with the tensor product Frobenius, in particular, B is a p-torsion free δ-algebra
over A. Note that φn(p1(µ)) is a nonzerodivisor on B, for each n ∈ N, and B/p1(µ)B ∼−→ R⊗̂OF

AR,
as the p-adic completion of R ⊗OF

AR, is p-torsion free. Set Y0 := p2([p]q) − p1([p]q) and Yi :=
p2([X♭

i ]p) − p1([X♭
i ]p), for each 1 ≤ i ≤ d, as elements in B. Then, it is clear that the sequence

{Y1, . . . , Yd} is regular on B and B/pB. Moreover, from the discussion in Construction 3.13, recall that
the sequence {p, p1([p]q), p2([p]q), Y1, . . . , Yd} is regular on B and since [p]q = µp−1 mod p, therefore, it
follows that the sequence {p, p1(µ), p2([p]q), Y1, . . . , Yd} is also regular on B. In particular, we see that
{Y0, . . . , Yd} is regular on B/p1([p]q)B and on B/(p, p1(µ))B. Therefore, we obtain that the A-algebra
B satisfies Assumption B.4.

Now, let I denote the set of natural numbers {0, . . . , d} and for each i in I, let yi := Yi/p1([p]q) be
an element of B[1/p1([p]q)]. Set E0 to be the B-subalgebra of B[1/p1([p]q)] generated by {yi, i ∈ I}
(see the discussion before Lemma B.6) and E to be the δ-subalgebra of E0[1/p, 1/φn(p1([p]q)), n ∈ N]
generated over B by {yi, i ∈ I} (see the discussion before (B.4)). From the discussion before (3.6), note
that the ring AR(1) is given as the (p, p1([p]q)) = (p, p1(µ))-adic completion of E, therefore, the ring
AR(1)/p1(µ) is given as the p-adic completion of E/p1(µ)E. Next, let A := A/µA and B := B/µB
equipped with the induced Frobenius, in particular, an associated δ-structure, since A and B are
p-torsion free (see Remark 2.2). Let E0 := E0/µE0 and for each i in I, denote by Y i (resp. yi), the
image of Yi (resp. yi) in E0. Define E to be the δ-subalgebra of E0[1/p] generated by {yi, i ∈ I}
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over B (see the discussion before (B.4)). Then, from (B.4), we have a natural surjective map E → E
inducing an isomorphism of p-torsion free δ-rings E/µE

∼−→ E, by Proposition B.10.
Now, for each 1 ≤ i ≤ d, set τi := p2([X♭

i ]) − p1([X♭
i ]) as an element of E0. Moreover, note that

p2(µ)p−1 = Y 0 + pa, for some a in p2(µ)E0, so we set τ0 := p2(µ)p−1/p = y0 + a as an element of
E0. Let us set E

′ := E0[τ [n]
i , i ∈ I, n ∈ N] as a divided power E0-subalgebra of E0[1/p]. We claim

that E = E
′ in E0[1/p]. Indeed, to show the inclusion E

′ ⊂ E, note that for each 1 ≤ i ≤ d, we have
τp

i = Y i − pδ(τi), where δ(τi) is in E0 by Lemma 3.26, in particular, τp
i /p = yi − δ(τi) is in E0 ⊂ E.

Moreover, using the equalities above we have that τp
0 = yp

0 + pb, for some b in E0 since p2(µ)p is in
pE0, and by using Lemma 3.26 we have that yp

0 = φ(y0) − pδ(y0) is in pE. Therefore, we get that
τp

0 /p = b + yp
0/p is in E. Hence, by using [BS22, Lemma 2.35], it follows that E

′ ⊂ E. Next, to show
the inclusion E ⊂ E

′, since we have that yi is in E
′, for each i ∈ I, therefore, it is enough to show that

φ on E[1/p] preserves E
′ and the resulting endomorphism of E

′ gives a δ-structure, or equivalently,
that φ restricts to a lift of Frobenius on E

′. Note that φ(τ [n]
0 ) = p2([p]q)nτ

[n]
0 is in pE

′, and for each
i ∈ I, we can write

φ(τ [n]
i ) = φ( τn

i
n! ) = (τp

i +pδ(τi))n

n! = ∑n
k=0

1
n!

(n
k

)
τpk

i pn−kδ(τi)n−k

= ∑n
k=0

(pk)!pn−k

n!
(n

k

)
τ

[pk]
i δ(τi)n−k.

An easy computation shows that all coefficients in the last term of the equation above lie in pZp.
Therefore, it follows that φ preserves E

′ and φ(τ [n]
i ) = 0 mod pE

′, for each i ∈ I and n ∈ N≥1.
Moreover, note that (τ [n]

i )p is also in pE
′, for each n ∈ N≥1. So, it follows that the endomorphism

φ on E
′ reduces modulo p to the absolute Frobenius on all generators, hence on all elements, of E

′.
Therefore, we obtain that E

′ = E ⊂ E0[1/p].
Finally, let us consider E as an AR-algebra via the map p2 and define a ring homomorphism

between AR-algebras as follows:

E = E
′ −→ AR

[ ∏
k∈Nd+1(µp−1/p)[k0]T

[k1]
1 · · ·T [kd]

d

]
,

by sending p2(µ) 7→ µ, τn
0 /n! 7→ (µp−1/p)n/n!, p2([X♭

i ]) 7→ [X♭
i ], p1([X♭

i ]) 7→ [X♭
i ] − Ti and τn

i /n! 7→
T n

i /n!. Evidently, the map above is bijective and passing to its p-adic completion gives the isomorphism
in (3.15). This finishes our proof.

The following observation was used above:

Lemma 3.26. For each i ∈ I, the element φ(yi) is in pE0, and for each 1 ≤ i ≤ d, the element δ(τi)
is in E0.

Proof. For 1 ≤ i ≤ d, we have that

φ(yi) = 1
p(φ(p2([X♭

i ])p − p1([X♭
i ])p))

= 1
p

(
(p2([X♭

i ])p − p1([X♭
i ])p + p1([X♭

i ])p)p − p1([X♭
i ])p2)

= 1
p

(
(p2([X♭

i ])p − p1([X♭
i ])p)p)

+ ∑p−1
k=1

1
p

(p
k

)
(p2([X♭

i ])p − p1([X♭
i ])p)kp1([X♭

i ])p−k

= pp−1yp
i + ∑p−1

k=1 pk−1(p
k

)
yk

i p1([X♭
i ])p−k,

is an element of pE0. Moreover, for i = 0, we have that

φ(y0) = p2(q)p2 −1
p(p2(q)p−1) − 1

= (p2(q)p−1+1)p−1
p(p2(q)p−1) − 1

= (p2(q)p−1)p−1

p + ∑p−1
k=2

1
p

(p
k

)
(p2(q)p − 1)k−1

= pp−2(p2(q)− 1)p−1(y0 + 1)p−1 + ∑p−1
k=2 pk−1(p

k

)
(p2(q)− 1)k−1(y0 + 1)k−1.
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For p ≥ 3, it is clear that φ(y0) is in pE0, whereas for p = 2, note that p2(q) − 1 = p2(q) + 1 − 2 =
p2([p]q)− 2 = 2y0, i.e. φ(y0) is in pE0. This shows the first claim. Next, for 1 ≤ i ≤ d, note that

δ(τi) = δ(p2([X♭
i ])− p1([X♭

i ]))
= 1

p

(
p2([X♭

i ])p − p1([X♭
i ])p − (p2([X♭

i ])− p1([X♭
i ]))p)

= −1
p

(
p1([X♭

i ])p + (−p1([X♭
i ]))p)

−
∑p−1

k=1
1
p

(p
k

)
p2([X♭

i ])k(−p1([X♭
i ]))p−k,

is evidently in E0. This proves the second claim.

Remark 3.27. In this remark we will use ⊗̂ to denote the p-adic completion of the usual tensor
product. Let ΛF = OF [µ, (µp−1/p)[k], k ∈ N]∧p and note that it is a p-torsion free algebra over AF =
OF JµK (see Proposition 3.21 for R = OF ). Note that the target ring in the isomorphism (3.15) of
Proposition 3.25 is p-torsion free and by definition the ring AR

[ ∏
k∈Nd T

[k1]
1 · · ·T [kd]

d

]
is p-torsion free

as well. Therefore, by checking modulo p, it is easy to see that we have a natural (φ, ΓR)-equivariant
isomorphism of rings,

AR

[ ∏
k∈Nd T

[k1]
1 · · ·T [kd]

d

]
⊗̂AF

ΛF
∼−→ AR

[ ∏
k∈Nd+1(µp−1/p)[k0]T

[k1]
1 · · ·T [kd]

d

]∧
p

, (3.16)

where we take the diagonal action of φ and ΓR on the source. In particular, using (3.15) and (3.16) it
follows that AR(1)/p1(µ) is the p-adic completion of a PD-polynomial algebra over AR⊗̂AF

ΛF .
Next, by an argument similar to (3.16), we note that the isomorphism in (3.13) readily extends to

a (φ, ΓF )-equivariant isomorphism

ι : RJµK
[ ∏

k∈Nd T
[k1]
1 · · ·T [kd]

d

]
⊗̂OF JµKΛF

∼−→ AR

[ ∏
k∈Nd T

[k1]
1 · · ·T [kd]

d

]
⊗̂AF

ΛF .

Furthermore, again arguing similar to (3.16), we note that the isomorphism in (3.14) extends to a
(φ, ΓF )-equivariant isomorphism

β : R
[ ∏

k∈Nd T
[k1]
1 · · ·T [kd]

d

]
⊗̂OF

ΛF
∼−→ RJµK

[ ∏
k∈Nd T

[k1]
1 · · ·T [kd]

d

]
⊗̂OF JµKΛF .

Composing these with the isomorphism in Proposition 3.25, we obtain a (φ, ΓF )-equivariant isomor-
phism

β−1 ◦ ι−1 ◦ α : AR(1)/p1(µ) ∼−→ R
[ ∏

k∈Nd T
[k1]
1 · · ·T [kd]

d

]
⊗̂OF

ΛF =: CR. (3.17)

Let PR := R
[ ∏

k∈Nd T
[k1]
1 · · ·T [kd]

d

]∧
p

and note that the target ring of the isomorphism (3.17) can
also be written as CR = PR⊗̂RΛR = PR[µ, (µp−1/p)[k], k ∈ N]∧p = ΛR

[ ∏
k∈Nd T

[k1]
1 · · ·T [kd]

d

]∧
p

. In
particular, CR is the p-adic completion of a PD-polynomial algebra over ΛR. Now for k ∈ N, let
k = (p− 1)f(k) + r(k), with r(k), f(k) in N and 0 ≤ r(k) < p− 1. Set µ{k} = µk

f(k)!pf(k) , then we have
CR = PR[µ, (µp−1/p)[k], k ∈ N]∧p = PR[µ, µ{k}, k ∈ N

]∧
p

. In particular, from the isomorphism (3.17), it
follows that for any x in AR(1)/p1(µ) we have a unique presentation (β−1 ◦ ι−1 ◦α)(x) = ∑

k∈N akµ{k}

in CR, with ak in PR for all k ∈ N and since AR(1)/p1(µ) ∼−→ CR are p-adically separated, we have
that ak → 0 as k → +∞.

Remark 3.28. The target ring of the isomorphism α in Proposition 3.25 admits a natural ΓR-equivariant
embedding into the crystalline period ring OAcris(R∞). Indeed, first of all note that the embedding
AR → Ainf(R∞) from Subsection 3.1 extends to a natural (φ, ΓR)-equivariant embedding AR⊗̂AF

ΛF →
Ainf(R∞)⊗̂AF

ΛF
∼−→ Acris(R∞), where the latter isomorphism follows in a manner similar to the proof

of [Bri08, Proposition 6.2.14]. Then, from the isomorphism (3.15) in Proposition 3.25 and from the
description of OAcris(R∞) as the p-adic completion of a PD-polynomial algebra over Acris(R∞) (see
[Bri08, Chapitre 6] and [Abh21, Subsection 2.2]), i.e. OAcris(R∞) ∼−→ Acris(R∞)

[ ∏
k∈Nd T

[k1]
1 · · ·T [kd]

d

]∧
p

it follows that we have a (φ, ΓR)-equivariant injective map AR(1)/p1(µ)→ OAcris(R∞).
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Remark 3.29. Recall that there are are two AR-algebra structures on AR(1) written as pi : AR →
AR(1) for i = 1, 2 (see Construction 3.13). Composing it with the injective map ι : R → AR (see
Subsection 3.1.1), gives morphism of rings R

ι−→ AR
pi−−→ AR(1). Reducing p1 modulo µ induces

an R-algebra structure on AR(1)/p1(µ) via the composition R
∼−→ AR/µ

p1−−→ AR(1)/p1(µ), which
we again denote by p1 and where the first isomorphism is induced by the map ι. In particular,
we have (p1 ◦ α)(Xi) = [X♭

i ] − Ti, for all 1 ≤ i ≤ d. Moreover, we will denote the composition
R

ι−→ AR
p2−−→ AR(1) just by p2. Note that both p1 and p2 described above are φ-equivariant.

Lemma 3.30. The morphisms pi : R→ AR(1)/p1(µ) for i = 1, 2 are faithfully flat.

Proof. From Lemma 3.15 the map p1 : AR → AR(1) is faithfully flat, therefore the map p1 : R
∼−→

AR/µ→ AR(1)/p1(µ) is faithfully flat. Now recall that we have A+
□

∼−→ R□JµK (see Subsection 3.1.1)
and consider the following isomorphism of rings

f : A+
□

[ ∏
k∈Nd+1(µp−1/p)[k0]T

[k1]
1 · · ·T [kd]

d

]∧
p

∼−→ A+
□

[ ∏
k∈Nd+1(µp−1/p)[k0]T

[k1]
1 · · ·T [kd]

d

]∧
p

,

where [Xi]♭ 7→ [X♭
i ] + Ti, Ti 7→ Ti and µ 7→ µ. Extending this isomorphism along the p-adically com-

pleted étale map R□ → R (see Subsection 3.1.1) gives an automorphism f of the p-adically complete
PD-algebra AR

[ ∏
k∈Nd+1(µp−1/p)[k0]T

[k1]
1 · · ·T [kd]

d

]∧
p

and we consider the commutative diagram:

R AR(1)/p1(µ)

AR(1)/p1(µ).

p1

p2 ≀ α−1◦f◦α (3.18)

Since p1 is faithfully flat, from the diagram (3.18), it follows that p2 is faithfully flat as well.

3.3.3. q-connection on AR(1)/p1(µ). In this subsubection, we will interpret the action of the
geometric part of ΓR, i.e. Γ′

R as a q-connection on AR(1)/p1(µ). We start by recalling the definition
of q-connection from [MT20, Definition 2.1] and [Abh23b, Subsection 5.1].

Let D be commutative ring and consider a D-algebra A equipped with d commuting D-algebra
automorphisms γ1 . . . , γd, i.e. an action of Zd. Moreover, fix an element q in D such that q − 1 is a
nonzerodivisor of D and γi = 1 mod (q − 1)A, for all 1 ≤ i ≤ d.

Definition 3.31 (q-de Rham complex). Let qΩ•
A/D := ⊕d

k=0 qΩk
A/D be a differential graded D-algebra

defined as:

• qΩ0
A/D = A and qΩ1

A/D is a free left A-module on formal basis elements d log(Ui).

• The right A-module structure on qΩ1
A/D is twisted by the rule d log(Ui) · f = γi(f) d log(Ui).

• d log(Ui) d log(Uj) = − d log(Uj) d log(Ui) if i ̸= j and 0 if i = j.

• The following map, where Ik = {i = (i1, . . . , ik) ∈ Nk such that 1 ≤ i1 < · · · < ik ≤ d}, is an
isomorphism of A-modules⊕

i∈Ik

A
∼−→ qΩk

A/D

(fi) 7−→
∑

i∈Ik
fi d log(Ui1) · · · d log(Uik

).

• The 0th differential dq : A→ qΩ1
A/D is given as f 7→

∑d
i=1

γi(f)−f
q−1 d log(Ui).

• The elements d log(Ui) ∈ qΩ1
A/D are cocycles for all 1 ≤ i ≤ d.

The data dq : A → qΩ1
A/D forms a differential ring over D, i.e. qΩ1

A/D is an D-bimodule and dq is
D-linear satisfying the Leibniz rule dq(fg) = dq(f)g + fdq(g).
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Remark 3.32. In Definition 3.31, we will denote the operator γi−1
q−1 : A → A by ∇log

q,i and refer to
these as the q-differential operators in logarithmic coordinates. The operators ∇q,i := Ui∇log

q,i , will be
referred to as the q-differential operators in non-logarithmic coordinates.

Remark 3.33. In most of the cases, we will fix units U1, . . . , Ud ∈ A× such that γi(Uj) = qUj if i = j
or Uj if i ̸= j.

Example 3.34. Take D to be AF = OF JµK, and A to be AR equipped with the AF -linear action of ΓR

and let {γ1, . . . , γd} be the topological generators of Γ′
R (see Subsection 3.1). Then setting q = 1 + µ

and Ui = [X♭
i ], for 1 ≤ i ≤ d, we have γi = 1 mod µAR for all 1 ≤ i ≤ d. In particular, AR satisfies

the hypotheses of Definition 3.31. Moreover, in this case, qΩ1
AR/AF

identifies with Ω1
AR/AF

, i.e. the
(p, µ)-adic completion of the module of Kähler differentials of AR with respect to AF . Furthermore,
note that we have an isomorphism of rings AR/µ

∼−→ R, so from [MT20, Remarks 2.4 and 2.10],
reduction modulo q − 1 of the differential ring dq : AR → Ω1

AR/AF
, is the usual continuous de Rham

differential d : R→ Ω1
R.

Example 3.35. Take D to be ΛF = OF [µ, (µp−1/p)[k], k ∈ N]∧p equipped with an action of (φ, ΓF )
as in Remark 3.23 and take A to be APD := AR[(µp−1/p)[k], k ∈ N]∧p = AR⊗̂AF

ΛF , equipped with
the natural and continuous tensor product (φ, ΓR)-action. From Remark 3.23, note that the structure
map ΛF → APD is (φ, ΓF )-equivariant and from (3.13) note that we also have a (φ, ΓF )-equivariant
isomorphism of rings ι : ΛR

∼−→ APD. Moreover, the ΛF -algebra APD is equipped with a ΛF -linear
continuous (for the p-adic topology) action of Γ′

R ⊂ ΓR and we have {γ1, . . . , γd} as topological
generators of Γ′

R (see Subsection 3.1). Then setting q = 1 + µ and Ui = [X♭
i ], for 1 ≤ i ≤ d, it

follows that γi = 1 mod µAPD, for all 1 ≤ i ≤ d. In particular, APD satisfies the hypotheses of
Definition 3.31. Furthermore, in this case, qΩ1

APD/ΛF
identifies with Ω1

APD/ΛF
, i.e. the (p, µ)-adic =

(p, [p]q)-adic = p-adic (see Lemma 3.24) completion of the module of Kähler differentials of APD with
respect to ΛF . From Definition 3.31 the q-connection on APD, denoted ∇q : APD → qΩ1

APD/ΛF
, is

given as f 7→
∑d

i=1
γi(f)−f

p2(µ) d log([X♭
i ]). Moreover, the q-connection ∇q on APD is p-adically quasi-

nilpotent because we have γi−1
p2(µ)[X♭

i ]([X
♭
i ]) = 1, and it is flat because γi commute with each other.

Furthermore, using the q-connection, APD can be equipped with a quasi-nilpotent flat connection ∇
as in Proposition 3.37, which coincides with the universal ΛF -linear continuous de Rham differential
d : APD → Ω1

APD/ΛF
. Then using Proposition 3.37, it follows that we have (APD)Γ′

R = (APD)∇q=0 ∼−→
(APD)∇=0 = (APD)d=0, where the first equality follows since the action of ΓR on APD is continuous.
Moreover, recall that from Subsection 3.1, for any g in ΓF , we have gγig

−1 = γ
χ(f)
i , for all 1 ≤ i ≤ d.

Hence, from Remark 3.38, the isomorphism ΛF
∼−→ (APD)∇q=0 = (APD)Γ′

R , induced by the structure
map, is (φ, ΓF )-equivariant as well.

Example 3.36. Take D to be ΛR = R[µ, (µp−1/p)[k], k ∈ N]∧p equipped with an action of (φ, ΓF )
as in Remark 3.23 and take A to be A(1) := AR(1)/p1(µ) as a ΛR-algebra via the morphism of
rings ιΛ : ΛR → A(1) defined by extending the R-algebra structure p1 : R → A(1) in Remark
3.29 via µ 7→ p2(µ) and (µp−1/p)[k] 7→ (p2(µ)p−1/p)[k]. Using Lemma 3.30 and the explicit de-
scription of A(1) in Proposition 3.25 and Remark 3.27, it follows that the map ιΛ is injective and
(φ, ΓF )-equivariant. Moreover, the ΛR-algebra A(1) is equipped with a ΛR-linear (via ιΛ) continuous
(for the p-adic topology) action of Γ′

R ⊂ 1 × ΓR and we have {γ1, . . . , γd} as topological genera-
tors of Γ′

R (see Subsection 3.1). Then, by setting q = 1 + µ and Ui = [X♭
i ], for 1 ≤ i ≤ d, from

the explicit description of A(1) in Proposition 3.25, we have that γi = 1 mod p2(µ)A(1), for all
1 ≤ i ≤ d. In particular, A(1) satisfies the hypotheses of Definition 3.31. Furthermore, in this case,
qΩ1

A(1)/ΛR
identifies with Ω1

A(1)/ΛR
, i.e. the (p, µ)-adic = (p, [p]q)-adic = p-adic (see Lemma 3.24)

completion of the module of Kähler differentials of A(1) with respect to ΛR. From Definition 3.31 the
q-connection on A(1), denoted∇q : A(1)→ qΩ1

A(1)/ΛR
, is given as f 7→

∑d
i=1

γi(f)−f
p2(µ) d log([X♭

i ]). More-
over, the q-connection ∇q on A(1) is p-adically quasi-nilpotent because we have γi−1

p2(µ)[X♭
i ]([X

♭
i ]) = 1,
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and it is flat because γi commute with each other. Furthermore, using the q-connection, A(1) can
be equipped with a p-adically quasi-nilpotent flat connection ∇ as in Proposition 3.37 which co-
incides with the universal ΛR-linear continuous de Rham differential d : A(1) → Ω1

A(1)/ΛR
. Then

using Proposition 3.37, it follows that we have A(1)∇q=0 = A(1)Γ′
R

∼−→ A(1)∇=0 = A(1)d=0, where
the isomorphism follows since the action of ΓR on A(1) is continuous. Moreover, from Subsection
3.1, recall that for any g in ΓF , we have gγig

−1 = γ
χ(f)
i , for all 1 ≤ i ≤ d. Hence, the iso-

morphism ΛR
∼−→ A(1)Γ′

R = A(1)∇q=0 ∼−→ A(1)∇=0, induced by ιΛ in Remark 3.38, is moreover
(φ, ΓF )-equivariant. In particular, it follows that R

∼−→ ΛΓF
R

∼−→ (A(1)∇q=0)ΓF
∼−→ A(1)ΓR , induced

by p1 : R→ A(1).

From Lemma 3.24, we have that t = log(1 + µ) converges in µΛF ⊂ µΛR and t/µ is a unit.

Proposition 3.37. Let D = ΛR (resp. ΛF ) and A = AR(1)/p1(µ) (resp. APD). Then for 1 ≤ i ≤ d,
the series of operators ∇log

i = log γi
t = 1

t

∑
k∈N(−1)k (γi−1)k

k+1 converge p-adically on A. This defines
a D-linear p-adically quasi-nilpotent flat connection on A, denoted ∇ : A → Ω1

A/D and given as
f 7→

∑d
i=1∇

log
i (f) d log([X♭

i ]). The connection ∇ coincides with the universal D-linear continuous de
Rham differential operator d : A→ Ω1

A/D. Moreover, the data of the connection ∇ on A is equivalent
to the data of the q-connection ∇q described in Example 3.36 (resp. Example 3.35), i.e. one may be
recovered from the other. Furthermore, the q-de Rham complex qΩ•

A/D is naturally quasi-isomorphic
to the de Rham complex Ω•

A/D. In particular, we have A∇q=0 ∼−→ A∇=0.

Proof. The first two claims, i.e. the convergence of the operators ∇log
i on A and the fact that the oper-

ator ∇ defines a D-linear p-adically quasi-nilpotent flat connection on A and the claim of equivalence
between the connection ∇ and quasi-isomorphism of complexes, will be shown in Proposition 4.13
for finite A-modules adimitting a continuous action of ΓR (trivial modulo µ), in particular, A itself.
Moreover, in the proof of Proposition 4.13, we will also show that the connection ∇ coincides with
the universal D-linear continuous de Rham differential operator d : A → Ω1

A/D. Note that the proof
of Proposition 4.13 is independent of the subsequent claims proved in this section. This allows us to
conclude.

Remark 3.38. Let A(1) = AR(1)/p1(µ) as in Proposition 3.37. From the isomorphism (3.17) in
Remark 3.27 recall that we have a ring CR

∼←− A(1). Moreover, from Remark 3.27, we have that
CR is the p-adic completion of a PD-polynomial algebra over ΛR and the structure map ΛR → CR

coincides with the composition ΛR
ιΛ−−→ A(1) (3.17)−−−−→ CR. Now note that CR is equipped with

the universal ΛR-linear continuous de Rham differential d : CR → Ω1
CR/ΛR

, which can be given as
f 7→

∑d
i=1 ∂log

i (f) d log(Xi), where ∂log
i = Xi∂i and ∂i : CR → CR is the unique ΛR-linear continuous

differential operator such that ∂i(Xj) = 1 if i = j and 0 otherwise. So, the isomorphism in (3.17) is
ΛR-linear, and it induces an isomorphism between complexes of A(1)-modules Ω•

A(1)/ΛR

∼−→ Ω•
CR/ΛR

=
CR ⊗PR

Ω1
PR/R, where the right hand side is an A(1)-module via the isomorphism (3.17). Now, let f

be any element of CR, then from Remark 3.27 we have a unique presentation f = ∑
k∈N akµ{k}, with

ak in PR for all k ∈ N and p-adically ak → 0 as k → +∞. Then, it follows that f ∈ Cd=0
R if and only

if ak in R, i.e. f is in ΛR. In particular, we get that ΛR
∼−→ Cd=0

R , in particular, ΛR
∼−→ A(1)d=0 via

ιΛ. Using the same argument as above by replacing ΛR by ΛF , A(1) by APD, CR by ΛR and PR by
OF , we obtain that ΛF

∼−→ (APD)d=0.

Remark 3.39. Let us consider the ring APD from Example 3.35, equipped with a continuous action
of (φ, ΓR). From (3.13) in Remark 3.23, note that we have a (φ, ΓF )-equivariant isomorphism of rings
ι : ΛR

∼−→ APD. Moreover, we have a (φ, ΓR)-equivariant embedding APD → Acris(R∞) from Remark
3.28. Furthermore, the injective structure map p2 : AR → AR(1)/p1(µ) = A(1) from Remark 3.29
extends to an injective ring homomorphism p2 : APD → A(1) and the target is the p-adic completion
of a PD-polynmial algebra over the source (see Remark 3.27). Now, consider the universal APD-linear
continuous de Rham differential d : A(1) → Ω1

A(1)/APD , which can be given as f 7→
∑d

i=1 ∂log
i (f)dYi,
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where Yi = p1(Xi) (see Remark 3.29), ∂log
i = Yi∂i and ∂i : A(1) → A(1) is the unique APD-linear

continuous differential operator such that ∂i(Yj) = 1 if i = j and 0 otherwise. Then, it easily follows
that the (φ, ΓR)-equivariant injective map A(1) → OAcris(R∞) from Remark 3.28 is APD-linear
and compatible with the aforementioned APD-linear differential operator on A(1) and the unique
Acris(R∞)-linear connection on OAcris(R∞) from [Bri08, Section 6.2].

Remark 3.40. Let A(1) = AR(1)/p1(µ) and APD as in Example 3.35. Note that we have a natural
injective (φ, ΓR)-equivariant homomorphism of rings p2 : APD → A(1) (see Remark 3.39). Then using
the Leibniz rule for the connection on A(1) (see the proof of Proposition 4.13) it follows that the
respective connections on A(1) and APD are compatible and we have Ω1

A(1)/ΛR
= A(1)⊗APD Ω1

APD/ΛF
.

3.4. Galois action on AR(1). Note that we have the φ-equivariant multiplication map ∆ :
AR(1)→ AR. Moreover, recall that in Remark 3.20, we described the action of Γ2

R on AR(1). In this
subsection, our goal is to prove the following claim:

Proposition 3.41. The φ-equivariant homomorphism ∆ : AR(1)→ AR restricts to a φ-equivariant
isomorphism AR(1)1×ΓR

∼−→ AR. Moreover, the preceding isomorphism is compatible with the action
of ΓR on each side.

In order to prove Proposition 3.41, we will study the action of 1 × ΓR on AR(1) in three steps,
namely, the geometric part, i.e. Γ′

R below, the torsion part, i.e. F×
p below, and the (free) arithmetic

part, i.e. Γ0 below. From Subsection 1.6, recall that ΓR fits into the following exact sequence:

1 −→ Γ′
R −→ ΓR −→ ΓF −→ 1.

Furthermore, from (1.6), recall that ΓF
∼−→ Z×

p , via the p-adic cyclotomic character, and it fits into
the following exact sequence:

1 −→ Γ0 −→ ΓF −→ Γtor −→ 1,

where, for p ≥ 3, we have Γ0
∼−→ 1+pZp and for p = 2, we have Γ0

∼−→ 1+4Z2. Moreover, for p ≥ 3, we
have that Γtor

∼−→ F×
p and the projection map ΓF → Γtor, admits a section Γtor

∼−→ F×
p → Z×

p
∼←− ΓF ,

where the second map is given as a 7→ [a], the Teichmüller lift of a. Finally, for p = 2, we have
Γtor

∼−→ {±1}, as groups.
Let us note that the results for the action of the geometric part of ΓR in Subsection 3.4.1, are

applicable for all primes p. However, for p = 2, since F×
p is the trivial group, in Subsections 3.4.2 and

3.4.3 we assume that p ≥ 3. For p = 2, the arithmetic action of ΓR will be handled in Subsection
3.4.4.

Remark 3.42. Note that it is possible to prove Proposition 3.41, by studying the action of 1 × ΓR

at once and using Galois cohomology arguments, instead of the “3-step” argument presented here.
However, the methods used in the “3-step” proof are applicable to the case of Wach modules as well
(see Subsection 5.2), whereas the Galois cohomology arguments do not seem to generalise.

3.4.1. The action of Γ′
R. In this subsubsection, our first goal is to show the following claim:

Lemma 3.43. For each n ≥ 1, the following natural (φ, ΓR × ΓF )-equivariant sequence is exact:

0 −→ (AR(1)/p1(µ))1×Γ′
R

p1(µ)n

−−−−−→ (AR(1)/p1(µ)n+1)1×Γ′
R −→ (AR(1)/p1(µ)n)1×Γ′

R −→ 0. (3.19)

Before proving the Lemma 3.43, we provide a more explicit description of the ring AR(1)1×Γ′
R

equipped with the induced (φ, ΓR × ΓF )-action (introduced in the proof of Lemma 3.43). We start
with the following:
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Construction 3.44. From Construction 3.13, let us consider the (φ, Γ2
R)-equivariant surjective map

in (3.5), for n = 1. Taking invariants of this map, under the action of 1× Γ′
R, we obtain a surjective

map
AR⊗̂OF

AF ↠ R
[
ζp, X

1/p
1 , . . . , X

1/p
d

]
⊗OF

OF [ζp]. (3.20)

Using the description of the kernel of the map in (3.5), it follows that the kernel of the surjective
map (3.20), is generated by the ideal J = (1 ⊗ [p]q, [p]q ⊗ 1) ⊂ AR⊗̂OF

AF . Clearly, the sequence
{p, 1⊗[p]q, [p]q⊗1} is regular on AR⊗̂OF

AF , so from [BS22, Proposition 3.13], we see that (Λ̃R, [p]q⊗1)
is the prismatic envelope of (AR⊗̂OF

AF , J) over the bounded prism (AR, [p]q). More explicitly, similar
to the description of AR(1) before Lemma 3.15, let us consider a free δ-algebra over AR⊗̂OF

AF in one
variable given as (AR⊗̂OF

AF )
{

1⊗[p]q
[p]q⊗1

}
δ
. Then, from [BS22, Proposition 3.13], we have that

Λ̃R = (AR⊗̂OF
AF )

{
1⊗[p]q
[p]q⊗1

}∧

(p,[p]q⊗1)
,

i.e. Λ̃R is the (p, [p]q⊗ 1)-adic completion of the free δ-algebra (AR⊗̂OF
AF )

{
J

[p]q⊗1

}
δ
. Moreover, from

Lemma 3.3, recall that p̃ = µ0 + p is the product of [p]q with a unit in AF . Therefore, the ring Λ̃R has
another presentation given as

Λ̃R = (AR⊗̂OF
AF )

{
1⊗p̃
p̃⊗1

}∧

(p,p̃⊗1)
. (3.21)

Using notations similar to Lemma 3.15, we will denote the two projection maps as p1 : AR → Λ̃R

and p2 : AF → Λ̃R. Then, similar to Lemma 3.15, it is easy to see that both the preceding maps are
faithfully flat, in particular, Λ̃R is p1(µ)-torsion free.

Next, note that we have a natural (φ, ΓR)-equivariant injective map AF → AR, where the action
of ΓR factors through ΓF ⊂ ΓR. So, by the universal property of prismatic envelopes the continuous
action of ΓR × ΓF on AR⊗̂OF

AF naturally extends to a continuous action on Λ̃R and since the
morphism in (3.20) is compatible with the morphism in (3.5), therefore, we obtain the following
natural (φ, ΓR × ΓR)-equivariant map

ιΛ̃ : Λ̃R −→ AR(1), (3.22)

where the action of ΓR × ΓR on the source of ιΛ̃ factors through ΓR × ΓF ⊂ ΓR × ΓR.

Remark 3.45. Using an argument similar to the proof of Proposition 3.25, it can be shown that we
have a natural (φ, ΓF )-equivariant isomorphism of rings

Λ̃R/p1(µ) ∼−→ ΛR = R[µ, (µp−1/p)[k], k ∈ N]∧p , (3.23)

where p2(µ) 7→ µ and p1([Xi]♭) 7→ Xi for 1 ≤ i ≤ d (see Proposition 3.21 for equivalent descriptions
of ΛR).

Remark 3.46. In Construction 3.44, by switching the two components in (3.20) and carrying out
essentially the same steps, we can define another ring E := (AF ⊗̂OF

AR)
{

1⊗[p]q
[p]q⊗1

}∧

(p,[p]q⊗1)
, as the

prismatic envelope of (AF ⊗̂OF
AR, J) over the bounded prism (AF , [p]q), where J = (1⊗[p]q, [p]q⊗1) ⊂

AF ⊗̂OF
AR, i.e. E is the (p, [p]q⊗1)-adic completion of the free δ-algebra (AR⊗̂OF

AF )
{

J
[p]q⊗1

}
δ
. Now,

if we use notations similar to Lemma 3.15 to denote the two projection maps as p1 : AF → E and
p2 : AR → E. Then, similar to Lemma 3.15, it is easy to see that both the preceding maps are faithfully
flat. Moreover, by the universal property of prismatic envelopes, we see that the continuous action of
ΓF×ΓR on AF ⊗̂OF

AR naturally extends to a continuous action on E. Furthermore, using an argument
similar to the proof of Proposition 3.25, it can be shown that we have a natural (φ, ΓR)-equivariant
isomorphism of rings E/p1(µ) ∼−→ APD = AR[(µp−1/p)[k], k ∈ N]∧p , where p2(µ) 7→ µ and p2([Xi]♭) 7→
[X♭

i ] for 1 ≤ i ≤ d (see Example 3.35 for the definition of APD).
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Lemma 3.47. For each n ≥ 1, the natural map in (3.22) induces a (φ, ΓR × ΓF )-equivariant iso-
morphism

ιΛ̃ : Λ̃R/p1(µ)n ∼−→ (AR(1)/p1(µ)n)1×Γ′
R . (3.24)

In particular, (3.22) induces a (φ, ΓR × ΓF )-equivariant isomorphism ιΛ̃ : Λ̃R
∼−→ AR(1)1×Γ′

R .

Proof. As the action of ΓR × ΓR on Λ̃R factors through ΓR × ΓF , we see that reducing (3.22) modulo
p1(µ)n and taking (1 × Γ′

R)-invariants, we obtain the (φ, ΓR × ΓF )-equivariant map in (3.24). It
remains to show that it is an isomorphism. For n = 1, we consider the following (φ, ΓF )-equivariant
diagram,

Λ̃R/p1(µ) (AR(1)/p1(µ))1×Γ′
R

ΛR,

(3.24)

(3.23)≀ ιΛ
∼

where the isomorphism ιΛ is from Example 3.36. It is easy to see that the diagram above com-
mutes. Therefore, the top horizontal map of the diagram is an isomorphism, i.e. Λ̃R/p1(µ) ∼−→
(AR(1)/p1(µ))1×Γ′

R . Now as both AR(1) and Λ̃R are p1(µ)-torsion free (see Lemma 3.15 and Con-
struction 3.44), we consider the following diagram with exact rows

0 Λ̃R/p1(µ) Λ̃R/p1(µ)n+1 Λ̃R/p1(µ)n 0

0 (AR(1)/p1(µ))1×Γ′
R (AR(1)/p1(µ)n+1)1×Γ′

R (AR(1)/p1(µ)n)1×Γ′
R 0,

p1(µ)n

(3.24)≀ (3.24) (3.24)

p1(µ)n

where the second exact sequence is from (3.19). Using the diagram, an easy induction on n ≥
1, gives the natural (φ, ΓR × ΓF )-equivariant isomorphism induced from the map (3.22) as ιΛ̃ :
Λ̃R/p1(µ)n ∼−→ (AR(1)/p1(µ)n)1×Γ′

R , i.e. the isomorphism in (3.24). Finally, since both Λ̃R and
AR(1) are p1(µ)-adically complete, therefore, by taking the limit over n ≥ 1 and noting that limit
commutes with right adjoint functors, in particular, with taking (1 × Γ′

R)-invariants, we obtain the
(φ, ΓR × ΓF )-equivariant isomorphism ιΛ̃ : Λ̃R

∼−→ AR(1)1×Γ′
R .

Let us note an important observation for the action of ΓR × ΓF on Λ̃R.

Lemma 3.48. The action of 1 × ΓF is trivial on Λ̃R/p2(µ) and the action of ΓR × 1 is trivial on
Λ̃R/p1(µ).

Proof. The proof of the claim is similar to that of Proposition 3.17. For the first part, let us note that
the action of 1× ΓF is trivial modulo p2(µ) on AR⊗̂OF

OF JµK. Then, from the explicit description of
Λ̃R in Construction 3.44, it is enough to show that for any m ∈ N and g in 1× ΓF , we have that

(g − 1)δm(1⊗[p]q
[p]q⊗1) ∈ p2(µ)Λ̃R.

Now, using Lemma 3.9 (2), let us note that p2(µ)Λ̃R is a δ-stable ideal of Λ̃R, in the sense of [BS22,
Example 2.10]. Then, using Lemma 3.19 for A = Λ̃R and α = p2(µ), we see that to prove our claim,
it is enough to show that (g − 1)(1⊗[p]q

[p]q⊗1) belongs to p2(µ)Λ̃R, which follows from Lemma 3.18. In
particular, we have shown that the action of 1×ΓF is trivial on Λ̃R/p2(µ). For the second claim, note
that the action of ΓR× 1 is trivial modulo p1(µ) on AR⊗̂OF

OF JµK. Now, from the explicit description
of Λ̃R in Construction 3.44, it is enough to show that for any m ∈ N and g in ΓR × 1, we have that

(g − 1)δm(1⊗[p]q
[p]q⊗1) ∈ p1(µ)Λ̃R.

Similar to the first part, using Lemma 3.9 (1), we note that p1(µ)Λ̃R is a δ-stable ideal of Λ̃R. Then,
using Lemma 3.19 for A = Λ̃R and α = p1(µ), we see that to prove our claim, it is enough to show
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that (g − 1)(1⊗[p]q
[p]q⊗1) belongs to p1(µ)Λ̃R, which again follows from Lemma 3.18. Hence, the action of

ΓR × 1 is trivial on Λ̃R/p1(µ).

Remark 3.49. From Lemma 3.48, note that the action of 1 × ΓF is trivial on Λ̃R/p2(µ) and the
element p1(µ) is invariant under this action. Therefore, it follows that for any g in 1 × ΓF and any
x in Λ̃R/p1(µ)n we have that (g − 1)x is an element of p2(µ)Λ̃R,0/p1(µ)n. In particular, for n = 1,
using the isomorphism Λ̃R/p1(µ) ∼−→ ΛR from (3.23), we get that for any g in ΓF and any x in ΛR the
element (g − 1)x belongs to µΛR.

We are now ready to prove the main claim:

Proof of Lemma 3.43. To lighten notations, let us set A(1) := AR(1) and A(1) := AR(1)/p1(µ).
Instead of working with the action of 1×Γ′

R, we will work with the q-connection arising from this action.
More precisely, in the notation of Definition 3.31, take D to be Λ̃R

∼−→ A(1)1×Γ′
R (see Lemma 3.47),

and A to be A(1) equipped with a Λ̃R-linear action of 1× Γ′
R and let {γ1, . . . , γd} be the topological

generators of Γ′
R (see Subsection 3.1). Then setting q = 1 + p2(µ) and Ui = p2([X♭

i ]) for 1 ≤ i ≤ d,
we have that γi = 1 mod p2(µ)AR(1) for all 1 ≤ i ≤ d (see Proposition 3.17). In particular, A(1)
satisfies the hypotheses of Definition 3.31. Moreover, in this case, qΩ1

A(1)/Λ̃R
identifies with Ω1

A(1)/Λ̃R
,

and given as the (p, µ)-adic completion of the module of Kähler differentials of A(1) with respect
to Λ̃R. From Definition 3.31, the q-connection on A(1), denoted ∇q : A(1) → qΩ1

A(1)/Λ̃R
, is given

as f 7→
∑d

i=1
γi(f)−f

p2(µ) d log(p2([X♭
i ])). Moreover, the q-connection ∇q on A(1) is (p, p1(µ))-adically

quasi-nilpotent because we have γi−1
p2(µ)p2([X♭

i ])(p2([X♭
i ])) = 1, and it is flat because γi commute with

each other. Let us also note that Λ̃R/p1(µ) ∼−→ ΛR
∼−→ (A(1)/p1(µ))1×Γ′

R (see (3.23), Example 3.36
and the proof of Lemma 3.47). Now consider the following exact sequence of q-de Rham complexes:

0 −→ qΩ•
A(1)/ΛR

p1(µ)n

−−−−−→ A(1)/p1(µ)n+1 ⊗A(1) qΩ•
A(1)/Λ̃R

−→ A(1)/p1(µ)n ⊗A(1) qΩ•
A(1)/Λ̃R

−→ 0.

Since the action of 1×Γ′
R is continuous for the (p, p1(µ))-adic topology on A(1), therefore, we get that

(A(1)/p1(µ)n)1×Γ′
R = (A(1)/p1(µ)n)∇q=0. In particular, showing that (3.19) is exact, is equivalent to

showing that H1(
qΩ•

A(1)/ΛR

)
= 0. Now, from Proposition 3.37, recall that the q-de Rham complex

qΩ•
A(1)/ΛR

is naturally quasi-isomorphic to the de Rham complex Ω•
A(1)/ΛR

. Then, from the explicit
description of A(1) in Proposition 3.25, it is clear that the de Rham complex Ω•

A(1)/ΛR
is acyclic in

positive degree, in particular, H1(
qΩ•

A(1)/ΛR

)
= H1(

Ω•
A(1)/ΛR

)
= 0. Hence, it follows that (3.19) is

exact.

For computations to be carried out in Subsection 5.2, we will consider a “diagonal map for the
geometric variables” from AR(1) to Λ̃R. More precisely, consider the following surjective AR-linear
(via p1) and (φ, ΓR × ΓF )-equivariant map

∆′ : AR(1) −→ Λ̃R,

where p2(µ) 7→ p2(µ) and p2([X♭
i ]) 7→ p1([X♭

i ]) for 1 ≤ i ≤ d. Then it is easy to verify that the
composition ∆′ ◦ ιΛ̃ (see (3.22)), is the identity on Λ̃R. As p1(µ) is invariant under the action of
1×Γ′

R, we see that the reduction of ∆′ modulo p1(µ)n is (φ, ΓR×ΓF )-equivariant, for each n ≥ 1. Now
taking invariants of the source under the action of 1×Γ′

R, we obtain the following (φ, ΓF )-equivariant
morphism:

∆′ : (AR(1)/p1(µ)n)1×Γ′
R −→ Λ̃R/p1(µ)n. (3.25)

Then, we claim the following:

Lemma 3.50. The (φ, ΓF )-equivariant map in (3.25) is an isomorphism. Moreover , (3.25) induces
a (φ, ΓF )-equivariant isomorphism ∆′ : AR(1)1×Γ′

R
∼−→ Λ̃R
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Proof. Let us first consider the following (φ, ΓF )-equivariant diagram

ΛR
ιΛ−−→
∼

(AR(1)/p1(µ))1×Γ′
R

(3.25)−−−−→ Λ̃R/p1(µ) (3.23)−−−−→
∼

ΛR.

Using the isomorphism (3.24) in Lemma 3.47, it is easy to verify that the composition above is the
identity on ΛR. Therefore, it follows that (3.25) is an isomorphism for n = 1. Now as both AR(1) and
Λ̃R are p1(µ)-torsion free (see Lemma 3.15 and Construction 3.44), we consider the following diagram
with exact rows

0 (AR(1)/p1(µ))1×Γ′
R (AR(1)/p1(µ)n+1)1×Γ′

R (AR(1)/p1(µ)n)1×Γ′
R 0

0 Λ̃R/p1(µ) Λ̃R/p1(µ)n+1 Λ̃R/p1(µ)n 0,

p1(µ)n

(3.25)≀ (3.25) (3.25)

p1(µ)n

where the first exact sequence is from (3.19). Using the diagram, an easy induction on n ≥ 1, gives
the natural (φ, ΓR ×ΓF )-equivariant isomorphism ∆′ : (AR(1)/p1(µ)n)1×Γ′

R
∼−→ Λ̃R/p1(µ)n in (3.25).

Finally, since both AR(1) and Λ̃R are p1(µ)-adically complete, therefore, by taking the limit over n ≥ 1
and noting that limit commutes right adjoint functors, in particulat, with taking (1× Γ′

R)-invariants,
we obtain the (φ, ΓF )-equivariant isomorphism ∆′ : AR(1)1×Γ′

R
∼−→ Λ̃R.

3.4.2. The action of F×
p . In this subsubsection, we will assume that p ≥ 3 and consider the

invariants of the exact sequence (3.19) (more precisely, its image under the inverse of the map ιΛ̃ of
(3.24)), for the action of 1× F×

p .

Lemma 3.51. For each n ≥ 1, the following natural (φ, ΓR × Γ0)-equivariant sequence is exact:

0 −→ (Λ̃R/p1(µ))1×F×
p

p1(µ)n

−−−−−→ (Λ̃R/p1(µ)n+1)1×F×
p −→ (Λ̃R/p1(µ)n)1×F×

p −→ 0. (3.26)

Proof. Using the discussion in Construction 3.44 and the isomorphism (3.24) in Lemma 3.47, the
exact sequence (3.19) in Lemma 3.43 can be written as the following (φ, ΓR × ΓF )-equivariant exact
sequence:

0 −→ Λ̃R/p1(µ) p1(µ)n

−−−−−→ Λ̃R/p1(µ)n+1 −→ Λ̃R/p1(µ)n −→ 0.

By considering the associated long exact sequence for the cohomology of (1× F×
p )-action and noting

that H1(1 × F×
p , ΛR) = 0, since p − 1 is invertible in Zp, we obtain that the sequence in (3.26) is

exact.

Next, let us describe the rings (Λ̃R/p1(µ)n)1×F×
p , more explicitly.

Construction 3.52. Note that from (A.1), the action of 1 × F×
p induces a decomposition Λ̃R =⊕p−2

i=0 (Λ̃R)i. Let us set Λ̃R,0 := (Λ̃R)0 = (Λ̃R)1×F×
p , complete for the p-adic topology and equipped

with induced Frobenius and a continuous action of ΓR × Γ0, from the corresponding structures on
Λ̃R. Using the explicit presentation of Λ̃R from Construction 3.44 (see (3.21)), we obtain an explicit
presentation of Λ̃R,0 as follows:

Λ̃R,0 = (AR⊗̂OF
OF Jµ0K)

{
1⊗p̃
p̃⊗1

}∧

(p,p̃⊗1)
. (3.27)

Using notations from Construction 3.44, we will denote the two projection maps as p1 : AR → Λ̃R,0
and p2 : OF Jµ0K→ Λ̃R,0. Then, similar to Lemma 3.15, it is easy to see that both the preceding maps
are faithfully flat, in particular, Λ̃R,0 is p1(µ)-torsion free.

Furthermore, note that from (3.23), we have a natural (φ, ΓF )-equivariant isomorphism of rings
Λ̃R/p1(µ) ∼−→ ΛR. Now, using (A.1), the action of 1× F×

p induces a decomposition ΛR = ⊕p−2
i=0 (ΛR)i.

Note that p1(µ) in Λ̃R is invariant under the action of 1×F×
p and p−1 is invertible in Zp, in particular,
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H1(1 × F×
p , Λ̃R) = 0. Therefore, it follows that for each n ≥ 1, we have a (φ, ΓR × Γ0)-equivariant

isomorphism of rings
Λ̃R,0/p1(µ)n ∼−→ (Λ̃R/p1(µ)n)1×F×

p . (3.28)

In particular, for n = 1, we have a (φ, ΓR × Γ0)-equivariant isomorphism of rings Λ̃R,0/p1(µ) ∼−→
(Λ̃R/p1(µ))1×F×

p . Additionally, using (3.23) induces a (φ, Γ0)-equivariant isomorphism of rings

Λ̃R,0/p1(µ) ∼−→ (Λ̃R/p1(µ))1×F×
p ∼−→ ΛF×

p

R =: ΛR,0. (3.29)

Let us describe the ring ΛR,0 more explicitly. From Proposition 3.21, recall that we have ΛR =
R[µ, (µp−1/p)[k], k ∈ N]∧p . Moreover, recall that t = log(1 + µ) is an element of ΛF and since t/µ is a
unit in ΛF (see Lemma 3.24), we may write ΛR = R[t, (tp−1/p)[k], k ∈ N]∧p . Now, since the action of
F×

p is trivial on tp−1, it follows that ΛR,0 = ΛF×
p

R = R[(tp−1/p)[k], k ∈ N]∧p . Furthermore, recall that µ0
is the product of µp−1 with a unit in AF (see Lemma 3.7) and since t/µ is a unit in ΛF , therefore, we
can write µ0 = υtp−1, where υ is a unit in ΛF . As the action of F×

p is trivial on µ0 and tp−1, it follows
that υ belongs to ΛF,0 = ΛF×

p

F . In particular, µ0 is a product of tp−1 with a unit in ΛF,0 and we have
(φ, Γ0)-equivariant identifications

ΛR,0 = ΛF×
p

R = R[(tp−1/p)[k], k ∈ N]∧p = R[(µ0/p)[k], k ∈ N]∧p . (3.30)

Note that µp−1 is not an element of ΛR,0 as the action of F×
p is non-trivial on µp−1.

3.4.3. The action of 1 + pZp. In this subsubsection, we will assume that p ≥ 3 and consider
the invariants of the exact sequence (3.26), for the action of 1 × Γ0

∼−→ 1 × (1 + pZp), and show the
following:

Lemma 3.53. For each n ≥ 1, the following natural (φ, ΓR × 1)-equivariant sequence is exact:

0 −→ (Λ̃R/p1(µ))1×ΓF
p1(µ)n

−−−−−→ (Λ̃R/p1(µ)n+1)1×ΓF −→ (Λ̃R/p1(µ)n)1×ΓF −→ 0. (3.31)

Remark 3.54. Via the natural (φ, ΓR×ΓF )-equivariant isomorphism ιΛ̃ in Lemma 3.47 (see (3.24)),
we see that the exact sequence in (3.26) is the invariants, under the natural action of 1 × F×

p , of
the exact sequence (3.19) in Lemma 3.43. Then it follows that the exact sequence in (3.31) is the
invariants, under the natural action of 1× ΓF , of the exact sequence (3.19) in Lemma 3.43.

Note that using the (φ, ΓR × Γ0)-equivariant isomorphism in (3.28) and (3.29), the sequence in
(3.31) can be rewritten as the following (φ, ΓR × Γ0)-equivariant sequence:

0 −→ ΛΓ0
R,0

p1(µ)n

−−−−−→ (Λ̃R,0/p1(µ)n+1)1×Γ0 −→ (Λ̃R,0/p1(µ)n)1×Γ0 −→ 0. (3.32)

In order to prove that (3.32) is exact, we will now look at the action of ΓR×Γ0 on the rings introduced
in Construction 3.52. We start with the following observation:

Lemma 3.55. The action of 1× Γ0 is trivial on Λ̃R,0/p2(µ0) and the action of ΓR × 1 is trivial on
Λ̃R,0/p1(µ).

Proof. The proof of the claim is similar to that of Lemma 3.48. Let us first note that if g is any
element of Γ0, then (g − 1)µ0 is an element of µ0OF Jµ0K (see Lemma 3.6). Now, for the first part, let
us note that the action of 1× Γ0 is trivial modulo p2(µ0) on AR⊗̂OF

OF Jµ0K. Then, from the explicit
description of Λ̃R,0 in (3.27), it is enough to show that for any m ∈ N and g in 1× Γ0, we have that

(g − 1)δm(1⊗p̃
p̃⊗1) ∈ p2(µ0)Λ̃R,0.

We can reduce this claim further, as follows. Using Lemma 3.9 (2), we first note that p2(µ0)Λ̃R,0 is a
δ-stable ideal of Λ̃R,0, in the sense of [BS22, Example 2.10]. Then, using Lemma 3.19 for A = Λ̃R,0
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and α = p2(µ0), we see that to prove our claim, it is enough to show that (g − 1)(1⊗p̃
p̃⊗1) belongs to

p2(µ0)Λ̃R,0. The assertion now follows from the earlier observation that (g − 1)µ0 is an element of
µ0OF Jµ0K. In particular, we have shown that the action of 1×Γ0 is trivial on Λ̃R,0/p2(µ0). The second
claim easily follows from Lemma 3.48.

Remark 3.56. From Lemma 3.55, note that the action of 1 × Γ0 is trivial on Λ̃R,0/p2(µ0) and the
element p1(µ) is invariant under this action. Therefore, it follows that for any g in 1×Γ0 and any x in
Λ̃R,0/p1(µ)n we have that (g− 1)x is an element of p2(µ0)Λ̃R,0/p1(µ)n. In particular, for n = 1, using
the isomorphism Λ̃R,0/p1(µ) ∼−→ ΛR,0 from (3.29), we get that for any g in Γ0 and any x in ΛR,0 the
element (g−1)x belongs to µ0ΛR,0. We can show this more explicitly. Indeed, let γ0 be the topological
generator of Γ0 such that χ(γ0) = 1 + pa, for a unit a in Zp, and we will write (1 + pa)p−1 = 1 + pb,
where b is also a unit in Zp. Now, from Construction 3.52, recall that µ0 is the product of tp−1 with a
unit in ΛF,0 (see (3.30) and the discussion preceding it). Therefore, it is enough to show that for any
x in ΛR,0, we have that (γ0− 1)x is an element of tp−1ΛR,0. Recall that ΛR,0 = R[(tp−1/p)[k], k ∈ N]∧p ,
so we can write x = ∑

k∈N xk(tp−1/p)[k], where xk is an element of R for each k ∈ N. Then we have,

(γ0 − 1)x = (γ0 − 1)
( ∑

k∈N xk( tp−1

p )[k])
= ∑

k∈N(χ(γ0)(p−1)k − 1)xk( tp−1

p )[k] = tp−1 ∑
k∈N

((1+pb)k−1)
pk xk( tp−1

p )[k−1] = tp−1y,

where y converges in ΛF,0 because for any k ∈ N, an easy computation shows that we have (1+pb)k−1 =
pkuk, for some unit uk in Zp. Therefore, it follows that (γ0 − 1)x is an element of tp−1ΛR,0 = µ0ΛR,0.

Using the action of 1× Γ0 on Λ̃R,0, we will define a q-de Rham complex (see Definition 3.31). For
such a definition we will treat the following element in Λ̃R,0 as a parameter:

s̃ := 1⊗p̃−p̃⊗1
p̃⊗1 = p2(p̃)−p1(p̃)

p1(p̃) (3.33)

Lemma 3.57. Let γ0 be any element of 1 × Γ0. Then we have that (γ0 − 1)s̃ = up2(µ0), for some
unit u in Λ̃R,0.

Proof. Note that it is enough to show the claim for a topological generator γ0 of Γ0 such that χ(γ0) =
1 + pa, for a unit a in Zp. Now, recall that we have p̃ = µ0 + p. Moreover, from Lemma 3.6, recall
that we can write (γ0 − 1)µ0 = p̃µ0x, for some x in OF Jµ0K. So from (3.33) we can write

(γ0 − 1)s̃ = (γ0−1)p2(p̃)
p1(p̃) = (γ0−1)p2(µ0)

p1(p̃) = p2(p̃µ0x)
p1(p̃) = p2(p̃)

p1(p̃)p2(x)p2(µ0). (3.34)

From Lemma 3.3 and Lemma 3.15, it follows that 1⊗p̃
p̃⊗1 is a unit in AR(1). Moreover, from the

description of Λ̃R,0 as the F×
p -invariants of Λ̃R, in Construction 3.52, it follows that 1⊗p̃

p̃⊗1 is also a unit
in Λ̃R,0. Therefore, to show the claim, it is enough to show that p2(x) is a unit in Λ̃R,0. Again, note
that from Construction 3.52, the ring Λ̃R,0 is p1(µ)-adically complete and we have a (φ, Γ0)-equivariant
isomorphism Λ̃R,0/p1(µ) ∼−→ ΛR,0 (see (3.29)), therefore, we are reduced to showing that p2(x), the
image of p2(x) under the preceding isomorphism, is a unit. Also note that, under the preceding
isomorphism, p2(µ0) and p2(p̃) are the respective images of µ0 and p̃ in ΛR,0. Now, reducing the
equalities in (3.34) modulo p1(µ), we obtain the following expression in ΛR,0:

(γ0−1)µ0
p = p2(x)µ0

p̃
p .

Note that p̃/p is a unit in ΛR,0, because it is the image of the unit p2(p̃)/p1(p̃) in Λ̃R,0 (also see Lemma
3.24). Now, from Lemma 3.58, it follows that p2(x) is a unit in ΛR,0. Therefore, p2(x) is a unit in
Λ̃R,0. Hence, we have shown that (γ0 − 1)s̃ = up2(µ0), for u = (p2(p̃)/p1(p̃))x a unit in Λ̃R,0.

The following observation was used above:
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Lemma 3.58. Let γ0 be a topological generator of Γ0 such that χ(γ0) = 1 + pa, for a unit a in Zp.
Then we have (γ0 − 1)µ0

p = vµ0, for some unit v in ΛF,0 = ΛF×
p

F .

Proof. From Construction 3.52, recall that µ0/p is the product of tp−1/p with a unit in ΛF,0 (see
(3.30) and the discussion preceding it). So let us write µ0/p = utp−1/p, for some unit u in ΛF,0.
Note that, from Remark 3.56, we have that (γ0 − 1)u = µ0x, for some x in ΛF,0. Moreover, we write
(1 + pa)p−1 − 1 = pb, where b is a unit in Zp. Therefore, we can write

(γ0 − 1)µ0
p = (γ0 − 1)utp−1

p = tp−1

p (γ0 − 1)u + γ0(u)(γ0 − 1) tp−1

p

= tp−1

p µ0x + γ0(u)(χ(γ0)p−1 − 1) tp−1

p

= µ0
(

tp−1

p x + γ0(u)u−1b
)

= µ0v,

where v =
(

tp−1

p x + γ0(u)u−1b
)

is a unit in ΛF,0 because γ0(u)u−1b is a unit and tp−1/p is p-adically
nilpotent in ΛF,0. Hence, the lemma is proved.

In the rest of this subsubsection, we will fix the choice of a topological generator γ0 of 1×Γ0 such
that χ(γ0) = 1 + pa, for a unit a in Zp. Let us now consider the following operator on Λ̃R,0:

∇q,s̃ : Λ̃R,0 −→ Λ̃R,0

x 7→ (γ0−1)x
(γ0−1)s̃ .

(3.35)

From the triviality of the action of 1 × Γ0 on Λ̃R,0/p2(µ0) (see Lemma 3.55) and from Lemma 3.57,
it follows that the operator ∇q,s̃ is well-defined. For each n ∈ N, using Remark 3.56, the operator in
(3.35), induces well-defined operators ∇q,s̃ : Λ̃R,0/p1(µ)n −→ Λ̃R,0/p1(µ)n. In particular, for n = 1,
set s := µ0/p in ΛR,0, then using Remark 3.56 and Lemma 3.58, we have a well-defined operator

∇q,s : ΛR,0 −→ ΛR,0

x 7→ (γ0−1)x
(γ0−1)s .

(3.36)

Remark 3.59. Considering s̃ as a parameter, the operator ∇q,s̃ in (3.35), may be considered as a
q-differential operator in non-logarithmic coordinates, in the sense of Definition 3.31 and Remark
3.32, where qΩ1

A/D identifies with the (p, p1(µ))-adic completion of the module of Kähler differentials
of Λ̃R,0 with respect to p1 : AR → Λ̃R,0. Similarly, considering s as a parameter, the operator ∇q,s in
(3.36), may be also considered as a non-logarithmic q-differential operator in the sense of Definition
3.31 and Remark 3.32, where the qΩ1

A/D identifies with the p-adic completion of the module of Kähler
differentials of ΛR,0 with respect to R.

For each n ∈ N, the operator ∇q,s̃ is an endomorphism of Λ̃R,0/p1(µ)n, so we can define the
following two term Koszul complex:

KΛ̃R,0/p1(µ)n(∇q,s̃) :=
[
Λ̃R,0/p1(µ)n ∇q,s̃−−−−→ Λ̃R,0/p1(µ)n]

. (3.37)

For n = 1, we have the following claim:

Lemma 3.60. The cohomology of the Koszul complex KΛR,0(∇q,s) vanishes in degree 1, i.e. we have
H1(KΛR,0(∇q,s)) = 0.

Proof. The proof of this claim will be carried out in Proposition 4.24, where the claim will be shown,
more generally, for finite ΛR,0-modules admitting a continuous action of Γ0 (trivial modulo µ0), in
particular, ΛR,0 itself. We give a brief sketch of the main steps below.

Recall that, s = µ0/p is the product of tp−1/p with a unit in ΛF,0 (see Construction 3.52, in
particular, (3.30) and the discussion preceding it). Moreover, from Lemma 3.58 we have that (γ0−1)s
is the product of µ0 with a unit in ΛF,0. Now let z := tp−1/p, then in the proof of Proposition 4.16, it
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will be shown that (γ0 − 1)z is the product of µ0 with a unit in ΛF,0. Therefore, it follows that the
complex KΛR,0(∇q,s) is quasi-isomorphic to the following complex

KΛR,0(∇q,z) :=
[
ΛR,0

∇q,z−−−−→ ΛR,0
]
.

To show the vanishing of H1(KΛR,0(∇q,z)), we switch from the q-differential operator to a differential
operator. So, in Proposition 4.24, we show that ∇log

0 := log(γ0)
log(χ(γ0)) = 1

log(χ(γ0))
∑

k∈N(−1)k (γ0−1)k+1

k+1 ,
converge as a series of operators on ΛR,0 and that ∇0(−) ⊗ dz : ΛR,0 → Ω1

ΛR,0/R, coincides with the
universal R-linear continuous de Rham differntial operator d : ΛR,0 → Ω1

ΛR,0/R. In particular, we have
the following identification of complexes:

Ω•
ΛR,0/R = KΛR,0(∇0) :=

[
ΛR,0

∇0−−−→ ΛR,0
]
.

Recall that ΛR,0 = R[z[k], k ∈ N]∧p (see (3.30)), therefore it follows that the de Rham complex
Ω•

ΛR,0/R = KΛR,0(∇0) is acyclic in positive degrees and we have that R
∼−→ Λ∇0=0

R,0 . Furthermore,
in Proposition 4.24, we show a natural quasi-isomorphism of complexes

KΛR,0(∇q,z) ∼−→ KΛR,0(∇0).

Hence, we conclude that H1(KΛR,0(∇q,s)) ∼−→ H1(KΛR,0(∇0)) = 0.

Proof of Lemma 3.53. Using the (φ, ΓR×Γ0)-equivariant isomorphism of rings from (3.28), the exact
sequence in (3.26) can be rewritten as follows:

0 −→ ΛR,0
p1(µ)n

−−−−−→ Λ̃R,0/p1(µ)n+1 −→ Λ̃R,0/p1(µ)n −→ 0.

Then, using the operator ∇q,s̃ in (3.35) and the Koszul complex defined in (3.37), we obtain an exact
sequence of Koszul complexes:

0 −→ KΛR,0(∇q,s) p1(µ)n

−−−−−→ KΛ̃R,0/p1(µ)n+1(∇q,s̃) −→ KΛ̃R,0/p1(µ)n(∇q,s̃) −→ 0.

Considering the associated long exact sequence, and noting that H1(KΛR,0(∇q,s)) = 0 from Lemma
3.60, we obtain the following exact sequence:

0 −→ Λ∇q,s=0
R,0

p1(µ)n

−−−−−→ (Λ̃R,0/p1(µ)n+1)∇q,s̃=0 −→ (Λ̃R,0/p1(µ)n)∇q,s̃=0 −→ 0.

Since the action of 1 × Γ0 on Λ̃R,0 is continuous for the (p, p1(µ))-adic topology, therefore, we that
(Λ̃R,0/p1(µ)n+1)∇q,s̃=0 = (Λ̃R,0/p1(µ)n+1)1×Γ0 , for each n ∈ N. Hence, from the preceding exact
sequence we obtain that the sequence in (3.32) is exact, therefore, the sequence (3.31) is also exact.

3.4.4. The case p = 2. In this subsubsection, our goal is to prove a statement similar to Lemma
3.53, for p = 2. From (1.6), recall that ΓF fits into the following exact sequence:

1 −→ Γ0 −→ ΓF −→ Γtor −→ 1,

where, we have Γ0
∼−→ 1 + 4Z2 and Γtor

∼−→ {±1}, as groups.
We will first look at the action of Γtor on Λ̃R. Let σ denote a generator of Γtor. Then, from (A.2),

recall that by setting Λ̃R,+ := {x ∈ Λ̃R such that σ(x) = x} and Λ̃R,− := {x ∈ Λ̃R such that σ(x) =
−x}, we have a natural injective map of Λ̃R,+-modules

Λ̃R,+ ⊕ Λ̃R,− −→ Λ̃R, (3.38)

given as (x, y) 7→ x + y. Note that the action of 1 × ΓF on Λ̃R, is continuous for the (p, p1(µ))-adic
topology, so it follows that Λ̃R,+ is a (p, p1(µ))-adically complete subring of Λ̃R stable under the
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action of (φ, ΓR × ΓF ) on Λ̃R and similarly, Λ̃R,− is a complete Λ̃R,+-submodule stable under the
action of (φ, ΓR × ΓF ). Equipping Λ̃R,+ and Λ̃R,− with induced structures, we see that (3.38) is
(φ, ΓR × ΓF )-equivariant.

Now, from (3.23), recall that Λ̃R/p1(µ) ∼−→ ΛR. Similar to above, by setting ΛR,+ := {x ∈
ΛR such that σ(x) = x} and ΛR,− := {x ∈ ΛR such that σ(x) = −x}, from (A.2), we have a natural
(φ, ΓF )-equivariant injective map of ΛR,+-modules

ΛR,+ ⊕ ΛR,− −→ ΛR. (3.39)

Lemma 3.61. The natural map in (3.39) is bijective.

Proof. Recall that t = log(1 + µ) is an element of ΛF and t/µ is a unit in ΛF (see Lemma 3.24), so we
may write, ΛR = R[t, (tp−1/p)[k], k ∈ N]∧p = R[(t/2)[k], k ∈ N]∧p . Since σ(t) = −t, therefore it easily
follows that ΛR,+ = R[(t/2)[k], k ∈ 2N]∧p and ΛR,− = R[(t/2)[k], k ∈ 2N + 1]∧p . Then it is immediate
that ΛR = ΛR,+ ⊕ ΛR,−. Hence, (3.39) is bijective.

Next, we will give another description of ΛR,+ and ΛR,−. Let us consider the following element in
AF from [Fon94, Subsection 5.2.5]:

ν := q − 1 + σ(q − 1) = q + q−1 − 2 = (q−1)2

q = µ2

1+µ . (3.40)

Using Lemma 3.24, note that the element ν is the product of t2 with a unit in ΛF . Let τ := ν/8 and
we claim the following:

Lemma 3.62. The element τ is the product of t2/8 with a unit in ΛF,+, i.e. we have τ = ut2/8, for
some unit u in ΛF,+. In particular, we have

ΛR,+ = R[(t2/8)[k], k ∈ N]∧p = R[τ [k], k ∈ N]∧p ,

ΛR,− = R[(t/2)(t2/8)[k], k ∈ N]∧p = R[(t/2)τ [k], k ∈ N]∧p = (t/2)ΛR,+,
(3.41)

Proof. Recall that σ(t) = −t, so t2/8 is an element of ΛF,+. Moreover, ν = ut2 for some unit u in
ΛF , so τ is an element of ΛF . Since, σ(ν) = ν, it follows that τ = ν/8 belongs to ΛF,+, and therefore,
u is a unit in ΛF,+. Next, from the proof of Lemma 3.61, note that ΛR,+ = R[(t/2)[n], n ∈ 2N]∧p and
ΛR,− = R[(t/2)(t/2)[n], n ∈ 2N]∧p . Now, let n = 2k for k ∈ N, and note that

( t
2)[n] = t2k

(2k)!4k = k!2k

(2k)!(
t2

8 )[k] = k!2k

(2k)!uk τ [k].

The equalities in (3.41) now follow since an easy computation shows that we have υ2(2k) + υ2(k!) =
υ2((2k)!).

Let us now consider a lifting of the element τ = ν/8 to Λ̃R, under the surjective map Λ̃R →
Λ̃R/p1(µ) ∼−→ ΛR, where the isomorphism is the (φ, ΓF )-equivariant isomorphism in (3.23). We have
the following element in Λ̃R:

τ̃ := 1
p2(q)δ

(p2([p]q)
p1([p]q)

)
= 1

1⊗q δ
(1⊗[p]q

[p]q⊗1
)

= 1
1⊗q δ

(1⊗p̃
p̃⊗1

)
, (3.42)

where the last equality follows from Remark 3.2.

Lemma 3.63. The element τ̃ belongs to Λ̃R,+ and we have τ̃ = τ mod p1(µ)Λ̃R.

Proof. Let σ be a generator of 1× Γtor and note that σ(1⊗ q) = 1⊗ q−1. Moreover, since the action
of 1× ΓR commutes with the δ-structure on Λ̃R, we have

σ(τ̃) = 1
σ(1⊗q)δ

(σ(1⊗[p]q)
[p]q⊗1

)
= (1⊗ q)δ

( 1
1⊗q

1⊗[p]q)
[p]q⊗1

)
= 1

1⊗q δ
(1⊗[p]q

[p]q⊗1
)

= τ̃ ,

where the third equality follows from using the product formula for δ-structure from (2.1) and the fact
that δ(1⊗ q) = 0. Therefore, τ̃ is an element of Λ̃R,+. Next, since the isomorphism Λ̃R/p1(µ) ∼−→ ΛR
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in (3.23) is compatible with the respective Frobenii, in particular, with respective δ-structures, we
have the following:

τ̃ mod p1(µ) = 1
p2(q)δ

(p2([p]q)
p1([p]q)

)
mod p1(q − 1) = 1

q δ
( [p]q

2
)

= (q−1)2

8q = ν
8 = τ.

This proves the second claim.

Lemma 3.64. For each n ≥ 1, reduction modulo p1(µ)n of (3.38), induces a natural (φ, ΓR ×
Γ0)-equivariant isomorphism

Λ̃R,+/p1(µ)n ∼−→ (Λ̃R/p1(µ)n)1×Γtor . (3.43)

Moreover, for n = 1, the (φ, ΓF )-equivariant isomorphism Λ̃R/p1(µ) ∼−→ ΛR from (3.23), induces a
natural (φ, ΓF )-equivariant isomorphism

Λ̃R,+/p1(µ) ∼−→ ΛR,+. (3.44)

Proof. Let us consider the following natural (φ, ΓR×Γ0)-equivariant commutative diagram with exact
rows:

0 Λ̃R,+/p1(µ) Λ̃R,+/p1(µ)n+1 Λ̃R,+/p1(µ)n 0

0 (Λ̃R/p1(µ))1×Γtor (Λ̃R/p1(µ)n+1)1×Γtor (Λ̃R/p1(µ)n)1×Γtor ,

p1(µ)n

(3.38) (3.38) (3.38)

p1(µ)n

(3.45)

where the vertical maps are injective because we have p1(µ)nΛ̃R∩Λ̃R,+ = p1(µ)nΛ̃R,+, as p1(µ) is invari-
ant under the action of 1×ΓF . Composing the left vertical arrow in (3.45) with the (φ, ΓF )-equivariant
isomorphism Λ̃R/p1(µ) ∼−→ ΛR from (3.23), we obtain a natural (φ, ΓF )-equivariant injective map
Λ̃R,+/p1(µ) → ΛR,+, and we claim that it is surjective as well. Indeed, note that Λ̃R,+/p1(µ) is a
p-torsion free ring equipped with an induced Frobenius, in particular, a δ-structure compatible and
the left vertical map in (3.45) is compatible withe the respective δ-structures. Now, from (3.41) in
Lemma 3.62, recall that we have ΛR,+ = R[τ [k], k ∈ N]∧p . If we again denote by τ , its preimage under
the isomorphism (3.23), then from Lemma 3.63 we have that τ is an element of Λ̃R,+/p1(µ) and we
need to show that τ [k] belongs to Λ̃R,+/p1(µ), for each k ∈ N. Moreover, using [BS22, Lemma 2.35],
we see that it is enough to show that τ2

2 is an element of Λ̃R,+/p1(µ). Since, Λ̃R,+/p1(µ) is a δ-ring,
we have the following:

δ(τ) = δ
( (q−1)2

8q

)
= 1

2q2
( (q2−1)2

8 − (q−1)4

64
)

= 1
2q

(
τ(q + 1)2 − τ2

q

)
.

As [2]q = q + 1 can be written as the product of 2 with a unit in ΛF (see Lemma 3.24), there-
fore, it follows that τ2

2 = qτ(q+1)2

2 − q2δ(τ) is an element of Λ̃R,+/p1(µ). Hence, we conclude that
Λ̃R,+/p1(µ) ∼−→ ΛR,+, in particular, the composition in (3.44) and the left vertical arrow in (3.45) are
bijective. Now, using the diagram (3.45), an easy induction on n ≥ 1, gives that for each n ≥ 1, the
right vertical arrow is bijective and the bottom right horizontal arrow is surjective. Hence, it follows
that the natural (φ, ΓR × Γ0)-equivariant map Λ̃R,+/p1(µ)n → (Λ̃R/p1(µ)n)1×Γtor , induced by (3.38),
is bijective for each n ≥ 1.

Remark 3.65. Lemma 3.64 can be proved using an alternative method as in the proof of Lemma
5.23, where a crucial input is Lemma A.11. However, the proof given above is conceptually more
satisfying.

From Lemma 3.64, we obtain the following:

Lemma 3.66. For each n ≥ 1, the following natural (φ, ΓR × Γ0)-equivariant sequence is exact:

0 −→ (Λ̃R/p1(µ))1×Γtor p1(µ)n

−−−−−→ (Λ̃R/p1(µ)n+1)1×Γtor −→ (Λ̃R/p1(µ)n)1×Γtor −→ 0. (3.46)
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Proof. The sequence (3.46) is the same as the second row of the diagram (3.43), which was shown to
be exact in the proof of Lemma 3.64.

Next, we will look at the action of 1× Γ0
∼−→ 1× (1 + 4Z2) on Λ̃R,+ and prove a result similar to

Lemma 3.53, for p = 2. In particular, we will show the following:

Lemma 3.67. For each n ≥ 1, the following natural (φ, ΓR × 1)-equivariant sequence is exact:

0 −→ (Λ̃R/p1(µ))1×ΓF
p1(µ)n

−−−−−→ (Λ̃R/p1(µ)n+1)1×ΓF −→ (Λ̃R/p1(µ)n)1×ΓF −→ 0. (3.47)

Remark 3.68. Via the natural (φ, ΓR×ΓF )-equivariant isomorphism ιΛ̃ in Lemma 3.47 (see (3.24)),
we see that the exact sequence in (3.47) is the invariants, under the natural action of 1 × ΓF , of the
exact sequence in (3.19) in Lemma 3.43, for p = 2.

Note that using the (φ, ΓR × Γ0)-equivariant isomorphism in (3.43) and (3.44), the sequence in
(3.47) can be rewritten as the following (φ, ΓR × Γ0)-equivariant sequence:

0 −→ ΛΓ0
R,+

p1(µ)n

−−−−−→ (Λ̃R,+/p1(µ)n+1)1×Γ0 −→ (Λ̃R,+/p1(µ)n)1×Γ0 −→ 0. (3.48)

In order to show that the squence (3.48) is exact, we start with the following observation:

Lemma 3.69. The action of 1 × Γ0 is trivial on Λ̃R,+/p2(ν) and the action of ΓR × 1 is trivial on
Λ̃R,+/p1(µ).

Proof. For the first claim, note that we have p2(ν)Λ̃R ∩ Λ̃R,+ = p2(ν)Λ̃R,+. So, if x is an element
of Λ̃R,+ and g any element of 1 × Γ0, then it is enough to show that (g − 1)x is an element of
p2(ν)Λ̃R. Moreover, recall that ν is the product of µ2 with a unit in AF . Therefore, we are reduced
to showing that (g− 1)x is an element of p2(µ)2Λ̃R. Now, using Lemma 3.48, we can write (g− 1)x =
p2(µ)y, for some y in Λ̃R. Let σ be a generator of 1 × Γtor and note that σ(x) = x. Then, we have
σ(p2(µ))σ(y) = p2(µ)y, in particular, (σ − 1)y = −(2 + p2(µ))y. Again, using Lemma 3.48, we can
write −p2([p]q)y = (σ − 1)y = p2(µ)z, for some z in Λ̃R. So we get that −py = 0 mod p2(µ)Λ̃R.
Note that (p2(µ), p) is a regular sequence on Λ̃R since p2 : AF → Λ̃R is flat (see Construction 3.44).
Therefore, we conclude that y = 0 mod p2(µ)Λ̃R, i.e. y is an element of p2(µ)Λ̃R and (g−1)x = p2(µ)y
is an element of p2(µ)2Λ̃R, as desired. The second claim easily follows from Lemma 3.48.

Remark 3.70. From Lemma 3.69, note that the action of 1 × Γ0 is trivial on Λ̃R,+/p2(ν) and the
element p1(µ) is invariant under this action. Therefore, it follows that for any g in 1×Γ0 and any x in
Λ̃R,+/p1(µ)n we have that (g− 1)x is an element of p2(ν)Λ̃R,+/p1(µ)n. In particular, for n = 1, using
the isomorphism Λ̃R,+/p1(µ) ∼−→ ΛR,+ from (3.44), we get that for any g in Γ0 and any x in ΛR,+ the
element (g − 1)x belongs to νΛR,+.

Using the action of 1×Γ0 on Λ̃R,+, we will define a q-de Rham complex (see Definition 3.31). For
such a definition we will treat the element τ̃ in Λ̃R,+ as a parameter. We start with the following
observation:

Lemma 3.71. Let γ0 be any element of 1× Γ0. Then we have (γ0 − 1)τ̃ = up2(ν), for some unit u
in Λ̃R,+.

Proof. Note that it is enough to show the claim for a topological generator γ0 of Γ0 such that χ(γ0) =
1 + 4a, for a unit a in Z2. Let us set v := p2([p]q)

p1([p]q) , then we have τ̃ = δ(v)
p2(q) . Now observe that

(γ0 − 1)τ̃ = (γ0 − 1)
( δ(v)

p2(q)
)

= (γ0 − 1)( 1
p2(q))δ(v) + (γ0−1)δ(v)

γ0(p2(q))

= 1
p2(q5)((γ0 − 1)δ(v)− (p2(q4)− 1)δ(v))
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Since δ and γ0 commute with each other, an easy computation shows that

(γ0 − 1)δ(v) = δ((γ0 − 1)v)− v(γ0 − 1)v
(p2(q4)− 1)δ(v) = δ((p2(q4)− 1)v)− v2(p2(q2)− 1).

Then we note that

v(γ0 − 1)v − v2(p2(q2)− 1) = v(p2(q2)− 1)
(p2(q3)+p2(q)

p1(q)+1 − v) = −v2(p2(q)− 1)(p2(q3)− 1)

= −v2p2(q)(p2(q2) + p2(q) + 1)p2(ν) = p2(ν)x1,

for some x1 in Λ̃R and (γ0 − 1)v = p2(q)(p2(q) − 1)(p2(q2) + 1)v. Now, let a = p2(q)(p2(q2) + 1),
b = p2(q)+1 and c = (p2(q)−1)v, and note that a−b, δ(a−b) and δ(c) are elements of (p2(q)−1)Λ̃R,
since the latter is a δ-stable ideal of Λ̃R, in the sense of [BS22, Example 2.10]. So we obtain that

δ((γ0 − 1)v)− δ((p2(q4)− 1)v) = δ(ac)− δ(bc) = δ(ac− bc) + b2c2 + abc2

= δ(a− b)c2 + (a− b)2δ(c) + 2δ(a− b)δ(c) + b2c2 + abc2 = p2(ν)x2,

for some x2 in Λ̃R, and in the third equality we have used that ν = (q−1)2

q from (3.40). Set u := x1+x2
p2(q5)

in Λ̃R, and by putting everything together, we have that

(γ0 − 1)τ̃ = up2(ν). (3.49)

Since σ(τ̃) = τ̃ (see Lemma 3.63), σ(ν) = ν, the group 1×ΓF is commutative and Λ̃R,+ is p2(ν)-torsion
free, therefore, we get that u is an element of Λ̃R,+. So to show the claim, it is enough to show that
u is a unit in Λ̃R. Now, note that from the discussion after (3.38), the ring Λ̃R,+ is p1(µ)-adically
complete and we have a (φ, Γ0)-equivariant isomorphism Λ̃R,+/p1(µ) ∼−→ ΛR,+ (see (3.44) in Lemma
3.64), therefore, we are reduced to showing that u, the image of u under the preceding isomorphism,
is a unit. By reducing the equalities in (3.49), modulo p1(µ), we obtain the following expression in
ΛR,+:

(γ0 − 1)τ = (γ0 − 1)ν
8 = uν.

But from Lemma 3.58, we see that u must be a unit in ΛR,+. Hence, u is a unit in Λ̃R,+, proving the
claim.

The following observation was used above:

Lemma 3.72. Let γ0 be a topological generator of Γ0 such that χ(γ0) = 1 + 4a, for a unit a in Z2.
Then we have (γ0 − 1)τ = (γ0 − 1)ν

8 = uν, for some unit u in ΛF,+ = ΛΓtor
F .

Proof. From Lemma 3.62, recall that ν/8 is the product of t2/8 with a unit in ΛF,+. So let us write
ν/8 = et2/8, for some unit e in ΛF,+. Note that, from Remark 3.70, we have that (γ0 − 1)e = νx, for
some x in ΛF,+. Therefore, we can write

(γ0 − 1)ν
8 = (γ0 − 1) et2

8 = t2

8 (γ0 − 1)e + γ0(e)(γ0 − 1) t2

8

= t2

8 νx + γ0(e)(χ(γ0)2 − 1) t2

8 = ν
(

t2

8 x + γ0(e)e−1a(2a + 1)
)

= νu,

where u =
(

t2

8 x + γ0(e)e−1a(2a + 1)
)

is a unit in ΛF,+ because γ0(e)e−1a(2a + 1) is a unit and t2/8 is
p-adically nilpotent in ΛF,+. Hence, the lemma is proved.

In the rest of this subsubsection, we will fix a topological generator γ0 of 1×Γ0 such that χ(γ0) =
1 + 4a, for a unit a in Z2. Similar to (3.35), let us now consider the following operator on Λ̃R,+:

∇q,τ̃ : Λ̃R,+ −→ Λ̃R,+

x 7→ (γ0−1)x
(γ0−1)τ̃ .

(3.50)
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From the triviality of the action of 1 × Γ0 on Λ̃R,+/p2(ν) (see Lemma 3.69) and from Lemma 3.71,
it follows that the operator ∇q,τ̃ is well-defined. For each n ∈ N, using Remark 3.70, the operator in
(3.50), induces well-defined operators ∇q,τ̃ : Λ̃R,+/p1(µ)n −→ Λ̃R,+/p1(µ)n. In particular, for n = 1,
we have τ = ν/8 in ΛR,0, and using Remark 3.70 and Lemma 3.72, we have a well-defined operator

∇q,τ : ΛR,+ −→ ΛR,+

x 7→ (γ0−1)x
(γ0−1)τ .

(3.51)

Remark 3.73. Considering τ̃ as a variable, the operator ∇q,τ̃ in (3.35), may be considered as a
q-differential operator in non-logarithmic coordinates, in the sense of Definition 3.31 and Remark
3.32, where qΩ1

A/D identifies with the (p, p1(µ))-adic completion of the module of Kähler differentials
of Λ̃R,+ with respect to p1 : AR → Λ̃R,+. Similarly, considering τ as a variable, the operator ∇q,τ in
(3.51), may be also considered as a non-logarithmic q-differential operator in the sense of Definition
3.31 and Remark 3.32, where the qΩ1

A/D identifies with the p-adic completion of the module of Kähler
differentials of ΛR,+ with respect to R.

For each n ∈ N, the operator ∇q,τ̃ is an endomorphism of Λ̃R,+/p1(µ)n, so we can define the
following two term Koszul complex:

KΛ̃R,+/p1(µ)n(∇q,τ̃ ) :
[
Λ̃R,+/p1(µ)n ∇q,τ̃−−−−→ Λ̃R,+/p1(µ)n]

. (3.52)

For n = 1, we have the following claim:

Lemma 3.74. The cohomology of the Koszul complex KΛR,+(∇q,τ ) vanishes in degree 1, i.e. we have
H1(KΛR,+(∇q,τ )) = 0.

Proof. The idea of the proof is similar to the proof of Lemma 3.60, with slightly different computations.
Main arguments for the proof of the claim will be given in Proposition 4.24, where the claim will be
shown, more generally, for finite ΛR,0-modules admitting a continuous action of Γ0 (trivial modulo
µ0), in particular, ΛR,0 itself. We give a brief sketch of the main steps below.

Recall that τ = ν/8 is the product of t2/8 with a unit in ΛF,+ (see Lemma 3.62). Moreover, from
Lemma 3.72 we have that (γ0 − 1)τ is the product of ν with a unit in ΛF,+. Now let w := t2/8, then
from the proof of Proposition 4.30, we note that (γ0 − 1)w is the product of ν with a unit in ΛF,+.
Therefore, it follows that the complex KΛR,+(∇q,τ ) is quasi-isomorphic to the following complex

KΛR,+(∇q,w) :
[
ΛR,+

∇q,w−−−−→ ΛR,+
]
.

To show the vanishing of H1(KΛR,+(∇q,w)), we switch from the q-differential operator to a differential
operator. So, in Proposition 4.30 we show that ∇log

0 := log(γ0)
log(χ(γ0)) , converge as a series of operators

on ΛR,+ and ∇0(−) ⊗ dz : ΛR,+ → Ω1
ΛR,+/R, coincides with the universal R-linear continuous de

Rham differntial operator d : ΛR,+ → Ω1
ΛR,+/R. In particular, we obtain the following identification

of complexes:
Ω•

ΛR,+/R = KΛR,+(∇0) :
[
ΛR,+

∇0−−−→ ΛR,+
]
.

Recall that ΛR,+ = R[w[k], k ∈ N]∧p (see Lemma 3.62), therefore it follows that the de Rham complex
Ω•

ΛR,+/R = KΛR,+(∇0) is acyclic in positive degrees and we have that R
∼−→ Λ∇0=0

R,+ . Furthermore, in
Proposition 4.30, we show a natural quasi-isomorphism of complexes

KΛR,+(∇q,w) ∼−→ KΛR,+(∇0).

Hence, we conclude that H1(KΛR,+(∇q,τ )) ∼−→ H1(KΛR,+(∇0)) = 0.
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Proof of Lemma 3.67. The proof is similar to the proof of Lemma 3.53. Using the (φ, ΓR×Γ0)-equivariant
isomorphism in (3.43), the exact sequence in (3.46) can be rewritten as follows:

0 −→ ΛR,+
p1(µ)n

−−−−−→ Λ̃R,+/p1(µ)n+1 −→ Λ̃R,+/p1(µ)n −→ 0.

Then, using the operator ∇q,τ̃ in (3.50) and the Koszul complex defined in (3.52), we obtain an exact
sequence of Koszul complexes:

0 −→ KΛR,+(∇q,τ ) p1(µ)n

−−−−−→ KΛ̃R,+/p1(µ)n+1(∇q,τ̃ ) −→ KΛ̃R,+/p1(µ)n(∇q,τ̃ ) −→ 0.

Considering the associated long exact sequence, and noting that H1(KΛR,+(∇q,τ )) = 0 from Lemma
3.74, we obtain the following exact sequence:

0 −→ Λ∇q,τ =0
R,+

p1(µ)n

−−−−−→ (Λ̃R,+/p1(µ)n+1)∇q,τ̃ =0 −→ (Λ̃R,+/p1(µ)n)∇q,τ̃ =0 −→ 0.

Since the action of 1 × Γ0 is continuous on Λ̃R,+ for the (p, p1(µ))-adic topology, therefore, we have
(Λ̃R,+/p1(µ)n+1)∇q,τ̃ =0 = (Λ̃R,+/p1(µ)n+1)1×Γ0 for each n ∈ N. Hence, from the preceding exact
sequence we obtain that the sequence in (3.48) is exact, therefore, the sequence (3.47) is also exact.

3.4.5. Proof of Proposition 3.41. Note that from the explicit description of AR(1)/p1(µ) in
Proposition 3.25 it is easy to see that reduction modulo µ of p1 : AR → AR(1) induces an isomorphism
p1 : R

∼−→ (AR(1)/p1(µ))1×ΓR . More generally, we have the following:
Lemma 3.75. For n ∈ N≥1, reduction modulo µn of the (φ, Γ2

R)-equivariant map p1 : AR → AR(1)
induces a (φ, ΓR × 1)-equivariant isomorphism p1 : AR/µn ∼−→ (AR(1)/p1(µ)n)1×ΓR .

Proof. Note that p1 is (φ, Γ2
R)-equivariant, so it is enough to show the bijectivity of the map modulo

µn. By considering the following diagram with exact rows:

0 AR/µ AR/µn+1 AR/µn 0

0 (AR(1)/p1(µ))1×ΓR (AR/p1(µ)n+1)1×ΓR (AR(1)/p1(µ)n)1×ΓR ,

µn

p1≀ p1 p1

p1(µ)n

(3.53)
an easy induction on n ≥ 1 gives the claimed (φ, ΓR × 1)-equivariant isomorphism p1 : AR/µn+1 ∼−→
(AR(1)/p1(µ)n+1)1×ΓR .

Remark 3.76. From the description of the action of Γ3
R on AR(2) in Remark 3.20, we note that

there is an induced action of Γ3
R on AR(2)/p1(µ), where the action of the first component is identity.

Moreover, we have a (φ, Γ3
R)-equivariant map r1 : AR → AR(2), where AR is equipped with an action

of Γ3
R via projection on to the first coordinate. Then similar to above it can easily be shown that

reduction modulo µ of r1 : AR → AR(2) induces an isomorphism r1 : R
∼−→ (AR(2)/p1(µ))1×ΓR×ΓR .

Now, recall that we have the φ-equivariant multiplication map ∆ : AR(1)→ AR. The map ∆ in-
duces an AR/µn-linear (via p1) and φ-equivariant maps ∆ : AR(1)/p1(µ)n → AR/µn for n ∈ N≥1. For
n = 1, using Lemma 3.75, the map ∆ restricts to a φ-equivariant isomorphism (AR(1)/p1(µ))1×ΓR

∼−→
R. More generally, we have the following:
Lemma 3.77. For n ∈ N≥1, reduction modulo p1(µ)n of the φ-equivariant homomorphism ∆ :
AR(1)→ AR restricts to a φ-equivariant isomorphism (AR(1)/p1(µ)n)1×ΓR

∼−→ AR/µn.

Proof. Let us first note that using Lemma 3.43, together with Lemma 3.51, Lemma 3.53 and Remark
3.54 for p ≥ 3 and Lemma 3.66, Lemma 3.67 and Remark 3.68 for p = 2, we obtain that for each
n ≥ 1, the following (φ, ΓR × 1)-equivariant sequence is exact:

0 −→ (AR(1)/p1(µ))1×ΓR
p1(µ)n

−−−−−→ (AR(1)/p1(µ)n+1)1×ΓR −→ (AR(1)/p1(µ)n)1×ΓR −→ 0. (3.54)

Next, we note that ∆ is φ-equivariant, so it is enough to show that the map modulo p1(µ)n is bijective.
Now, consider the following natural diagram:
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0 (AR(1)/p1(µ))1×ΓR (AR/p1(µ)n+1)1×ΓR (AR(1)/p1(µ)n)1×ΓR 0

0 AR/µ AR/µn+1 AR/µn 0,

p1(µ)n

∆≀ ∆ ∆
µn

where the top row is the exact sequence in (3.54). Using the diagram, an easy induction on n ≥ 1,
gives the φ-equivariant isomorphism ∆ : (AR(1)/p1(µ)n+1)1×ΓR

∼−→ AR/µn+1.

Finally, recall that the ring AR(1) is equipped with an action of (φ, Γ2
R), and the rings AR(1)1×ΓR

and (AR(1)/p1(µ)n)1×ΓR are equipped with a residual action of ΓR = ΓR×1 ⊂ Γ2
R. Then the following

observation proves Proposition 3.41:

Lemma 3.78. For n ∈ N≥1 the isomorphism (AR(1)/p1(µ)n)1×ΓR
∼−→ AR/µn of Proposition 3.41, is

compatible with (φ, ΓR)-action. Passing to the limit over n gives a (φ, ΓR)-equivariant isomorphism
AR(1)1×ΓR

∼−→ AR.

Proof. The isomorphism in Proposition 3.41 is φ-equivariant. To check ΓR-equivariance note that if
g is in ΓR and a in AR(1)/p1(µ)n, then we have that ∆((g, g)a) = g(a). So if a is (1× ΓR)-invariant,
then for g1, g2 in ΓR, we have that ∆((g1, g2)f) = ∆((g1, g1)f) = g1(∆(f)). This proves the first
claim. Next, as inverse limit commutes with right adjoint functors, in particular, with taking (1 ×
ΓR)-invariants, therefore, it follows that we have a (φ, ΓR)-equivariant isomorphism AR(1)1×ΓR =
(limn AR(1)/p1(µ)n)1×ΓR = limn(AR(1)/p1(µ)n)1×ΓR

∼−→ limn AR/µn = AR. This proves the second
claim.

4. An integral comparison isomorphism
In this section, we will prove an integral comparison isomorphism for Wach modules, which will be
the most important input in building a stratification on Wach modules in Subsection 5.2.5. We will
use the setup and notations of Subsection 1.6.

Definition 4.1 (Wach modules, [Abh23b, Definition 1.3, Lemma 3.10]). A Wach module over AR is
a finitely generated AR-module N equipped with a semilinear action of ΓR satisfying the following:

(1) The sequences {p, µ} and {µ, p} are regular on N .

(2) The action of ΓR is trivial on N/µN .

(3) N is equipped with a Frobenius of finite [p]q-height, i.e. an AR-linear and ΓR-equivariant iso-
morphism φN : (φ∗N)[1/[p]q] = (AR ⊗φ,AR

N)[1/[p]q] ∼−→ N [1/[p]q].

Say that N is effective if φN carries φ∗N into N . Denote the category of Wach modules over AR as
(φ, Γ)-Mod[p]q

AR
with morphisms between objects being AR-linear, ΓR-equivariant and φN -equivariant

(after inverting [p]q) morphisms.

Remark 4.2. Note that the action of ΓR is automatically continuous on N for the (p, µ)-adic topol-
ogy (see [Abh23b, Lemma 3.7]). Moreover, from [Abh23b, Proposition 3.11], note that for a Wach
module N over AR, the AR[1/p]-module N [1/p] is finite projective, the AR[1/µ]-module N [1/µ] is
finite projective and by [Abh23b, Remark 3.12] the AR[1/[p]q]-module N [1/[p]q] is finite projective.
Furthermore, from loc. cit., the sequences {p, [p]q} and {[p]q, p} are regular on N and equivalent to
condition (1) in Definition 4.1.

Remark 4.3. For R = OF , a Wach module over AF is necessarily finite free (see [Abh23b, Remark
1.6]).
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From Remark 3.20 recall that we have a (φ, Γ2
R)-equivariant maps pi : AR → AR(1) for i = 1, 2,

where AR is equipped with a Γ2
R-action via projection onto the ith coordinate. Moreover, we note that

there is an induced action of Γ2
R on AR(1)/p1(µ), where the action of the first component is identity.

In this section, we will identify ΓR with 1× ΓR and say that AR(1)/p1(µ) is equipped with a natural
continuous action of ΓR.

Remark 4.4. Let N a be Wach module over AR, then extending the isomorphism in Definition
4.1 (3) along the (φ, 1 × ΓR)-equivariant map p2 : AR → AR(1)/p1(µ), we obtain an isomorphism
(AR(1)/p1(µ) ⊗φ,AR

N)[1/[p]q] ∼−→ (AR(1)/p1(µ) ⊗p2,AR
N)[1/[p]q]. Now note that p1([p]q) = p

mod p1(µ)AR(1) and p1([p]q)/p2([p]q) is a unit in AR(1) (see Lemma 3.15). So, by setting M :=
(AR(1)/p1(µ)⊗p2,AR

N)ΓR , and taking ΓR-invariants in the preceding isomorphism gives an R[1/p]-linear
isomorphism (φ∗M)[1/p] = (R⊗φ,R M)[1/p] ∼−→M [1/p].

Notation. In this section, by the φ-equivariance of a morphism we always mean φ-equivariance after
inverting p. However, we will not always mention this explicitly.

The goal of this section is to prove Theorem 4.5 below, which is an important ingredient for the
proof of Theorem 5.12.

Theorem 4.5. Let N be Wach module over AR and set M := (AR(1)/p1(µ) ⊗p2,AR
N)ΓR as an

R-module equipped with tensor product Frobenius. Then we have a natural (φ, ΓR)-equivariant iso-
morphism

AR(1)/p1(µ)⊗p1,R M
∼−→ AR(1)/p1(µ)⊗p2,AR

N

a⊗ b⊗ x 7−→ ab⊗ x.
(4.1)

Moreover, M is a finitely generated p-torsion free R-module and we have a φ-equivariant isomorphism
of R-modules M

∼−→ N/µN .

Remark 4.6. For R = OF , the R-module M in Theorem 4.5 is finite free of rank = rkAF
N .

In Subsections 4.2 and 4.3, we will prove the comparison isomorphism (4.1) claimed in Theorem
4.5. Our proof is broadly divided into three main steps: a geometric descent for the action of Γ′

R

(see Proposition 4.17) and a “two-step” arithmetic descent for the action of ΓF (see Propositions 4.22
and 4.25, for p ≥ 3, and Propositions 4.26 and 4.31, for p = 2). Then in Subsection 4.4, we will put
everything together to complete the proof of Theorem 4.5. We begin by interpreting the action of ΓR

on a Wach module as a q-connection.

4.1. Wach modules and q-connections. In this subsection, we will interpret Wach modules
and its scalar extension to AR(1)/p1(µ) as modules with q-connections similar to [Abh23b, Section 5].
We will work with the notation described in Subsection 3.3.3.

Definition 4.7 (q-connection, [MT20, Definition 2.2]). A module with q-connection over D is a
right D-module N equipped with an A-linear map ∇q : N → N ⊗ qΩ1

D/A satisfying the Leibniz rule
∇q(xf) = ∇q(x)f + x⊗ dq(f) for all f in D and x in N . The q-connection ∇q extends uniquely to a
map of graded A-modules ∇q : N ⊗ qΩ•

D/A → N ⊗ qΩ•+1
D/A satisfying ∇q((n ⊗ ω) · ω′) = ∇q(n ⊗ ω) ·

ω′ + (−1)deg ω(n⊗ ω) · dq(ω′). The q-connection ∇q is said to be flat or integrable if ∇q ◦ ∇q = 0.

Example 4.8. From Example 3.34, take D = AF = OF JµK, A = AR equipped with the action of ΓR

and {γ1, . . . , γd} as topological generators of Γ′
R (see Subsection 3.1). Taking q = 1 + µ and Ui = [X♭

i ]
for 1 ≤ i ≤ d, we know that AR satisfies the hypotheses of Definition 3.31. In particular, AR is equipped
with an AF -linear q-connection ∇q : AR → qΩ1

AR/AF
, given as f 7→

∑d
i=1

γi(f)−f
p2(µ) d log(p2([X♭

i ])). Now
let N be a Wach module AR. Then from [Abh23b, Proposition 5.3], the geometric q-connection
∇q : N → N ⊗AR

Ω1
AR/AF

given as x 7→
∑d

i=1
γi(x)−x

µ d log([X♭
i ]) describes (N,∇q) as a φ-module

equipped with (p, [p]q)-adically quasi-nilpotent flat q-connection over AR (see [Abh23b, Subsection
5.2] for details).
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Example 4.9. From Example 3.35, take D = ΛF and A = APD as a ΛF -algebra. Note that APD is
equipped with a ΛF -linear action of Γ′

R and we have {γ1, . . . , γd} as topological generators of Γ′
R (see

Subsection 3.1). Then setting q = 1 + µ and Ui = [X♭
i ] for 1 ≤ i ≤ d, we know that APD satisfies

the hypotheses of Definition 3.31. In particular, APD is equipped with a ΛF -linear q-connection
∇q : APD(1) → qΩ1

APD(1)/ΛF
, given as f 7→

∑d
i=1

γi(f)−f
p2(µ) d log(p2([X♭

i ])). Now let N be a Wach
module over AR and set NPD := APD ⊗AR

N , equipped with tensor product Frobenius and tensor
product action of ΓR. Then note that for any f ⊗ y in NPD and g in ΓR, we have (g − 1)(f ⊗ y) =
(g−1)f⊗y+g(f)⊗(g−1)y in µNPD. Therefore, the operator∇q : NPD → NPD⊗APD Ω1

APD/ΛF
given

as x 7→
∑d

i=1
γi(x)−x

µ d log([X♭
i ]) satisfies the assumptions of Definition 4.7. Moreover, the q-connection

∇q on NPD is p-adically quasi-nilpotent using Example 3.35 and Example 4.8, and it is flat because
γi commute with each other.

Example 4.10. From Example 3.36, take D to be ΛR and A to be A(1) = AR(1)/p1(µ) as a
ΛR-algebra via the morphism of rings ιΛ : ΛR → A(1). Then, the ΛR-algebra A(1) is equipped
with a ΛR-linear (via ιΛ) action of Γ′

R and we take {γ1, . . . , γd} as topological generators of Γ′
R (see

Subsection 3.1). Then setting q = 1 + µ and Ui = [X♭
i ] for 1 ≤ i ≤ d, we know that A(1) satis-

fies the hypotheses of Definition 3.31. In particular, A(1) is equipped with a ΛR-linear q-connection
∇q : A(1)→ qΩ1

A(1)/ΛR
, given as f 7→

∑d
i=1

γi(f)−f
p2(µ) d log(p2([X♭

i ])). Now let N be a Wach module over
AR and set N(1) := AR(1)⊗p2,AR

N , equipped with tensor product Frobenius and tensor product ac-
tion of Γ2

R, where Γ2
R acts on N via projection onto the second coordinate. Let N(1) := N(1)/p1(µ) =

A(1)⊗p2,AR
N equipped with induced action of Frobenius and ΓR = 1×ΓR. Note that for any f⊗y in

N(1) and g in ΓR, we have that (g−1)(f⊗y) = (g−1)y⊗y+g(f)⊗(g−1)y is in p2(µ)N(1). Therefore,
the operator ∇q : N(1) → N(1) ⊗A(1) Ω1

A(1)/ΛR
, given as x 7→

∑d
i=1

γi(x)−x
µ d log([X♭

i ]) satisfies the
assumptions of Definition 4.7. Moreover, the q-connection ∇q on N(1) is p-adically quasi-nilpotent
using Example 3.36 and Example 4.8, and it is flat because γi commute with each other.

Lemma 4.11. Let N be a Wach module over AR and A(1) = AR(1)/p1(µ). Then the A(1)-module
A(1)⊗p2,AR

N is p-adically complete and p-torsion free.

Proof. Note that the morphism p2 : AR → AR(1) is faithfully flat from Lemma 3.15. Moreover,
from Definition 4.1 recall that {p, µ} and {µ, p} are regular sequences on N . Then from the flatness
of p2, it follows that {p, p2(µ)} and {p2(µ), p} are regular sequences on AR(1) ⊗p2,AR

N . Using the
fact that p1([p]q)/p2([p]q) is a unit in AR(1) (see Lemma 3.15), we get that p1(µ)p−1 is an element of
(p, p2(µ))AR(1). Now, since both {p, p2(µ)} and {p2(µ), p} are regular sequences on AR(1)⊗p2,AR

N ,
therefore, it follows that both {p, p1(µ)p−1} and {p1(µ)p−1, p} are regular sequences on AR(1)⊗p2,AR

N .
In particular, using [Sta23, Tag 07DV] we get that both {p, p1(µ)} and {p1(µ), p} are regular sequences
on AR(1) ⊗p2,AR

N , and we conclude that A(1) ⊗p1,AR
N is p-torsion free. Next, note that N is a

finitely generated and (p, µ)-adically complete AR-module. So, it follows that AR(1) ⊗p2,AR
N is a

finitely generated and (p, p2(µ))-adically = (p, p1(µ))-adically complete AR(1)-module, in particular,
it is (p, p1(µ))-adically separated. Consequently, we get that A(1) ⊗p2,AR

N is p-adically separated
and it is clearly finitely generated over A(1)-module, therefore, p-adically complete.

Remark 4.12. Let N be a Wach module over AR and let APD be the ring defined in Example
3.35. Moreover, recall that we defined a ring E in Remark 3.46, which admits faithfully flat maps
p1 : AF → E and p2 : AR → E, and we have that E/p1(µ) ∼−→ APD. Then, by an argument similar
to the proof of Lemma 4.11, it follows that the APD-module APD ⊗AR

N is p-adically complete and
p-torsion free.

From Lemma 3.24, we have that t = log(1 + µ) converges in µΛF ⊂ µΛR and t/µ is a unit.

Proposition 4.13. Let N be a Wach module over AR and A(1) = AR(1)/p1(µ). Then, for 1 ≤
i ≤ d, the series of operators ∇log

i = log γi
t = 1

t

∑
k∈N(−1)k (γi−1)k+1

k+1 converge p-adically on N(1) =
A(1)⊗p2,AR

N . This defines a ΛR-linear p-adically quasi-nilpotent flat connection on N(1), denoted

https://stacks.math.columbia.edu/tag/07DV
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as ∇ : N(1) → N(1) ⊗A(1) Ω1
A(1)/ΛR

and given as x 7→
∑d

i=1∇
log
i (x) d log([X♭

i ]). The data of the
connection ∇ on N(1) is equivalent to the data of the q-connection ∇q described in Example 4.10,
i.e. either may be recovered from the other. Moreover, the q-de Rham complex N(1)⊗A(1) qΩ•

A(1)/ΛR

is naturally quasi-isomorphic to the de Rham complex N(1) ⊗A(1) Ω•
A(1)/ΛR

. In particular, we have
N(1)∇q=0 = N(1)∇=0.

Proof. Our proof employs ideas similar to that of [Abh21, Lemmas 4.36 & 4.38], [MT20, Theo-
rem 4.2] and [BMS18, Corollary 12.5]. Note that the A(1)-module N(1) is p-adically complete
and p-torsion free by Lemma 4.11. Let us first show that for 1 ≤ i ≤ d the series of operators
∇log

i = 1
t

∑
k∈N(−1)k (γi−1)k+1

k+1 converge on N(1). Indeed, note that we have

(γi−1)k+1

k+1 = µk! µk

(k+1)!
(γi−1)k+1

µk+1 ,

where µk/(k + 1)! converges p-adically to 0 in ΛR as k goes to +∞, and t/µ is a unit in ΛR.
Next, let us check that the operator ∇log

i satisfies the Leibniz rule. To show this, we claim that
for x in N(1), we have

lim
m→+∞

γpm

i −1
pm (x) = t∇log

i (x). (4.2)

Indeed, note that since tk/k! converges p-adically to 0 in A(1) as k goes to +∞, so we can write
γn

i = exp(nt∇log
i ), for n ∈ Z. Expanding the preceding exponential, we see that

γn
i −1
n = t∇log

i + n
∑

k≥2 nk−2 tk

k! (∇
log
i )k : N(1)→ N(1),

is well-defined. Taking n = pm and letting m→ +∞, we get the formula in (4.2). Now, for any f in
A(1) and x in N(1), we have that

(γpm

i − 1)(fx) = (γpm

i − 1)(f) · x + γpm

i (f)(γpm

i − 1)(x).

Dividing out the preceding equality by tpm, letting m→ +∞ and using (4.2) we get that ∇log
i (fx) =

∇log
i (f)x + f∇log

i (x), where the first operator on the right is ∇log
i := log(γi)/t : A(1) → A(1), whose

well-definedness and the equality (4.2) can be checked similar to above. In particular, we have shown
that the operators ∇log

i are well defined and satisfy a Leibniz rule.
To show that ∇ : N(1) → N(1) ⊗A(1) Ω1

A(1)/ΛR
, given as x 7→

∑d
i=1∇

log
i (x) d log([X♭

i ]), is a well
defined connection, we need to show that ∇ : A(1) → Ω1

A(1)/ΛR
is the usual de Rham differential

d : A(1)→ Ω1
A(1)/ΛR

. As each ∇log
i is a continuous ΛR-linear derivation, we can write ∇log

i = hi ◦d for
some unique continuous ΛR-linear map hi : Ω1

A(1)/ΛR
→ ΛR. Then it is easy to see that hi(d[X♭

i ]) =
∇log

i ([X♭
i ]) = [X♭

i ] for i = j and 0 otherwise. Therefore, we have d = ∑
i[X♭

i ]−1∇log
i (−) ⊗ d[X♭

i ] =∑
i∇

log
i (−)⊗ d log([X♭

i ]), as desired.
Next, let us show that the operators ∇i = ∇log

i /[X♭
i ] = (log γi)/(t[X♭

i ]) are p-adically quasi-
nilpotent. Indeed, we first note that from the commutativity of φ and γi, it follows that log γi ◦ φ =
φ ◦ log γi. Therefore, it is easy to see that ∇i ◦ φ = p[X♭

i ]p−1φ ◦ ∇i. Recall that N is equipped
with an AR-linear isomorphism φ∗(N)[1/[p]q] ∼−→ N [1/[p]q], and [p]q/p is a unit in ΛF (see Lemma
3.24), therefore, N(1) is equipped with an A(1)-linear isomorphism φ∗(N(1))[1/p] ∼−→ N(1)[1/p]. In
particular, for any x in N(1), there exists r ∈ N large enough, such that prx belongs to φ∗(N(1)).
Then, from the relation ∇i ◦ φ = pφ ◦ ∇i, we see that ∇k

i (prx) converges p-adically to 0 as k → +∞.
Hence, it follows that ∇k

i (x) = p−r∇k
i (prx) converges p-adically to 0 as k → +∞, in particular, ∇i

are p-adically quasi-nilpotent.
So far, we have shown that∇ : N(1)→ N(1)⊗A(1) Ω1

A(1)/ΛR
is a p-adically quasi-nilpotent connec-

tion and it is flat since γi, and therefore∇log
i , commute with each other. Moreover, we defined the con-

nection∇ using the action of Γ′
R and conversely, we have shown that the action of Γ′

R can be recovered
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by the formula γi := exp(t∇log
i ) and it remains to check that, the action of γi thus obtained, is semi-

linear. Note that the Leibniz rule implies that 1
k!(t∇

log
i )k(xf) = ∑

a+b=k
1
a!(t∇

log
i )a(x) 1

b!(t∇
log
i )b(f)

for x in N(1) and f in A(1). Now taking the sum over all k > 0, we get that exp(t∇log
i (xf)) =

exp(t∇log
i )(x) exp(t∇log

i )(f) = exp(t∇log
i )(x)γi(f), as required.

From the discussion above, it is clear that we have a q-de Rham complex N(1)⊗A(1)qΩ•
A(1)/ΛR

and a
de Rham complex N(1)⊗A(1)Ω•

A(1)/ΛR
. We claim that these complexes are naturally quasi-isomorphic.

Indeed, let us first note that the endomorphisms ∇log
q,i = γi−1

µ : N(1)→ N(1) are commuting. So, let
KN(1)(∇

log
q,1, . . . ,∇log

q,d) denote the corresponding Koszul complex (see Definition A.8). Then we have
a natural identification of complexes

KN(1)(∇
log
q,1, . . . ,∇log

q,d) = N(1)⊗A(1) qΩ•
A(1)/ΛR

.

Next, let ∇ : A(1)→ Ω1
A(1)/ΛR

denote the ΛR-linear p-adically quasi-nilpotent flat connection on A(1)
(arising from the q-connection, see Proposition 3.37), given as f 7→

∑d
i=1∇

log
i (f) d log([X♭

i ]). Next, let
t = log(1 + µ), and again note that the endomorphisms ∇log

i = log γi
t : N(1)→ N(1) are commuting.

So, let KN(1)(∇
log
1 , . . . ,∇log

d ) denote the corresponding Koszul complex, and again we have a natural
identification of complexes

KN(1)(∇
log
1 , . . . ,∇log

d ) = N(1)⊗A(1) Ω•
A(1)/ΛR

.

Now, from the discussion above, recall that we have the relation γi = exp(t∇log
i ) on N(1). Therefore,

we can write
∇q,i = ∇log

i

(
1 + ∑

k≥1
tk

k!µ(∇log
i )k−1)

, (4.3)

where the term inside the parentheses is invertible, because t/µ is a unit in A(1) (see Lemma 3.24)
and µk−1/(k!) is topologically nilpotent because (µp−1/p)k is topologically nilpotent in A(1) (see
Proposition 3.25). Now, in the notation of Lemma A.9, let us set M = N(1), fi = ∇log

i and take hi

to be the formula in the parentheses in (4.3), in particular, fihi = ∇log
q,i . Then, from Lemma A.9, we

obtain a natural quasi-isomorphism of complexes

N(1)⊗A(1) qΩ•
A(1)/ΛR

= KN(1)(∇
log
q,1, . . . ,∇log

q,d) ∼−→ KN(1)(∇
log
1 , . . . ,∇log

d ) = N(1)⊗A(1) Ω•
A(1)/ΛR

.

Finally, from the quasi-isomorphism above, it follows that we have N(1)∇q=0 = N(1)Γ′
R

∼−→ N(1)∇=0.
This conlcudes our proof.

Remark 4.14. From remark 4.12, recall that the APD-module NPD = APD ⊗AR
N is p-adically

complete and p-torsion free. Then, in Proposition 4.13, replacing ΛR by ΛF , A(1) by APD and N(1)
by NPD = APD⊗AR

N , and using essentially the same arguments, we see that for 1 ≤ i ≤ d, the series
of operators∇log

i = log γi
t = 1

t

∑
k∈N(−1)k (γi−1)k

k+1 converge p-adically on NPD. This defines a ΛF -linear
p-adically quasi-nilpotent flat connection on NPD, denoted as ∇ : NPD → NPD ⊗APD Ω1

APD/ΛF
and

given as x 7→
∑d

i=1∇
log
i (x) d log([X♭

i ]). The data of the connection ∇ on NPD is equivalent to the
data of the q-connection ∇q described in Example 4.9, i.e. either may be recovered from the other.
Moreover, the q-de Rham complex NPD⊗APD qΩ•

APD/ΛF
is naturally quasi-isomorphic to the de Rham

complex NPD ⊗APD Ω•
APD/ΛF

. In particular, we have (NPD)∇q=0 ∼−→ (NPD)∇=0.

Remark 4.15. Let A(1) = AR(1)/p1(µ) and APD as in Example 3.35. Recall that we have a natural
injective (φ, ΓR)-equivariant homomorphism of rings p2 : APD → A(1) (see Remark 3.39). Now let N
be a Wach module over AR, then we have that A(1)⊗p2,APD NPD = A(1)⊗p2,AR

N = N(1), compatible
with the action of (φ, ΓR). Then, using the compatibility of the corresponding connections on A(1)
and APD (see Remark 3.40) and the Leibniz rule for the connection on N(1), proven in Proposition
4.13, it follows that the respective connections on N(1) and NPD are compatible, in partiular, the
connection on N(1) is given as the tensor product of respective connections on A(1) and NPD.



Prismatic F -crystals and Wach modules 47

4.2. Geometric descent. From Example 4.8, recall that a Wach module N can be seen as a
φ-module over AR equipped with a (p, [p]q)-adically quasi-nilpotent flat q-connection. Then from
Proposition 4.13 we have that N(1) = AR(1)/p1(µ) ⊗p2,AR

N is a finite module over A(1) :=
AR(1)/p1(µ), equipped with a p-adically quasi-nilpotent flat connection and a Frobenius-semilinear
endomorphism φ (after inverting p). Similarly, from Remark 4.14 we have that NPD = APD⊗AR

N is
a finite module over APD, equipped with a p-adically quasi-nilpotent flat connection and a Frobenius-
semilinear endomorphism φ (after inverting p). In order to prove Theorem 4.5, we need to first interpret
the preceding φ-modules with connection, as F -crystals over the crystalline site CRIS(APD/ΛF ). So
we begin this subsection by recalling some standard facts about relevant crystalline sites and crystals.
Using the formalism of crystalline sites, we will also be able to obtain the geometric descent step in
the proof of Theorem 4.5 mentioned above.

4.2.1. Crystalline site and F -crystals. Let A be a p-adically complete PD-ring and let D be
the p-adic completion of a divided power A-algebra. For m ≥ 1, we set Σm = Spec (A/pm) and Xm =
Spec (D/pm). Let CRIS(Xm/Σm) denote the big crystalline site of Xm over Σm with the PD-structure
given by p(A/pm)+JA/pm, where J denotes the PD-ideal of A, and let OXm/Σm

denote the structure
sheaf of rings. Let CR(Xm/Σm) denote the category of finitely generated crystals of OXm/Σm

-modules
over CRIS(Xm/Σm). Note that the homomorphisms Σm → Σm+1 and Xm → Xm+1 induce the
pullback functor i∗

m,m+1 : CR(Xm+1/Σm+1) → CR(Xm/Σm). One can define CRIS(X1/Σm) and
CR(X1/Σm) similarly and the pullback functor i∗

m : CR(Xm/Σm) ∼−→ CR(X1/Σm) is an equivalence
of categories by [Ber74, Chapitre IV, Théorème 1.4.1]. We define a finitely generated crystal of
OX/Σ-modules E on X/Σ to be a system (Em)m≥1, where Em is an object of CR(Xm/Σm)cris for each
m ≥ 1 and we have isomorphisms i∗

m,m+1Em+1
∼−→ Em. A locally free crystal on X1/Σ can be defined

similarly, using CRIS(X1/Σm). Write CR(X/Σ) and CR(X1/Σ) for the category of finitely generated
crystals on X/Σ and X1/Σ respectively, then the obvious pullback functor i∗ : CR(X/Σ)→ CR(X1/Σ)
is an equivalence of categories. Let MICconv(D) denote the category of finitely generated D-modules
equipped with an A-linear p-adically quasi-nilpotent flat connection. Then by [Ber74, Chapitre IV,
Théorème 1.6.5], we have an equivalence of categories

CR(X/Σ) ∼−→ MICconv(D), (4.4)

obtained by sending (Em)m≥1 to the inverse limit of the evaluation of Em on the object Spec (Xm) id−→
Spec (Xm) of the site CRIS(Xm/Σm), equipped with the natural A-linear p-adically quasi-nilpotent
flat connection.

Let us now describe F -crystals on CRIS(X/Σ). Note that the absolute Frobenius on X1 and
the natural Frobenius on Σ induce Frobenius pullbacks φ∗ : CR(X1/Σm) → CR(X1/Σm) and φ∗ :
CR(X1/Σ)→ CR(X1/Σ). A finitely generated F -crystal E on CRIS(X/Σ) is an object of CR(X1/Σ)
equipped with an isomorphism φE : (φ∗i∗F)Q

∼−→ (i∗F)Q in the isogeny category CR(X/Σ)⊗ Q. We
will denote the category of finitely generated F -crystals on X/Σ as CRφ(X/Σ). Let MICφ(D) denote
the following category : an object M is a finitely generated D-module, equipped with an A-linear
p-adically quasi-nilpotent flat connection and an isomorphism φM : φ∗M [1/p] ∼−→M [1/p]; morphisms
between two objects are D-linear maps compatible with respective Frobenii and connections. In fact,
in the presence of Frobenius structures, similar to [MT20, Lemma 2.24], it can be shown that the
p-adic quasi-nilpotence of the connection is automatic. Therefore, the equivalence in (4.4) refines to
an equivalence,

CRφ(X/Σ) ∼−→ MICφ(D), (4.5)

Remark 4.16. In the discussion above, we can take A to be ΛF with the PD-structure on it given
by p(ΛF /pm) + JΛF /pm, where J = ((µp−1/p)[k], k ≥ 1) ⊂ ΛF , and D to be APD, i.e. we set
Σm = Spec (ΛF /pm) and Xm = Spec (APD/pm). Now, recall that we have an isomorphism of rings
ι : ΛR

∼−→ APD from (3.13). Moreover, we have an inclusion Spec (ΛR/pm) ↪→ Spec (A(1)/pm)
induced by the surjection A(1) ↠ ΛR, which is defined by sending [X♭

i ] 7→ Xi and T
[ki]
i 7→ 0, for

all 1 ≤ i ≤ d, and note that the composition ΛR
ιΛ−−→ A(1) ↠ ΛR is the identity. In particular,
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Spec (ΛR/pm) ↪→ Spec (A(1)/pm) is an object of CRIS(Xm/Σm). Furthermore, using the isomorphism
ι : ΛR

∼−→ APD, it is easy to see that A(1) is the self product of APD in CRIS(X/Σ) with the two maps
ιΛ : ΛR → A(1) and p2 : APD → A(1) describing the two projection maps.

4.2.2. The action of Γ′
R. As mentioned at the beginning of this subsection, N is a Wach mod-

ule over AR. Now, from Example 4.10, recall that we have an isomorphism of ΛF -algebras ΛR =
R[µ, (µp−1/p)[k], k ∈ N]∧p

∼−→ APD (see the isomorphism ι in (3.13)) and A(1) = AR(1)/p1(µ).
Then, the A(1)-module N(1) = A(1) ⊗p2,AR

N is equipped with a Frobenius-semilinear endomor-
phism φ (after inverting p) and an action of 1 × ΓR, which induces a ΛR-linear flat q-connection
∇q : N(1) → N(1) ⊗A(1) Ω1

A(1)/ΛR
. Moreover, from Proposition 4.13 recall that the data of the

q-connection on N(1) is equivalent to the data of a connection∇ : N(1)→ N(1)⊗A(1) Ω1
A(1)/ΛR

. Now,
we make the following claim:

Proposition 4.17. Let N be a Wach module over AR and set MΛ := (A(1) ⊗p2,AR
N)∇=0 as a

ΛR-module via ιΛ : ΛR
∼−→ A(1)∇=0 and equipped with an induced (φ, ΓF )-action. Then we have a

natural (φ,∇, ΓF )-equivariant isomorphism

A(1)⊗ΛR
MΛ

∼−→ A(1)⊗p2,AR
N

a⊗ b⊗ x 7−→ ab⊗ x.
(4.6)

Moreover, we have (φ, ΓF )-equivariant isomorphisms of finitely generated p-adically complete modules
over ΛR

(3.13)−−−−→
∼

APD,
MΛ

∼−→ APD ⊗AR
N

∼−→ ΛR ⊗AR
N. (4.7)

Furthermore, the de Rham complex N(1)⊗A(1) Ω•
A(1)/ΛR

is ayclic in positive degrees.

Proof. To use the results from Subsection 4.2.1, we will work with the notations in Remark 4.16, i.e.
we set Σm = Spec (ΛF /pm) and Xm = Spec (APD/pm). Now, note that the APD-module NPD is
equipped with a ΛF -linear p-adically quasi-nilpotent flat connection ∇ : NPD → NPD⊗APD Ω1

APD/ΛF
,

in particular, NPD is an object of MICφ(APD) (see Remark 4.14). Then from the equivalence in
(4.5), there exists a finitely generated F -crystal E over CRIS(X/Σ) and we have E(APD) = NPD.
Moreover, recall that we have a (φ, ΓF )-equivariant isomorphism of rings ι : ΛR

∼−→ APD from (3.13).
Next, from Proposition 3.25 and Remark 3.27 recall that A(1) is the p-adic completion of a PD-
polynomial algebra over APD in variables T1, . . . , Td. Moreover, A(1) is equipped with a ΛR-linear flat
connection ∇ : A(1)→ Ω1

A(1)/ΛR
= A(1)⊗APD Ω1

APD/ΛF
(see Proposition 3.37 and Remark 3.40). Now

consider the injection Spec (ΛR/pm) ↪→ Spec (A(1)/pm) induced by the (φ, ΓF )-equivariant surjection
A(1) ↠ ΛR from Remark 4.16 and note that the composition ΛR

ιΛ−−→ A(1) ↠ ΛR is the identity and
(φ, ΓF )-equivariant. So we have the following (φ, ΓF )-equivariant morphisms in CRIS(Xm/Σm), for
m ≥ 1,

Spec (ΛR/pm) Spec (A(1)/pm) Spec (ΛR/pm) Spec (A(1)/pm)

Spec (APD/pm) Spec (APD/pm) Spec (ΛR/pm) Spec (A(1)/pm).

ι p2 id T
[ki]
i 7→0

id

(4.8)

Evaluating the F -crystal E on Spec (ΛR/pm) ↪→ Spec (A(1)/pm) for each m ≥ 1, and taking the
limit over m, gives a finitely generated A(1)-module E(A(1)) equipped with a (φ, ΓF )-action and a
ΛR-linear p-adically quasi-nilpotent flat connection. Now, using the diagram on the left in (4.8) and
the fact that E is an F -crystal, we get that E(A(1)) ∼←− A(1) ⊗p2,APD NPD compatible with the
respective (φ, ΓF )-actions and connections, where the right hand term is equipped with the tensor
product (φ, ΓF )-action and the tensor product of respective connections on A(1) and NPD, described
above. Next, note that the right vertical arrow of the right hand diagram of (4.8), factors through
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Spec (A(1)/pm) p1−→ Spec (ΛR/pm) ↪→ Spec (A(1)/pm). Therefore, from the fact that E is an F -crystal,
we obtain a (φ, ΓF )-equivariant isomorphism

ε : A(1)⊗ΛR
E(ΛR) ∼−→ E(A(1)) ∼←− A(1)⊗p2,APD NPD = N(1),

compatible with the respective ΛR-linear connections, where the ΛR-linear connection on the source
is given as ∇⊗ 1 with ∇ being the ΛR-linear connection on A(1) described above. Explicity, for x in
A(1) ⊗ΛR

E(ΛR), the map ε is given by the formula ε(x) = ∑
j1,...,jd≥0(−1)j1+···+jd

∏d
i=1∇

ji
i (x) ⊗

T
[ji]
i , where ∇i = [X♭

i ]−1∇log
i (see Proposition 4.13 for the definition of ∇log

i ). Now, using the
(φ, ΓR)-equivariant isomorphism ι : ΛR

∼−→ APD, let us note that we have a (φ, ΓF )-equivariant
isomorphism E(ΛR) ∼−→ NPD. Then from the interpretation of A(1) as the self product of APD in
CRIS(X/Σ) (see Remark 4.16), we see that the isomorphism ε is just the stratification of NPD over
A(1).

Next, consider the de Rham complex Ω•
A(1)/ΛR

∼−→ A(1) ⊗PR
Ω•

PR/R (see Remark 3.38 for the
isomorphism and Remark 3.27 for the definition of PR), regarded as a complex of PR-modules via the
map PR → A(1) induced by the inverse of the map (3.17). Then from the proof of [Ber74, Chapitre
V, Lemme 2.1.2], it follows that the de Rham complex Ω•

PR/R is acyclic in positive degrees. Hence,
from the isomorphism of the de Rham complexes

(A(1)⊗ΛR
E(ΛR))⊗A(1) Ω•

A(1)/ΛR

∼−→ N(1)⊗A(1) Ω•
A(1)/ΛR

,

it follows that the de Rham complex N(1)⊗A(1) Ω•
A(1)/ΛR

is acyclic in positive degrees.
Now, by taking the horizontal sections for the respective connections in the isomorphism ε, we

obtain (φ, ΓF )-equivariant isomorphisms of finite ΛR-modules E(ΛR) ∼−→ E(A(1))∇=0 ∼←− N(1)∇=0.
In particular, from the isomorphism ε, we deduce that A(1)-linearly extending the natural inclusion
N(1)∇=0 ⊂ N(1), we obtain the following (φ,∇, ΓF )-equivariant diagram

A(1)⊗ΛR
E(ΛR) N(1)

A(1)⊗ΛR
N(1)∇=0 A(1)⊗p2,AR

N.

ε
∼

ε≀

(4.6)

(4.9)

From the diagram, it follows that (4.6) is an isomorphism. Moreover, from the preceding discussions
we also obtain (φ, ΓF )-equivariant isomorphisms NPD ∼←− E(ΛR) ∼−→ N(1)∇=0, i.e. the claimed
isomorphisms in (4.7). This allows us to conclude.

Remark 4.18. In Subsection 3.4.1, we defined a (φ, 1× ΓF )-equivariant map ∆′ : AR(1)→ Λ̃R and
from the proof of Lemma 3.50, we have a (φ, ΓF )-equivariant diagram

ΛR
ιΛ−−→
∼

AR(1)/p1(µ) ∆′
−−→ Λ̃R/p1(µ) (3.23)←−−−−

∼
ΛR.

Now, base changing the (φ,∇, ΓF )-equivariant diagram in (4.9) along ∆′ mod p1(µ), we obtain a
(φ, ΓF )-equivariant isomorphism MΛ

∼−→ ΛR⊗AR
N , which is precisely the isomorphism (4.7), proven

in Proposition 4.17. In particular, we see that the (φ, ΓF )-equivariant isomorphism in (4.7) is the base
change of the (φ,∇, ΓF )-equivariant isomorphism in (4.6) along the map ∆′ from (3.25).

4.3. Arithmetic descent. In this subsection, we will carry out the descent for the arithmetic
part of ΓR, i.e. ΓF . From (1.6), recall that ΓF fits into the following exact sequence:

1 −→ Γ0 −→ ΓF −→ Γtor −→ 1,

where, for p ≥ 3, we have that Γ0
∼−→ 1 + pZp and for p = 2, we have that Γ0

∼−→ 1 + 4Z2.
Moreover, for p ≥ 3, we have that Γtor

∼−→ F×
p and the projection map ΓF → Γtor, admits a section

Γtor
∼−→ F×

p → Z×
p

∼←− ΓF , where the second map is given as a 7→ [a], the Teichmüller lift of a, and
the final isomorphism is induced by the p-adic cyclotomic character. Finally, for p = 2, we have that
Γtor

∼−→ {±1}, as groups.
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4.3.1. The action of F×
p . Our first goal is to carry out the descent of Wach modules, for the

action of F×
p , in the case of p ≥ 3. Let N be a Wach module over AR and let us consider it as a

module over RJµK via the (φ, ΓF )-equivariant isomorphism of rings ι : RJµK ∼−→ AR (see Subsection
3.1.1). In particular, by abusing notations, we will consider N as an RJµK-module equipped with
an RJµK-linear Frobenius isomorphism φ∗(N)[1/[p]q] ∼−→ N [1/[p]q] and an R-linear and continous
action of ΓF commuting with the Frobenius and such that the action of ΓF is trivial on N/µN . Next,
from Subsections 3.1.1 and 3.1.2, recall that we have µ0 = −p + ∑

a∈Fp
(1 + µ)[a] and p̃ = µ0 + p, as

elements of RJµKF×
p . Moreover, from Lemma 3.4, we have a (φ, Γ0)-equivariant isomorphism of rings

RJµ0K
∼−→ RJµKF×

p . Then, we claim the following:

Proposition 4.19. Let N be a Wach module over AR. Then N0 := NF×
p is a finitely gener-

ated RJµ0K-module, equipped with a continuous and semilinear action of Γ0 such that the action
of Γ0 is trivial on N0/µ0N0

∼−→ N/µN , and we have a natural (φ, ΓF )-equivariant isomorphism of
RJµK-modules RJµK ⊗RJµ0K N0

∼−→ N . Moreover, N0 is equipped with an RJµ0K-linear isomorphism
φ∗(N0)[1/p̃] ∼−→ N0[1/p̃], compatible with the respective natural actions of Γ0.

Proof. From (A.1), note that we have an F×
p -decomposition N = ⊕p−2

i=0 Ni, where each Ni is a
(p, µ0)-adically complete RJµ0K-module equipped with a continuous and R-linear action of Γ0. More-
over, recall that RJµK is flat and finite of degree p− 1 over RJµ0K (see Remark 3.8), so it follows that
N is finitely generated as an RJµ0K-module. Since RJµ0K is noetherian, therefore, we get that the
RJµ0K-submodule N0 ⊂ N is finitely generated.

Next, by extending the natural RJµ0K-linear and (φ, ΓF )-equivariant inclusion N0 ⊂ N , along the
map RJµ0K→ RJµK, we obtain a natural (φ, ΓF )-equivariant map

N ′ := RJµK⊗RJµ0K N0 −→ N, (4.10)

and our goal is to show that (4.10) is bijective. Recall that µ0 is the product of µp−1 with a unit in RJµK
(see Lemma 3.7), so we see that N is µ0-torsion free, and it follows that N0 is µ0-torsion free as well. As
the natural map RJµ0K→ RJµK is flat (see Remark 3.8), therefore, we get that N ′ is µ0-torsion free =
µp−1-torsion free, hence, µ-torsion free. Moreover, as N0 is (p, µ0)-adically complete, it also follows
that N ′ is (p, µ0)-adically = (p, µ)-adically complete. Furthermore, as N is (p, µ)-adically complete
and µ-torsion free, therefore, to show that (4.10) is bijective it is enough to show that (4.10) is bijective
modulo µ. We will first show that (4.10) is surjective. Indeed, note that we have an R-linear and
ΓF -equivariant surjective map N → N/µN . Then, from the F×

p -decomposition in (A.1), we can
rewrite the preceding map as ⊕p−2

i=0 Ni →
⊕p−2

i=0 (N/µN)i which is R-linear and ΓF -equivariant, in
particular, it is termwise surjective, i.e. the induced R-linear map Ni → (N/µN)i is surjective for
each 0 ≤ i ≤ p − 2. However, since the action of ΓF is trivial on N/µN , therefore, we obtain that
N/µN = ⊕p−2

i=0 (N/µN)i = (N/µN)0 and it follows that the natural R-linear map N0 → N/µN is
surjective. As µ is in the Jacobson radical of RJµK, therefore, by using Nakayama Lemma, we see that
the natural (φ, ΓF )-equivariant map RJµK⊗RJµ0K N0 → N is surjective as well. Next, let us consider
the following diagram:

N ′/µN ′ N/µN

N0/µ0N0,

(4.11)

where the top arrow is surjective by the discussion above, the slanted arrow is the natural R-linear and
ΓF -equivariant map induced by the inclusion N0 ⊂ N and the left vertical equality follows because
we have that

N ′/µN ′ = (N ′/µ0N ′)/µN ′ = (RJµK/µp−1 ⊗R N0/µ0N0)/µ = N0/µ0N0.

To show that (4.10) is injective modulo µ, it is enough to show that the slanted arrow in (4.11)
is injective. So set N ′′ := µN ∩ N0 ⊂ N as an RJµ0K-module and note that we have a natural
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(φ, ΓF )-equivariant inclusion N ′′ → µN . The preceding inclusion induces a ΓF -equivariant map
N → µN ′′/µ2N ′′, where the source admits a trivial action of F×

p and the target admits a non-
trivial action of F×

p (see Remark 4.20). So it follows that N ′′ = µ2N ∩ N0 ⊂ N . Iterating the
preceding argument p − 2 times, we obtain that N ′′ = µp−1N ∩ N0 = µ0N ∩ N0 ⊂ N = µ0N0,
where the last equality follows because for any x in N and g in F×

p , we have that g(µ0x) = µ0x if and
only if g(x) = x, i.e. x is in N0. Thus, from the preceding observation, it follows that the natural
map N0/µ0N0 → N/µN is injective. Hence, from (4.11), we conclude that N0/µ0N0

∼−→ N/µN as
R-modules and (4.10) is bijective. In particular, we also get that the action of Γ0 is trivial on N0/µ0N0.

Finally, let us show the Frobenius finite height condition on N0. Note that since p̃ the product of
[p]q with a unit in RJµK (see Lemma 3.3), therefore, the Frobenius finite height condition on N can also
be stated as an RJµK-linear isomorphism φ∗(N)[1/p̃] ∼−→ N [1/p̃]. Now, recall that the Frobenius on
N commutes with the action of ΓF , so taking the invariants of the preceding isomorphism under the
action of F×

p and using the (φ, ΓF )-equivariant isomorphism in (4.10), we obtain that N0 is equipped
with an RJµ0K-linear isomorphism φ∗(N0)[1/p̃] ∼−→ N0[1/p̃], compatible with the natural action of Γ0
on each side. This allows us to conclude.

Remark 4.20. Let N be a Wach module over AR. Then, as the action of ΓR is trivial on N/µN ,
therefore, we see that for each k ∈ N, over the quotient µkN/µk+1N , the action of ΓR is given via the
p-adic cyclotomic character. In particular, it follows that F×

p has a non-trivial action on µkN/µk+1N ,
for 1 ≤ k ≤ p− 2.

Remark 4.21. In Proposition 4.19, for R = OF , note that the OF Jµ0K-module N0 is p-torsion free and
µ0-torsion free. Moreover, N0/µ0N0

∼−→ N/µN is p-torsion free. Therefore, from [Abh23b, Lemma
3.5] and [Fon90, Proposition B.1.2.4], it follows that N0 is finite free over OF Jµ0K.

Proposition 4.22. Let N be a Wach module over AR and let MΛ = (AR(1)/p1(µ) ⊗p2,AR
N)1×Γ′

R

be the ΛR-module from Proposition 4.17. Then MΛ,0 := M
1×F×

p

Λ is a finitely generated module over
ΛR,0 = ΛF×

p

R , equipped with an induced semilinear and continuous action of Γ0 such that the ac-
tion of Γ0 is trivial on MΛ,0/µ0MΛ,0, and we have a natural (φ, ΓF )-equivariant isomorphism of
ΛR-modules ΛR ⊗ΛR,0 MΛ,0

∼−→ MΛ. Moreover, MΛ,0 is equipped with an ΛR,0-linear isomorphism
φ∗(MΛ,0)[1/p] ∼−→MΛ,0[1/p], compatible with the natural action of Γ0 on each side.

Proof. From Proposition 4.17, let us recall that MΛ is a finitely generated ΛR-module and we have
a (φ, ΓF )-equivariant isomorphism of ΛR-modules MΛ

∼−→ ΛR ⊗AR
N via the composition AR →

APD ∼−→ ΛR, where the last isomorphism is the inverse of (3.13). Now, consider N as an RJµK-module
via the (φ, ΓF )-equivariant isomorphism of rings ι : RJµK ∼−→ AR (see Subsection 3.1.1), equipped
with a (φ, ΓF )-action (see Subsection 4.3.1). Then, from Proposition 4.19, we have that N0 :=
NF×

p is a finitely generated RJµ0K-module, equipped with an induced action of (φ, Γ0). Moreover,
from Proposition 4.19, we note that RJµK-linearly extending the natural inclusion N0 ⊂ N , induces
a (φ, ΓF )-equivariant isomorphism of RJµK-modules RJµK ⊗RJµ0K N0

∼−→ N . Combining this with
the preceding discussion, it follows that we have a (φ, ΓF )-equivariant isomorphism of ΛR-modules
MΛ

∼−→ ΛR ⊗RJµ0K N0. Using that ΛR,0 = ΛF×
p

R (see Construction 3.52), together with the preceding
isomorphism, we obtain a (φ, Γ0)-equivariant isomorphism of ΛR,0-modules

MΛ,0 = M
F×

p

Λ
∼−→ ΛR,0 ⊗RJµ0K N0. (4.12)

In particular, the ΛR,0-module MΛ,0 is finitely generated. Now, let g be any element of Γ0. Then note
that for any f in ΛR,0 and y in N0, we have that

(γ0 − 1)fy = (γ0 − 1)f · y + γ0(f)(γ0 − 1)y ∈ µ0(ΛR,0 ⊗AR
N).

From the (φ, Γ0)-equivariant isomorphism in (4.12), it follows that for any x in MΛ,0, we have that
(g− 1)x is an element of µ0MΛ,0. Furthermore, from (4.12) it also follows that ΛR-linearly extending
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the natural inclusion MΛ,0 ⊂MΛ, gives a (φ, ΓF )-equivariant isomorphism of ΛR-modules

ΛR ⊗ΛR,0 MΛ,0
∼−→MΛ

a⊗ x 7−→ ax.
(4.13)

Finally, note that from Proposition 4.19, we have an RJµ0K-linear isomorphism φ∗(N0)[1/p̃] ∼−→
N0[1/p̃] compatible with the action of Γ0 on each side. Then, by extending this isomorphism ΛR,0-linearly,
using the (φ, ΓF )-equivariant isomorphism in (4.12) and noting that p̃/p is a unit in ΛF,0 from Lemma
3.24, we obtain a ΛR,0-linear isomorphism φ∗(MΛ,0)[1/p] ∼−→MΛ,0[1/p] compatible with the action of
Γ0 on each side. Hence, the proposition is proved.

4.3.2. The action of 1 + pZp. In this subsubsection, we will assume p ≥ 3 and show the descent
step, for the action of 1 × Γ0

∼−→ 1 × (1 + pZp). Let N be a Wach module over AR, let MΛ =
(AR(1)/p1(µ)⊗p2,AR

N)1×Γ′
R be the ΛR-module from Proposition 4.17 and let MΛ,0 = M

1×F×
p

Λ be the
ΛR,0-module from Proposition 4.22. Let γ0 be a topological generator of Γ0 such that χ(γ0) = 1 + pa,
for a unit a in Zp. Then, from Proposition 4.22 note that for any x in MΛ,0, we have that (γ0 − 1)x is
an element of µ0MΛ,0. Set s := µ0/p in ΛR,0, and from Lemma 3.58 recall that (γ0 − 1)s = uµ0, for
some unit u in ΛF,0. Therefore, we see that the following operator is well-defined

∇q,s : MΛ,0 −→MΛ,0

x 7→ (γ0−1)x
(γ0−1)s .

(4.14)

As the operator ∇q,s is an endomorphism of MΛ,0, we can define the following two term Koszul
complex:

KMΛ,0(∇q,s) :
[
MΛ,0

∇q,s−−−−→MΛ,0
]
. (4.15)

Remark 4.23. Considering s as a variable, similar to Remark 3.59, the operator ∇q,s in (4.14), may
also be considered as a q-connection in non-logarithmic coordinates, in the sense of Definition 4.7 and
Remark 3.32. Then, (4.15) is the q-de Rham complex arising from such a q-connection.

Proposition 4.24. The series of operators ∇log
0 = log γ0

log(χ(γ0)) = 1
log(χ(γ0))

∑
k∈N(−1)k (γ0−1)k+1

k+1 con-
verge p-adically on MΛ,0. Let z := tp−1/p in ΛR,0, then the operator ∇0 := 1

(p−1)z∇
log
0 defines an

R-linear p-adically quasi-nilpotent flat connection on MΛ,0, denoted ∇ : MΛ,0 →MΛ,0 ⊗ΛR,0 Ω1
ΛR,0/R

and given as x 7→ ∇0(x)dz. The data of the connection ∇ on MΛ,0 is equivalent to the data
of the q-connection ∇q,s from (4.14), i.e. either may be recovered from the other. Moreover, the
q-de Rham complex KMΛ,0(∇q,s) in (4.15) is naturally quasi-isomorphic to the de Rham complex
MΛ,0 ⊗ΛR,0 Ω•

ΛR,0/R. In particular, we have that M
∇q,s=0
Λ,0

∼−→M∇0=0
Λ,0 .

Proof. Recall that s = µ0/p = utp−1/p, for a unit u in ΛF,0 (see Construction 3.52, in particular, (3.30)
and the discussion preceding it). Moreover, from Lemma 3.57 we have that (γ0 − 1)s = (γ0 − 1)µ0

p =
vµ0, for a unit v in ΛF,0. Now let z = tp−1/p and we write (1 + pa)p−1 = 1 + pb, where b is a unit in
Zp. Then note that we have

(γ0 − 1)z = (γ0 − 1) tp−1

p = (χ(γ0)p−1 − 1) tp−1

p = ((1 + pa)p−1 − 1) tp−1

p = btp−1 = u−1bµ0. (4.16)

Therefore, it follows that the complex KMΛ,0(∇q,s) is quasi-isomorphic to the following complex

KMΛ,0(∇q,z) :
[
MΛ,0

∇q,z−−−−→MΛ,0
]
. (4.17)

Rest of the proof is similar to the proof of Proposition 4.13, with some changes. To avoid confusion,
we provide a sketch.
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Let us first show that ∇log
0 := log(γ0)

log(χ(γ0)) = 1
log(χ(γ0))

∑
k∈N(−1)k (γ0−1)k+1

k+1 , converge as a series of
operators on MΛ,0. Indeed, let x be any element of MΛ,0, then using Proposition 4.22, we can write
(γ0 − 1)x = tp−1x1, for some x1 in MΛ,0. Let us note that log(χ(γ0)) = log(1 + pa) = pc, where c is
a unit in Zp, and we also have (γ0 − 1)tp−1 = ((1 + pa)p−1 − 1)tp−1 = pbtp−1, where b is a unit in Zp.
Therefore, an easy induction on k ∈ N, shows that (γ0− 1)k+1x = pktp−1xk+1, for some xk+1 in MΛ,0.
In particular, we get that

∇log
0 (x) = 1

log(χ(γ0))
∑

k∈N(−1)k (γ0−1)k+1(x)
k+1

= 1
log(χ(γ0))

∑
k∈N(−1)k pktp−1xk+1

k+1

= tp−1

pc

∑
k∈N(−1)k pkxk+1

k+1 ,

which converges in tp−1

p MΛ,0 = zMΛ,0, since MΛ,0 is p-adically complete. Moreover, it also follows
that the operator ∇0 := 1

(p−1)z∇
log
0 is well-defined on MΛ,0.

Next, similar to the case of ∇log
i in the proof of Proposition 4.13, it can be shown that ∇log

0 , and
therefore ∇0 = 1

(p−1)z∇
log
0 satisfies a Leibniz rule, i.e. ∇0(fx) = ∇0(f)x + f∇0(x), where the first

operator on the right is ∇0 := log(γ0)
(p−1)z log(χ(γ0)) : ΛR,0 → ΛR,0 whose well-definedness can be checked

similar to above. Moreover, note that the operator∇0 is flat by definition. Furthermore, similar to the
case of ∇i in the proof of Proposition 4.13, it can be shown that the operator ∇0 : ΛR,0 → Ω1

ΛR,0/R is
the continuous de Rham differential operator d : ΛR,0 → Ω1

ΛR,0/R. So, in particular, the operator ∇ :
MΛ,0 →MΛ,0⊗ΛR,0 Ω1

ΛR,0/R, given as x 7→ ∇0(x)dz, is a well defined flat connection. Now, let us show
that the operator ∇0 is p-adically quasi-nilpotent. Indeed, we first note that from the commutativity
of φ and γ0, it follows that ∇log

0 ◦ φ = φ ◦ ∇log
0 . Therefore, it is easy to see that ∇0 ◦ φ = pp−1φ ◦ ∇0.

Recall that MΛ,0 is equipped with a ΛR,0-linear isomorphism φ∗(MΛ,0)[1/p] ∼−→MΛ,0[1/p], compatible
with action of Γ0 on each side. In particular, for any x in MΛ,0, there exists r ∈ N large enough such
that prx belongs to φ∗(MΛ,0). Then from the relation, ∇0 ◦ φ = pp−1φ ◦ ∇0, we see that ∇k

0(prx)
converges p-adically to 0 as k → +∞. Hence, it follows that∇k

0(x) = p−r∇k
0(prx) converges p-adically

to 0 as k → +∞, in particular, ∇0 is p-adically quasi-nilpotent.
So far, we have defined the p-adically quasi-nilpotent flat connection ∇ using the action of

Γ0 and conversely, we have shown that the action of Γ0 can be recovered by the formula γ0 :=
exp(log(χ(γ0))∇log

0 ). Again, similar to case of γi in the proof of Proposition 4.13, using the Leibniz
rule for ∇0, it can be checked that the action of γ0 thus obtained, is semilinear.

Finally, it remains to compare the q-de Rham complex in (4.15) with the de Rham complex
MΛ,0⊗ΛR,0 Ω•

ΛR,0/R = MΛ,0⊗ΛF,0 Ω•
ΛF,0/OF

. As∇0 is an endomorphism of MΛ,0, let KMΛ,0(∇0) denote
the corresponding Koszul complex in the sense of Definition A.8. Then we have an identification of
complexes:

MΛ,0 ⊗ΛF,0 Ω•
ΛF,0/OF

= KMΛ,0(∇0) :
[
ΛR,0

∇0−−−→ ΛR,0
]
.

Now, recall that we have γ0 = exp(log(χ(γ0))∇log
0 ). Therefore, we can write

∇q,z = γ0−1
(γ0−1)z = log(χ(γ0))(p−1)z

(γ0−1)z ∇0
(
1 + ∑

k≥1
log(χ(γ0))k

(k+1)! (∇log
0 )k

)
. (4.18)

Recall that (γ0− 1)z = pbz and log(χ(γ0)) = pc, for units b and c in Zp. Therefore, in (4.18), we have
that log(χ(γ0))(p−1)z

(γ0−1)z = c(p−1)
b is a unit and it is clear that the term inside the parentheses converges

p-adically to a unit. Now, in the notation of Lemma A.9, let us set i = 1, M = MΛ,0, f1 = ∇0

and take h1 to be the product of c(p−1)
b with the formula in the parentheses of (4.18), in particular,

f1h1 = ∇q,z. Then, from Lemma A.9, we obtain a natural quasi-isomorphism of complexes

KMΛ,0(∇q,s) ∼−→ KMΛ,0(∇q,z) ∼−→ KMΛ,0(∇0).

In particular, we get that M
∇q,s=0
Λ,0

∼−→M∇0=0
Λ,0 . This allows us to conclude.



Prismatic F -crystals and Wach modules 54

Proposition 4.25. Set M := M∇0=0
Λ,0 as an R-module via the isomorphism R

∼−→ Λ∇0=0
R,0 . Then M

is finitely generated over R and we have a natural (φ,∇0)-equivariant isomorphism

ΛR,0 ⊗R M
∼−→MΛ,0

a⊗ x 7−→ ax.
(4.19)

Moreover, the de Rham complex MΛ,0⊗ΛF,0 Ω•
ΛF,0/OF

is ayclic in positive degrees. In particular, from
Proposition 4.24, we have H1(KMΛ,0(∇q,s)) = 0.

Proof. The proof is similar to the proof of Proposition 4.17. For the sake of completeness and to avoid
confusion, we give the details.

We will use the results from Subsection 4.2.1, by setting Σm = Spec (R/pm) and Xm = Spec (ΛR,0/pm).
Let us first note that from Proposition 4.24, the ΛR,0-module MΛ,0 is equipped with a Frobenius en-
domorphism (after inverting p) and an R-linear p-adically quasi-nilpotent flat connection ∇ : MΛ,0 →
MΛ,0 ⊗ΛF,0 Ω1

ΛF,0/OF
, in particular, MΛ,0 is an object of MICφ(ΛR,0). Then, from the equivalence in

(4.5), there exists a finitely generated F -crystal E over CRIS(X/Σ) and we have E(ΛR,0) = MΛ,0.
Next, from Construction 3.52 recall that ΛR,0 is the p-adic completion of a PD-polynomial algebra
over R in the variable s (see (3.30)). Moreover, ΛR,0 is equipped with an R-linear flat connection
∇ : ΛR,0 → Ω1

ΛR,0/R = ΛR,0 ⊗ΛF,0 Ω1
ΛF,0/OF

(see the proofs of Proposition 4.24 and Lemma 3.60).
Now, consider the injective map Spec (R/pm) ↪→ Spec (ΛR,0/pm) induced by the φ-equivariant sur-
jection ΛR,0 ↠ R, sending s[k] 7→ 0 for each k ≥ 1, and note that the composition R → ΛR,0 ↠ R
is the identity and φ-equivariant. So we have the following φ-equivariant diagram in CRIS(Xm/Σm),
for m ≥ 1,

Spec (R/pm) Spec (ΛR,0/pm)

Spec (R/pm) Spec (R/pm).

id

id

(4.20)

Evaluating the F -crystal E on Spec (R/pm) ↪→ Spec (ΛR,0/pm) for each m ≥ 1, and taking the
limit over m, gives a finitely generated ΛR,0-module E(ΛR,0) = MΛ,0, equipped with a Frobenius
and an R-linear p-adically quasi-nilpotent flat connection, described in Proposition 4.24 and the
discussion preceding it. Now, using the fact that E is an F -crystal and the diagram (4.20), we obtain
a φ-equivariant isomorphism

ε : ΛR,0 ⊗R E(R) ∼−→ E(ΛR,0) = MΛ,0,

compatible with respective R-linear connections, where the R-linear connection on the source is given
as ∇ ⊗ 1 with ∇ being the R-linear connection on ΛR,0 described in the proof of Proposition 4.24.
Explicity, for x in ΛR,0⊗R E(R), the map ε is given by the formula ε(x) = ∑

j(−1)j∇j
0(x)⊗z[j], where

∇0 = 1
(p−1)z∇

log
0 (see Proposition 4.24 for the definition of ∇log

0 ).
Next, consider the de Rham complex Ω•

ΛR,0/R = ΛR,0 ⊗ΛF,0 Ω•
ΛF,0/OF

, regarded as a complex of
ΛF,0-modules via the natural map ΛF,0 → ΛR,0. Recall that ΛF,0 = OF [s[k], k ∈ N]∧p , therefore it
follows that the de Rham complex Ω•

ΛR,0/R = ΛR,0 ⊗ΛF,0 Ω•
ΛF,0/OF

is acyclic in positive degrees (also
see [Ber74, Chapitre V, Lemme 2.1.2]). Hence, from the isomorphism of the de Rham complexes

(ΛR,0 ⊗R E(R))⊗ΛR,0 Ω•
ΛR,0/R

∼−→MΛ,0 ⊗ΛR,0 Ω•
ΛR,0/R,

it follows that the de Rham complex MΛ,0 ⊗ΛR,0 Ω•
ΛR,0/R is acyclic in positive degrees.

Now, taking horizontal sections for respective connections in the isomorphism ε, we obtain a
φ-equivariant isomorphism of finite R-modules E(R) ∼−→ E(ΛR,0)∇=0 = M∇0=0

Λ,0 . In particular, from
the isomorphism ε, we deduce that ΛR,0-linearly extending the natural inclusion M∇0=0

Λ,0 ⊂ MΛ,0, we
obtain the following (φ,∇0)-equivariant diagram
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ΛR,0 ⊗R E(R) E(ΛR,0)

ΛR,0 ⊗ΛR
M∇0=0

Λ,0 MΛ,0.

ε
∼

ε≀

(4.19)

Hence, it follows that (4.19) is an isomorphism. This concludes our proof.

4.3.3. The case p = 2. In this subsubsection, we will prove statements analogous to Proposition
4.22, Proposition 4.24 and Proposition 4.25, for p = 2. Let N be a Wach module over AR and
let MΛ = (AR(1)/p1(µ) ⊗p2,AR

N)1×Γ′
R be the ΛR-module from Proposition 4.17 equipped with an

induced action of (φ, ΓF ). First, we will look at the action of Γtor on MΛ. Let σ denote a generator
of Γtor. Then from (A.2), recall that by setting MΛ,+ := {x ∈ MΛ such that σ(x) = x} and MΛ,− :=
{x ∈MΛ such that σ(x) = −x}, we have a natural injective map of modules over ΛR,+ (see Subsection
3.4.4),

MΛ,+ ⊕MΛ,− −→MΛ, (4.21)

given as (x, y) 7→ x+y. Note that the action of 1×ΓF is continuous for the (p, p1(µ))-adic topology on
MΛ, so it follows that MΛ,+ is a (p, p1(µ))-adically complete ΛR,+-submodule of MΛ, stable under the
action of (φ, ΓF ) on MΛ, and similarly, MΛ,− is a complete ΛR,+-submodule, stable under the action of
(φ, ΓF ). Equipping MΛ,+ and MΛ,− with induced structures, we see that (4.21) is (φ, ΓF )-equivariant.

Proposition 4.26. The natural map in (4.21) is bijective. Moreover, we have that MΛ,− = (t/2)MΛ,+.
In particular, we have a natural ΛR-linear and (φ, ΓF )-equivariant isomorphism

ΛR ⊗ΛR,+ MΛ,+
∼−→MΛ. (4.22)

Proof. Let us first note that by ΛR-linearly extending the ΛR,+-linear and (φ, ΓF )-equivariant injective
map MΛ,+ →MΛ from (4.21), we obtain the ΛR-linear and (φ, ΓF )-equivariant map in (4.22). Recall
that ΛR = ΛR,+⊕ (t/2)ΛR,+ from Lemma 3.61 and Lemma 3.62, and (t/2)MΛ,+ ⊂MΛ,−, so from the
injectivity of (4.21), it follows that (4.22) is injective. To prove the claims, it is enough to show that
(4.22) is surjective as well.

Let I denote the kernel of the surjective map ΛR ↠ R. Then from the explicit desciption of ΛR

in Proposition 3.21, it follows that I is the ideal of ΛR generated by the divided powers of t/2. As
the divided powers of t/2 are topologically niplotent, it follows that I is contained in the Jacobson
radical of ΛR. Moreover, since the ideal I is stable under the action of (φ, ΓF ) on ΛR, it follows
that the map ΛR → R is (φ, ΓF )-equivariant. Next, from (4.7) in Proposition 4.17, recall that we
have a (φ, ΓF )-equivariant isomorphism of ΛR-modules MΛ

∼−→ ΛR ⊗AR
N . Base changing this

isomorphism along the surjective map ΛR ↠ R, we obtain a (φ, ΓF )-equivariant isomorphism of
R-modules MΛ/IMΛ

∼−→ N/µN . Precomposing it with (4.22) gives a ΛR-linear map

ΛR ⊗ΛR,+ MΛ,+ −→MΛ/IMΛ
∼−→ N/µN. (4.23)

Since I is in the Jacobson radical of ΛR, therefore, by Nakayama Lemma, to show that (4.22) is
surjective, it is enough to show that the the first map in (4.23) is surjective. So let x be any element
of MΛ/IMΛ and let x be a lift of x in MΛ. We first claim that (σ + 1)x is an element of 2MΛ. Indeed,
let us first write x = ∑

i ai ⊗ xi, for some ai in ΛR and xi in N . Then, from the description of ΛR in
Lemma 3.61 and Lemma 3.62 we have that (σ− 1)ai = tbi, for some bi in ΛR,+ and from the triviality
of the action of ΓR on N/µN , we can write (σ−1)xi = µyi, for some yi in N . So we have the following:

(σ + 1)x = (σ − 1)x + 2x = (σ − 1)(∑i ai ⊗ xi) + 2x

= ∑
i(σ − 1)ai ⊗ xi + ∑

i σ(ai)⊗ (σ − 1)xi + 2x

= ∑
i tbi⊗ xi + ∑

i σ(ai)⊗ µyi + 2x,

which is clearly in 2MΛ (since t/µ is a unit in ΛR, see Lemma 3.24). As MΛ is p-torsion free, therefore,
we set x′ := (σ+1)

2 (x) in MΛ and note that σ(x′) = x′, i.e. x′ is in MΛ,+. From the computation
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of (σ + 1)x above and the fact that MΛ/IMΛ
∼−→ N/µN (see (4.23)) is p-torsion free, we see that

x′ = x mod IMΛ. In particular, we conclude that the first map of (4.23) is surjective, hence, (4.22) is
bijective. Finally, from the decompositon ΛR = ΛR,+ ⊕ (t/2)ΛR,+, the inclusion (t/2)MΛ,+ ⊂ MΛ,−
and from the bijectivity of (4.22), it follows that (4.21) is bijective and MΛ,− = (t/2)MΛ,+. This
completes our proof.

Next, we will look at the action of Γ0
∼−→ 1 + 4Z2 on MΛ,+. From (3.40), recall that ν = µ2

1+µ is an
element of ΛF,+ and we claim the following:

Lemma 4.27. The action of Γ0 is trivial on MΛ,+/νMΛ,+.

In the following, we provide an explicit proof of the claim. Note that the claim in Lemma 4.27
also follows from Remark 5.27. Moreover, the arguments in Remark 5.27 do not depend on the claim
proven in Lemma 4.27 and the subsequent results of the current Subsection 4.3.3. In particular,
Remark 5.27 gives a more conceptual proof of the claim.

Proof. Note that the action of Γ0 is continuous on MΛ,+, so it is enough to show the claim for a
topological generator of Γ0. So let us fix γ0 to be a topological generator of Γ0 such that χ(γ0) = 1+4a,
for a unit a in Z2. Moreover, using Lemma 3.24, it is easy to see that ν is the product of t2 with a unit
in ΛF,+. So for any m in MΛ,+, it is enough to show that (γ0 − 1)m is an element of t2MΛ,+. Now,
using Lemma 4.28, let us write (γ0 − 1)m = 2tm′, for some m′ in MΛ. Since, σ(m) = m, we get that
σ(m′) = −m′, i.e. m′ belongs to MΛ,−. Using Proposition 4.26, we can write m′ = (t/2)n, for some n
in MΛ,+. Hence, we get that (γ0 − 1)m = t2n, as claimed.

The following observation was used above:

Lemma 4.28. Let γ0 be a topological generator of Γ0 such that χ(γ0) = 1 + 4a, for a unit a in Z2.
Then for any m in MΛ, the element (γ0 − 1)m belongs to 2tMΛ.

Proof. Let us start with some observations. Let f be an element of ΛR. Then using that ΛR =
ΛR,+ ⊕ (t/2)ΛR,+ from Lemma 3.61 and Lemma 3.62 and the fact that the action of γ0 is trivial on
ΛR,+/νΛR,+, where ν is the product of t2 with a unit in ΛF,+, it follows that (γ0 − 1)f is an element
of 2tΛR.

Next, let x be any element of MΛ,+ ⊂MΛ, then from the (φ, ΓF )-equivariant isomorphism MΛ
∼−→

ΛR⊗AR
N (see (4.7) in Proposition 4.17), the triviality of the action of ΓF on ΛR/µ (see Lemma 3.48)

and N/µN (see Definition 4.1) and the fact that t/µ is a unit in ΛF (see Lemma 3.24), it follows that
we can write(γ0 − 1)x = tx1, for some x1 in MΛ. As x is in MΛ,+, we have σ(x) = x and since ΓF

is commutative and MΛ is t-torsion free, it follows that σ(x1) = −x1, i.e. x1 is an element of MΛ,−.
Then using Proposition 4.26, we can write x1 = (t/2)x2, for some x2 in MΛ,+, and get that (γ0 − 1)x
is an element of (t2/2)MΛ,+.

Next, let y be any element of MΛ,− and using Proposition 4.26, write y = (t/2)y1, for some y1 in
MΛ,+. From the preceding discussion, note that we have (γ0 − 1)y1 = (t2/2)y2, for some y2 in MΛ,+.
So, we get that

(γ0 − 1)y = (γ0 − 1)
(

t
2y1

)
= 1

2
(
y1(γ0 − 1)t + γ0(t)(γ0 − 1)y1

)
= 1

2(4aty2 + (1 + 4a)ty2
t2

2 ) = 2t(ay1 + (1 + 4a)y2
t2

8 ),

is an element of 2tMΛ,+.
Next, note that since N [1/p] is finite projective over AR[1/p] (see Remark 4.2) and the map

AR → ΛR is injective, therefore, it follows that the AR-linear and (φ, ΓF )-equivariant map N → MΛ
is injective. Now, let z be an element of N and let us denote its image in MΛ, again by z. Then by
Definition 4.1, we have that (γ0 − 1)z = µz0, for some z0 in N ⊂ MΛ. Using Proposition 4.26, let us
write z = x+y, for some x in MΛ,+ and y in MΛ,− = (t/2)MΛ,+. Then from the preceding discussions
and the fact that t/µ is a unit in ΛF , we can write (γ0−1)x = (µ2/2)x′ and (γ0−1)y = 2µy′, for some
x′ and y′ in MΛ. In particular, since MΛ is µ-torsion free, we get that z0 = (µ/2)x′ + 2y′. Reducing
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the preceding equality modulo IMΛ, where I is the kernel of the surjective map ΛR → R (see the
proof of Proposition 4.26), we see that z0 = 2y′ mod IMΛ, in MΛ/IMΛ

∼−→ N/µN (see (4.23)). Since
y′ mod IMΛ is an element of MΛ/IMΛ

∼−→ N/µN and z0 is in N , we get that z0 mod µN is an element
of 2(N/µN). In particular, we can write z0 = 2z1 + µz2 for some z1, z2 in N . So, we have that,

(γ0 − 1)z = µz0 = 2µz1 + µ2z2 = 2µ
(
z1 + µ

2 z2
)
,

is an element of 2tMΛ, since t/µ is a unit in ΛF .
Now, let f ⊗ z be an element of ΛR⊗AR

N , and using the discussion at the beginning of the proof,
let us write (γ0 − 1)f = 2te, for some e in ΛR. Moreover, from the discussion above we can write
(γ0 − 1)z = 2tz′, for some z′ in MΛ. In particular, we see that

(γ0 − 1)(f ⊗ z) = ((γ0 − 1)f)⊗ z + γ0(f)⊗ (γ0 − 1)z = 2te + γ0(f)2tz′ = 2t(e + γ0(f)z′),

is an element of 2tMΛ. Using the (φ, ΓF )-equivariant isomorphism MΛ
∼−→ ΛR ⊗AR

N (see (4.7) in
Proposition 4.17) and the preceding observation, we conclude that for any m in MΛ, the element
(γ0 − 1)m belongs to 2tMΛ. Hence, the lemma is proved.

In the rest of this subsubsection, let us fix γ0 to be a topological generator of Γ0 such that χ(γ0) =
1 + 4a, for a unit a in Z2. Then from Lemma 4.27, note that for any x in MΛ,+, we have that (γ0−1)x
is an element of νMΛ,+. Set τ := ν/8 in ΛR,+, then from Lemma 3.72 we know that (γ0 − 1)τ = uν,
for some unit u in ΛF,+. Therefore, we see that the following operator is well-defined:

∇q,τ : MΛ,+ −→MΛ,+

x 7→ (γ0−1)x
(γ0−1)τ .

(4.24)

As the operator ∇q,τ is an endomorphism of MΛ,+, we can define the following two term Koszul
complex:

KMΛ,+(∇q,τ ) :
[
MΛ,+

∇q,τ−−−−→MΛ,+
]
. (4.25)

Remark 4.29. Considering τ as a variable, similar to Remark 3.73, the operator ∇q,τ in (4.24), may
be also considered as a q-connection in non-logarithmic coordinates, in the sense of Definition 4.7 and
Remark 3.32. Then, (4.25) is the q-de Rham complex arising from such a q-connection.

Proposition 4.30. The series of operators ∇log
0 = log γ0

log(χ(γ0)) = 1
log(χ(γ0))

∑
k∈N(−1)k (γ0−1)k+1

k+1 con-
verge p-adically on MΛ,+. Let w := t2/8 in ΛR,+, then the operator ∇0 := 1

2w∇
log
0 defines an

R-linear p-adically quasi-nilpotent flat connection on MΛ,+, denoted ∇ : MΛ,+ →MΛ,+⊗ΛR,+ Ω1
ΛR,+/R

and given as x 7→ ∇0(x)dw. The data of the connection ∇ on MΛ,+ is equivalent to the data
of the q-connection ∇q,τ from (4.24), i.e. either may be recovered from the other. Moreover, the
q-de Rham complex KMΛ,+(∇q,τ ) in (4.25) is naturally quasi-isomorphic to the de Rham complex
MΛ,+ ⊗ΛR,+ Ω•

ΛR,+/R. In particular, we have that M
∇q,τ =0
Λ,+

∼−→M∇0=0
Λ,+ .

Proof. The idea of the proof is similar to the proof of Proposition 4.24, with slightly different compu-
tations. We sketch it below. Recall that τ = et2/8, for a unit e in ΛF,+ (see Lemma 3.62). Moreover,
from Lemma 3.72 we have that (γ0 − 1)τ = (γ0 − 1)ν

8 = uν, for a unit u in ΛF,+. Now let w = t2/8
and we write (1 + 4a)2 = 1 + 8b, noting that b = a(2a + 1) is a unit in Z2. So we have

(γ0 − 1)w = (γ0 − 1) t2

8 = (χ(γ0)2 − 1) t2

8 = ((1 + 4a)2 − 1) t2

8 = bt2 = e−1b(2a + 1)ν. (4.26)

Therefore, it follows that the complex KMΛ,+(∇q,τ ) is quasi-isomorphic to the following complex

KMΛ,+(∇q,w) :
[
MΛ,+

∇q,w−−−−→MΛ,+
]
. (4.27)

Rest of the proof is similar to the proof of Proposition 4.13, with some changes. To avoid confusion,
we provide a sketch.
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Let us first show that ∇log
0 := log(γ0)

log(χ(γ0)) = 1
log(χ(γ0))

∑
k∈N(−1)k (γ0−1)k+1

k+1 , converge as a series of
operators on MΛ,+. Indeed, let x be any element of MΛ,+, then using Lemma 4.27, we can write
(γ0 − 1)x = t2x1, for some x1 in MΛ,+. Let us note that log(χ(γ0)) = log(1 + 4a) = 4c, where c
is a unit in Z2, and we also have (γ0 − 1)t2 = ((1 + 4a)2 − 1)tp−1 = 8bt2, where b is a unit in Z2.
Therefore, an easy induction on k ∈ N, shows that (γ0 − 1)k+1x = 8kt2xk+1, for some xk+1 in MΛ,+.
In particular, we get that

∇log
0 (x) = 1

log(χ(γ0))
∑

k∈N(−1)k (γ0−1)k+1(x)
k+1

= 1
log(χ(γ0))

∑
k∈N(−1)k 8kt2xk+1

k+1

= t2

4c

∑
k∈N(−1)k 8kxk+1

k+1 ,

which converges in t2

4 MΛ,+ = 2wMΛ,+, since MΛ,+ is 2-adically complete. Then, it also follows that
the operator ∇0 := 1

2w∇
log
0 is well-defined on MΛ,+.

Next, similar to the case of ∇log
i in the proof of Proposition 4.13, it can be shown that ∇log

0 , and
therefore∇0 = 1

2w∇
log
0 satisfies a Leibniz rule, i.e.∇0(fx) = ∇0(f)x+f∇0(x), where the first operator

on the right is ∇0 := log(γ0)
2w log(χ(γ0)) : ΛR,+ → ΛR,+ whose well-definedness can be checked similar to

above. Moreover, note that the operator∇0 is flat by definition. Furthermore, similar to the case of∇i

in the proof of Proposition 4.13, it can be shown that the operator∇0 : ΛR,+ → Ω1
ΛR,+/R is the usual de

Rham differential d : ΛR,+ → Ω1
ΛR,+/R. So, in particular, the map ∇ : MΛ,+ →MΛ,+ ⊗ΛR,+ Ω1

ΛR,+/R,
given as x 7→ ∇0(x)dw, is a well defined connection. Now, let us show that the operator ∇0 is
p-adically quasi-nilpotent. Indeed, we first note that from the commutativity of φ and γ0, it follows
that ∇log

0 ◦ φ = φ ◦ ∇log
0 . Therefore, it is easy to see that ∇0 ◦ φ = 4φ ◦ ∇0. Next, recall that MΛ

is equipped with a ΛR-linear isomorphism φ∗(MΛ)[1/p] ∼−→ MΛ[1/p], compatible with the action of
ΓF on each side. Then using the isomorphism (4.22) in Proposition 4.26, we easily obtain that MΛ,+
is equipped with a ΛR,+-linear isomorphism φ∗(MΛ,+)[1/p] ∼−→MΛ,+[1/p], compatible with action of
Γ0 on each side. Using this observation and the relation ∇0 ◦ φ = 4φ ◦ ∇0, similar to the proof of
Proposition 4.24, it can be shown that for any x in MΛ,+,the sequence ∇k

0(x) converges p-adically to
0 as k → +∞, in particular, ∇0 is p-adically quasi-nilpotent. Furthermore, note that so far we have
defined the p-adically quasi-nilpotent flat connection ∇ using the action of Γ0 and conversely, we have
shown that the action of Γ0 can be recovered by the formula γ0 := exp(log(χ(γ0))∇log

0 ). Again, similar
to case of γi in the proof of Proposition 4.13, using the Leibniz rule for ∇0, it can be checked that the
action of γ0 thus obtained, is semilinear.

Finally, it remains to compare the q-de Rham complex in (4.15) with the de Rham complex
MΛ,+ ⊗ΛR,+ Ω•

ΛR,+/R = MΛ,+ ⊗ΛF,+ Ω•
ΛF,+/OF

. As ∇0 is an endomorphism of MΛ,+, let KMΛ,+(∇0)
denote the corresponding Koszul complex in the sense of Definition A.8. Then we have an identification
of complexes:

MΛ,+ ⊗ΛF,+ Ω•
ΛF,+/OF

= KMΛ,+(∇0) :
[
ΛR,+

∇0−−−→ ΛR,+
]
.

Now, recall that we have γ0 = exp(log(χ(γ0))∇log
0 ). Therefore, we can write

∇q,w = γ0−1
(γ0−1)w = log(χ(γ0))2w

(γ0−1)w ∇0
(
1 + ∑

k≥1
log(χ(γ0))k

(k+1)! (∇log
0 )k

)
. (4.28)

Recall that (γ0−1)w = 8bw and log(χ(γ0)) = 4c, for units b and c in Z2. Therefore, in (4.28), we have
that log(χ(γ0))2w

(γ0−1)w = c
b is a unit and it is clear that the term inside the parentheses converges p-adically

to a unit. Now, in the notation of Lemma A.9, let us set i = 1, M = MΛ,+, f1 = ∇0 and take h1 to
be the product of c

b with the formula in the parentheses in (4.28), in particular, f1h1 = ∇q,w. Then,
from Lemma A.9, we obtain a natural quasi-isomorphism of complexes

KMΛ,+(∇q,τ ) ∼−→ KMΛ,+(∇q,w) ∼−→ KMΛ,+(∇0).

In particular, we get that M
∇q,τ =0
Λ,+

∼−→M∇0=0
Λ,+ . This allows us to conclude.
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Proposition 4.31. Set M := M∇0=0
Λ,+ as an R-module via the isomorphism R

∼−→ Λ∇0=0
R,+ . Then M

is finitely generated over R and we have a natural (φ,∇0)-equivariant isomorphism

ΛR,+ ⊗R M
∼−→MΛ,+

a⊗ x 7−→ ax.
(4.29)

Moreover, the de Rham complex MΛ,+ ⊗ΛF,+ Ω•
ΛF,+/OF

is ayclic in positive degrees. In particular,
from Proposition 4.30, we have H1(KMΛ,+(∇q,τ )) = 0.

Proof. The proof works in exactly the same manner as the proof of Proposition 4.25 by changing the
notations as follows: replace ΛR,0 with ΛR,+ = R[τ [k], k ∈ N]∧p and replace MΛ,0 with MΛ,+ equipped
with a Frobenius endomorphism (after inverting p) and a p-adically quasi-nilpotent flat connection
as in Proposition 4.30, where in the definition of the connection we replace the parameter z with w
and the operator ∇0 = 1

(p−1)z∇
log
0 with ∇0 = 1

2w∇
log
0 . Then the proof of the isomorphism (4.29) and

the cyclicity of the de Rham complex MΛ,+ ⊗ΛF,+ Ω•
ΛF,+/OF

in positive degrees follows by arguments
similar to the ones given, respectively, for the isomorphism (4.19) and the acyclicity of the de Rham
complex MΛ,+ ⊗ΛF,+ Ω•

ΛF,+/OF
in positive degrees, in Proposition 4.25.

4.4. Proof of Theorem 4.5. Let N be a Wach module over AR as above and consider the
AR(1)-module AR(1)⊗p2,AR

N equipped with the tensor product Frobenius and tensor product action
of Γ2

R, where Γ2
R acts on N via projection onto the second coordinate. Then, in Example 4.10, using the

action of 1× Γ′
R, we equipped AR(1)/p1(µ)⊗p2,AR

N with a q-connection, denoted as ∇q. Moreover,
in Proposition 4.13, we equipped AR(1)/p1(µ)⊗p2,AR

N with a connection, denoted as ∇, and showed
that we have (AR(1)/p1(µ)⊗p2,AR

N)∇=0 = (AR(1)/p1(µ)⊗p2,AR
N)∇q=0. Since the action of 1×Γ′

R

on AR(1)/p1(µ)⊗p2,AR
N is continuous, we deduce that

(AR(1)/p1(µ)⊗p2,AR
N)1×Γ′

R = (AR(1)/p1(µ)⊗p2,AR
N)∇q=0 = (AR(1)/p1(µ)⊗p2,AR

N)∇=0.

Next, from Proposition 4.17, let us recall that MΛ := (AR(1)/p1(µ) ⊗p2,AR
N)∇=0 is a finitely

generated ΛR-module, equipped with an induced action of (φ, ΓF ). Then from (4.6), we have that
by AR(1)/p1(µ)-linearly extending the natural inclusion MΛ ⊂ AR(1)/p1(µ) ⊗p2,AR

N , induces a
(φ,∇, ΓF )-equivariant, or equivalently, a (φ, ΓR)-equivariant isomorphism

AR(1)/p1(µ)⊗ΛR
MΛ

∼−→ AR(1)/p1(µ)⊗p2,AR
N.

Now, let us set M := MΓF
Λ as an R-module. Then, by using Proposition 4.22 and Proposition 4.25 for

p ≥ 3 and using Proposition 4.26 and Proposition 4.31 for p = 2, we see that M is a finitely generated
R-module. Moreover, since AR(1)/p1(µ)⊗p2,AR

N is p-torsion free by Lemma 4.11, therefore, we get
that M is p-torsion free as well. Furthermore, for p ≥ 3, using (4.13) in the proof of Proposition
4.22 and (4.19) in Proposition 4.25, and for p = 2, using (4.22) in Proposition 4.26 and (4.29) in
Proposition 4.31, we see that by ΛR-linearly extending the natural inclusion M ⊂ MΛ, we obtain a
(φ, ΓF )-equivariant isomorphism of ΛR-modules

ΛR ⊗R M
∼−→MΛ

a⊗ x 7−→ ax.
(4.30)

Putting everything together from the discussion above, we have the following diagram with (φ, 1×
ΓR)-equivariant arrows:

AR(1)/p1(µ)⊗p1,R M AR(1)/p1(µ)⊗p2,AR
N

AR(1)/p1(µ)⊗ΛR
MΛ.

(4.1)

≀ (4.30) ∼
(4.6)
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The diagram commutes by the definition of the arrows. Hence, it follows that (4.1) is an isomorphism.
Finally, it remains to show that we have a φ-equivariant isomorphism of R-modules M

∼−→ N/µN .
To show this claim, let us note that the multiplication map ∆ : AR(1)→ AR is (φ, ΓR×1)-equivariant,
where ΓR × 1 acts on AR via projection onto the first coordinate (see Lemma 3.78). Then the
multiplication map ∆ induces a φ-equivariant map ∆N : AR(1)⊗p2,AR

N → N . Reducing it modulo
p1(µ)n we obtain an AR/µn-linear and φ-equivariant map ∆N : AR(1)/p1(µ)n ⊗p2,AR

N → N/µnN .
For n = 1, we claim the following:

Proposition 4.32. Let M := (AR(1)/p1(µ)⊗p2,AR
N)1×ΓR as a finitely generated φ-module over R.

Then the map ∆N restricts to a φ-equivariant R-linear isomorphism

M = (AR(1)/p1(µ)⊗p2,AR
N)1×ΓR ∼−→ N/µN. (4.31)

Proof. By definition, we have that ∆N is φ-equivariant, so we only need to check the bijectivity of the
map in claim. Let us note that the composition R

p1−→ AR(1)/p1(µ) ∆−→ R is identity. Moreover, the
composition AR

p2−→ AR(1) ↠ AR(1)/p1(µ) ∆−→ R coincides with the map AR ↠ AR/µ = R. So we
have that,

∆N : M = R⊗∆,AR(1)/p1(µ)
(
AR(1)/p1(µ)⊗p1,R M

)
∼−→ R⊗∆,AR(1)/p1(µ)

(
AR(1)/p1(µ)⊗p2,AR

N
) ∼−→ AR/µ⊗AR

N = N/µN,

where the first isomorphism follows from the isomorphism in Theorem 4.5 and the second isomorphism
follows from the discussion above. Hence, we get the claim.

This completes the proof of Theorem 4.5.

Remark 4.33. Let N be a Wach module over AR. Then we have a φ-equivariant commutative
diagram,

AR(1)/p1(µ)⊗p1,AR
N AR(1)/p1(µ)⊗p2,AR

N

AR(1)/p1(µ)⊗p1,R N/µN AR(1)/p1(µ)⊗p1,R M,

∼

∼

≀ (4.32)

where the bottom horizontal arrow is the extension along p1 : R → AR(1)/p1(µ) of the inverse of
the isomorphism ∆N in (4.31), the right vertical arrow is (4.1) and the top horizontal arrow is the
composition of left vertical, bottom horizontal and left vertical arrows. Let us note that in Proposition
5.29, we will show that the map ∆N is equivariant for the action of 1 × ΓR on the source and the
action of ΓR on the target. Then it will follow that the bottom arrow in the diagram (4.32) is
(φ, 1× ΓR)-equivariant and therefore, the diagram (4.32) is also (φ, 1× ΓR)-equivariant.

5. Prismatic F -crystals and Wach modules
In this section, let X := Spf R denote a p-adic formal scheme, where R is the ring from Subsection
1.6. Our main goal in this section is to relate analytic/completed prismatic F -crystals on the absolute
prismatic site (Spf R)∆ (see Subsection 2.3) to Wach modules over AR (see Definition 4.1). We start
with the following construction:

Proposition 5.1. Let E be an object of Vectan(X∆) and set N := E(AR, [p]q). Then N is a finitely
generated AR-module equipped with a continuous action of ΓR such that the action of ΓR is trivial
on N/µN . Moreover, if E is an object of Vectan,φ(X∆), then N is a Wach module over AR.

Proof. First, by using Lemma 5.3, with E(AR, [p]q)[1/p] as a finite projective AR[1/p]-module and
E(AR, [p]q)[1/µ] as a finite projective AR[1/µ]-module, we see that the AR-module

N := E(AR, [p]q) = E(AR, [p]q)[1/p] ∩ E(AR, [p]q)[1/µ] ⊂ E(AR, [p]q)[1/p, 1/µ],
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is finitely generated and the sequences {p, µ} and {µ, p} are regular on N . Next, let g be any element
of ΓR and from Lemma 3.12 recall that g is an automorphism of (AR, [p]q) in X∆, i.e. we have that
g : (AR, [p]q) ∼−→ (AR, [p]q). Since, E is a crystal, it follows that base changing N = E(AR, [p]q) along
g, induces an AR-semilinear isomorphism g : AR ⊗g,AR

N
∼−→ N , in particular, a semilinear action of

ΓR. Note that AR/µ
∼−→ R, the pair (R, p) is a prism and an object of (Spf R)∆ and ΓR acts trivially on

R. Therefore, reducing the isomorphism g : AR ⊗g,AR
N

∼−→ N modulo µ, we obtain an isomorphism
g mod µ : R ⊗g,R N/µN

∼−→ N/µN , which is the identity, in particular, we see that the action of ΓR

is trivial on N/µN . Now, additionally assume that E is an F -crystal, i.e. an object of Vectan,φ(X∆).
Then, from Definition 2.22 we have an AR-linear isomorphism φN : (φ∗N)[1/[p]q] ∼−→ N [1/[p]q].
Again, using that E is a crystal and any g in ΓR is an automorphism of (AR, [p]q) in X∆, it is easy to
show that φN is equivariant for the action of ΓR on N described above. So, we see that N = E(AR, [p]q)
satisfies all the axioms of Definition 4.1, i.e. it is a Wach module over AR.

Remark 5.2. A claim similar to Proposition 5.1 holds for completed prismatic F -crystals. More
precisely, let E be an object of CR∧(X∆) and set N := E(AR, [p]q). Then, N is a finitely generated
AR-module equipped with a continuous action of ΓR such that the action of ΓR is trivial on N/µN .
Moreover, if E is an object of CR∧,φ(X∆), then N is a Wach module over AR.

Proof. By Definition 2.16, note that N := E(AR, [p]q) is a finitely generated (p, [p]q) = (p, µ)-adically
complete AR-module. Then, similar to the proof of Proposition 5.1, using that E is a crystal, we see
that any g in ΓR is an automorphism of (AR, [p]q) in X∆ and the action of ΓR is trivial on AR/µ

∼−→ R,
in particular, N is equipped with a semilinear action of ΓR such that the action of ΓR is trivial on
N/µN . Now additionally assume that E is an F -crystal, i.e. an object of CR∧,φ(X∆). So from
Definition 2.18, we have an AR-linear isomorphism φN : (φ∗N)[1/[p]q] ∼−→ N [1/[p]q] and similar to
above, it is easy to see that φN is ΓR-equivariant. It remains to show that the sequences {p, µ} and
{µ, p} are regular on N . Now, let S := RJuK, then the Breuil-Kisin prism (S, u− p) from Subsection
2.16 is an object of X∆ and a cover of the final object of the topos Shv(X∆) (see [DLMS24, Subsection
3.3]). Since (S, u − p) is a cover of the final object of Shv(X∆), there exists a prism (B, J) in X∆
so that it is (p, [p]q)-completely faithfully flat over (AR, [p]q) and admits a map from (S, u − p) in
X∆. Moreover, as AR is noetherian, it follows that the map AR → B is faithfully flat. Now using an
argument similar to [DLMS24, Lemma 3.19] we have that B ⊗AR

N
∼−→ E(B, J), therefore,

(B ⊗AR
N)[1/p] ∼−→ E(B, J)[1/p] ∼←− B ⊗S E(S, u− p)[1/p],

where the last isomorphism follows from [DLMS24, Lemma 3.24]. As E(S, u−p)[1/p] is finite projective
over S[1/p] and AR → B is faithfully flat, it follows that N [1/p] is finite projective over AR[1/p]. A
similiar argument (by inverting the prismatic ideal instead of p) shows that N [1/[p]q] is finite projective
over AR[1/[p]q]. Then, by using Lemma 5.3, we see that the sequences {p, [p]q} and {[p]q, p} are regular
on N , and therefore, the sequences {p, µ} and {µ, p} are regular on N by [Abh23b, Lemma 3.6]. Hence,
it follows that N satisfies all the axioms of Definition 4.1, in particular, it is a Wach module over AR.

Let a be an element of AR such that the sequences {p, a} and {a, p} are regular on AR and we
have an equality of zero loci V (p, a) = V (p, [p]q) inside Spec (AR). For example, we may take a = µ.
Then, we have the following:

Lemma 5.3. Let M be a finite projective AR[1/p]-module and D a finite projective AR[1/a]-module,
equipped with an AR[1/p, 1/a]-linear isomorphism f : AR[1/p, 1/a]⊗AR[1/p]M

∼−→ AR[1/p, 1/a]⊗AR[1/a]
D. Then N := M ∩ D ⊂ AR[1/p, 1/a] ⊗AR[1/a] D is a finitely generated AR-module, the sequences
{p, a} and {a, p} are regular on N , and N [1/p] ∼−→M and N [1/a] ∼−→ D.

Proof. Let S = Spec (AR), Z = V (p, a) ⊂ S as the zero locus of the ideal (p, a) ⊂ AR (the same
as the zero locus of (p, [p]q) ⊂ AR) and set j : U = S \ Z ⊂ S. Then, note that the natural map
Spec (AR[1/a]) ∪ Spec (AR[1/p])→ Spec (AR) \ V (p, a) = U is a flat cover. Therefore, from the data
(M, D, f) and faithfully flat descent we obtain a vector bundle F over U ⊂ S. Since S is irreducible
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and F is a vector bundle on it, therefore, the associated point of F is the generic point of U . Moreover,
by definition Z is of codimension 2, so for any z in Z and p the associated point of F in O∧

S,z, we
have that dim(O∧

S,z/p) ≥ 2. Then, from [Sta23, Tag 0BK1] it follows that j∗F is coherent, i.e.
N := H0(S, j∗F) = H0(U,F) = M ∩D ⊂ AR[1/p, 1/a]⊗AR[1/a] D is a finitely presented AR-module.
Furthermore, [Sta23, Tag 0BK0] implies that j∗j∗F ∼−→ F on U and H0

Z(N) = H1
Z(N) = 0. Now, an

easy argument (for example, see [Abh23b, Lemma 3.3] for a = µ) shows that the sequences {p, a} and
{a, p} are regular on N , and N [1/p] ∼−→ M and N [1/a] ∼−→ D (see [Abh23b, Lemma 3.5] for a = µ).
This allows us to conclude.

Remark 5.4. Let N be a finitely generated AR-module such that the sequences {p, µ} and {µ, p} are
regular on N . Then, from [Abh23b, Lemma 3.5], we have that N = N [1/p] ∩N [1/µ] ⊂ N [1/p, 1/µ].
Moreover, if N is equipped with an AR-linear isomorphism φN : φ∗(N)[1/[p]q] ∼−→ N [1/[p]q], then, by
[Abh23b, Proposition 3.11 & Remark 3.12] we have that the AR[1/p]-module N [1/p] is finite projective,
the AR[1/µ]-module N [1/µ] is finite projective and the AR[1/[p]q]-module N [1/[p]q] is finite projective.

From Proposition 5.1, note that we have a well-defined evaluation functor for analytic F -crystals:

ev∆
AR

: Vectan,φ(X∆) −→ (φ, ΓR)-Mod[p]q
AR

E 7−→ E(AR, [p]q).
(5.1)

Similarly, from Remark 5.2, we also obtain a well-defined evaluation functor for completed F -crystals:

ev∆
AR

: CR∧,φ(X∆) −→ (φ, ΓR)-Mod[p]q
AR

E 7−→ E(AR, [p]q).
(5.2)

Recall that from Lemma 3.11 we have that (AR, [p]q) covers the final object of the topos Shv(X∆).
Then we claim the following:

Theorem 5.5. The evaluation functors in (5.1) and (5.2) induce equivalences of categories.

Proof. The claim follows from Proposition 5.11 and Theorem 5.12 shown below.

In the rest of this section we will build the theory needed to state and prove Proposition 5.11 and
Theorem 5.12.

5.1. AR-modules with stratification. In order to prove Theorem 5.5 we will interpret crystals
in terms of modules with stratification. We begin with the definition of some cosimplicial objects in
Shv(X∆).

5.1.1. Stratifications. Using the cosimplicial object AR(•) in (Spf R)∆ as described in Construc-
tion 3.13, we define stratifications as follows:

Definition 5.6 (Prismatic stratification). A stratification on an AR-module N with respect to AR(•)
is an AR(1)-linear isomorphism ε : AR(1) ⊗p1,AR

N
∼−→ AR(1) ⊗p2,AR

N satisfying the following
conditions:

(1) The scalar extension ∆∗(ε) of ε by ∆ : AR(1)→ AR is the identity map on N .

(2) Cocycle condition, i.e. we have an isomorphism p∗
23(ε) ◦ p∗

12(ε) = p∗
13(ε) : AR(2) ⊗r1,AR

N
∼−→

AR(2)⊗r3,AR
N .

Let Strat(AR(•)) denote the category of AR-modules equipped with a stratification with respect to
AR(•). Additionally, we will say that N is analytic if the following holds:

(3) The sequences {p, µ} and {µ, p} are regular on N .

https://stacks.math.columbia.edu/tag/0BK1
https://stacks.math.columbia.edu/tag/0BK0
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Let Stratan(AR(•)) denote the full subcategory of analytic objects in Strat(AR(•)). Furthermore, we
will say that N is a φ-module over AR equipped with a stratification if N is finitely generated and
equipped with a Frobenius, i.e.

(4) An AR-linear isomorphism φN : φ∗(N)[1/[p]q] ∼−→ N [1/[p]q] compatible with the stratification
ε.

Let Stratan,φ(AR(•)) denote the category of analytic φ-modules over AR equipped with a stratification.

Now, we will relate the category Vectan,φ(X∆) of analytic prismatic F -crystals over X∆ to the
category Stratan,φ(AR(•)) of analytic φ-modules over AR equipped with a stratification.

Construction 5.7. Let E be an object of Vectan,φ(X∆) and set N := E(AR(0)) as an AR-module.
Then, by using Proposition 5.1, we have that N = E(AR, [p]q) is a finitely generated AR-module such
that the sequences {p, µ} and {µ, p} are regular on N . Moreover, N is equipped with an AR-linear
isomorphism φN : φ∗(N)[1/[p]q] ∼−→ N [1/[p]q]. Next, set D := E [1/I∆](AR, [p]q) = N [1/[p]q] as a
finite projective AR[1/[p]q]-module and note that D is equipped with a stratitification with respect to
AR(•) given as the composition

εD : AR(1)⊗p1,AR
D

p1−−→
∼

E [1/I∆](AR(1))
p−1

2−−−→
∼

AR(1)⊗p2,AR
D, (5.3)

such that ∆∗(εD) = id and εD satisfies the cocycle condition over AR(2). Similarly, set M :=
E [1/p](AR, [p]q) = N [1/p] as a finite projective AR[1/p]-module and note that M is equipped with a
stratitification with respect to AR(•) given as the composition

εM : AR(1)⊗p1,AR
M

p1−−→
∼

E [1/p](AR(1))
p−1

2−−−→
∼

AR(1)⊗p2,AR
M, (5.4)

such that ∆∗(εM ) = id and εM satisfies the cocycle condition over AR(2). Note that by definition, we
have an AR[1/p, 1/[p]q]-linear isomorphism f : AR[1/p, 1/[p]q]⊗AR[1/p]M

∼−→ AR[1/p, 1/[p]q]⊗AR[1/[p]q ]
D, and (5.3) and (5.4) are compatible with the preceding isomorphism, i.e. f◦(εM [1/[p]q]) = (εD[1/p])◦
f . Therefore, by taking the intersection of (5.3) with (5.4) inside AR[1/p, 1/[p]q] ⊗AR[1/[p]q ] D, and
noting that N = M ∩D and that the maps p1, p2 : AR → AR(1) are faithfully flat (see Lemma 3.15),
we obtain an isomorphism

ε : AR(1)⊗p1,AR
N

p1−−→
∼

E(AR(1))
p−1

2−−−→
∼

AR(1)⊗p2,AR
N, (5.5)

such that ∆∗(ε) = id and ε satisfies the cocycle condition over AR(2). Hence, N is an analytic
φ-module over AR equipped with a stratification and functorial in E . In particular, we have described
a well-defined natural functor

ev∆
AR(•) : Vectan,φ(X∆) −→ Stratan,φ(AR(•)), (5.6)

by sending a crystal E to the finitely generated AR-module N = E(AR(0)) equipped with a stratifica-
tion as in (5.5).

Proposition 5.8. The functor in (5.6) induces a natural equivalence of categories.

Proof. Let us first set U := Spec (AR) \ V (p, [p]q), U(1) := Spec (AR(1)) \ V (p, [p]q) equipped with
projection maps p1, p2 : U(1) → U and U(2) := Spec (AR(2)) \ V (p, [p]q) equipped with projection
maps p12, p23, p13 : U(2)→ U(1) (see Construction 3.13 for the projection maps). We define the cate-
gory Vectan,φ(AR(•)) of analytic prismatic F -crystals over (AR(•), I(•)) as follows (also see Definition
2.22): an object is a vector bundle E on U equipped with an isomorphism ε : p∗

1E
∼−→ p∗

2E of vector
bundles over U(1) such that ∆∗(ε) = id on E and ε satisfies the cocycle condition over U(2), i.e.
p∗

23(ε) ◦ p∗
12(ε) = p∗

13(ε). Moreover, E is equipped with an isomorphism φE : (φ∗E)[1/I] ∼−→ E [1/I].
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Then, from Lemma 3.11, Construction 3.13 and the well-known result describing the category of crys-
tals of vector bundles as modules equipped with a stratification (see [Ber74, Chapitre IV, Subsection
1.6]), it follows that the top horizontal arrow in the following diagram is a natural equivalence of
categories:

Vectan,φ(X∆) Vectan,φ(AR(•))

Stratan,φ(AR(•)).

∼

(5.6)
(5.7)

In (5.7), the right vertical arrow is defined by sending an object E to the finite AR-module N :=
H0(E , U) equipped with a Frobenius structure and a stratification as in (5.5) of Construction 5.7.
It is clear that the diagram (5.7) commutes by definition. We claim that the right vertical arrow in
(5.7) is an equivalence. Indeed, let us describe its quasi-inverse. Let N be an analytic φ-module over
AR equipped with a stratification. Note that the AR[1/p]-module M = N [1/p] is finite projective,
the AR[1/µ]-module D = N [1/µ] is finite projective and N = M ∩ D ⊂ D[1/p] (see Remark 5.4).
Then, from the proof of Lemma 5.3 we obtain a vector bundle E on U such that N

∼−→ H0(E , U)
and the stratification on N induces a stratification on E satisfying the desired properties. Hence, it
follows that this gives a quasi-inverse to the right vertical arrow in (5.7) and induces an equivalence
of categories. In particular, we get that the slanted vertical arrow in (5.7), i.e. (5.6) induces an
equivalence of categories.

Remark 5.9. Following arguments similar to Construction 5.7 and Proposition 5.8, it can also be
shown that we have a natural equivalence of categories,

ev∆
AR(•) : CR∧,φ(X∆) ∼−→ Stratan,φ(AR(•)). (5.8)

obtained by sending a crystal E to the finitely generated AR-module N = E(AR(0)) equipped with a
stratification similar to (5.5) in Construction 5.7.

In the rest of this subsection, we will show that the functor ev∆
AR(•) in (5.6) (resp. (5.8)) is suitably

compatible with the functor ev∆
AR

in (5.1) (resp. (5.2)), similar to [MT20, Lemma 3.16]. From Remark
3.20, recall that for n ∈ N, the product Γ×(n+1)

R of n + 1 copies of ΓR naturally acts on (AR(n), [p]q).
Moreover, from Proposition 3.17 we have that the action of the ith component of Γ×(n+1)

R is trivial on
AR(n)/(ni(µ)).

Construction 5.10. Let (N, ε) be an object of Stratan,φ(AR(•)), i.e. N is a finitely generated
AR-module on which the sequences {p, µ} and {µ, p} are regular, N is equipped with a stratifica-
tion ε with respect to AR(•) and an AR-linear isomorphism φN : φ∗(N)[1/[p]q] ∼−→ N [1/[p]q]. We
define a functor,

evStrat
AR

: Stratan,φ(AR(•)) −→ (φ, ΓR)-Mod[p]q
AR

, (5.9)

by setting the underlying AR-module to be N satisfying (1) and (3) of Definition 4.1. We equip N
with an action of ΓR as follows: Note that the Γ2

R-action on AR(1) induces a semilinear-action of ΓR

on N . Indeed, for each g in ΓR, the base change of the stratification ε along AR(1) (g,1)−−−→ AR(1) ∆−→ AR

defines an isomorphism AR ⊗g,AR
N

∼−→ N , i.e. a semilinear action of the element g on N . Moreover,
for any g′ in ΓR, base change of the aforementioned isomorphism along g′ : AR

∼−→ AR is the base
change of ε along g′ ◦∆ ◦ g = ∆ ◦ (g′g, g′). So, from Definition 5.6 it follows that the isomorphisms
AR ⊗g,AR

N
∼−→ N , for g in ΓR, define a semilinear action of ΓR on N . Finally, since the action of

ΓR× 1 is trivial on AR(1)/(p1(µ)), therefore, it follows that the induced action of ΓR on N/µN is also
trivial, and therefore, continuous by [Abh23b, Lemma 3.7]. Hence, N is a Wach module over AR in
the sense of Definition 4.1.

We have the following compatibility between the functors of (5.1), (5.6) and (5.9) (resp. (5.2),
(5.8) and (5.9))
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Proposition 5.11. The following diagram is commutative up to canonical isomorphisms:

Vectan,φ(X∆) Stratan,φ(AR(•)) CR∧,φ(X∆)

(φ, ΓR)-Mod[p]q
AR

.

∼
ev∆

AR(•)(5.6)

ev∆
AR

(5.1)
evStrat

AR
(5.9)

∼
ev∆

AR(•)(5.8)

ev∆
AR

(5.1)

Proof. We will only prove the commutativity of the left triangle; commutativity of the right triangle
follows by a similar argument. Let E be an object of Vectan,φ(X∆) and set (N, ε) := ev∆

AR(•)(E).
Since N = E(AR(0)) and AR(0) = AR, we note that the AR-module obtained by composing the top
horizontal arrow and the left vertical arrow is isomorphic (as an AR-module) to the module obtained
via the slanted vertical arrow. From Lemma 5.3, we know that the sequences {p, µ} and {µ, p} are
regular on N . The conditions on φN as explained in Proposition 5.1 and Construction 5.10 ensure
that the Frobenius on N is of finite [p]q-height. So it remains to check the compatibility of the action
of ΓR. Note that for each g in ΓR, the following diagrams commute:

AR(1) AR(1) AR(1) AR(1)

AR(0) AR(0), AR(0) AR(0).

(g,1)

∆

(g,1)

∆p1

g

p2

id

Therefore, the action of g on N = E(AR(0)) induced by the stratification ε (see Construction 5.10)
coincides with the action of g on E(AR(0)) induced by the action on AR(0) and crystal property
of E (see Proposition 5.1). Hence, evStrat

AR
(N, ε) ∼−→ E(AR(0)) = E(AR) = ev∆

AR
(E), allowing us to

conclude.

From Proposition 5.11, we note that in order to show that the functor ev∆
AR

induces an equivalence
of categories, it is enough to show that the functor evStrat

AR
induces an equivalence of categories.

5.2. Constructing stratifications on Wach modules. In this subsection we will show the
following claim:

Theorem 5.12. The functor in (5.9) induces a natural equivalence of categories

evStrat
AR

: Stratan,φ(AR(•)) ∼−→ (φ, ΓR)-Mod[p]q
AR

.

Proof. In (5.31), we will define a functor StratAR(•) from the category of Wach modules to the category
of φ-modules over AR equipped with a stratification with respect to AR(•). Moreover, in Proposition
5.31, we wil show that StratAR(•) is a quasi-inverse to the functor evStrat

AR
, thus extablishing the desired

catgeorical equivalence

In the rest of this subsection, we will construct the promised quasi-inverse to the functor evStrat
AR

,
where the non-trivial step is the construction of a stratification on a Wach module. Our strategy
will be similar to that of [MT20, Subsection 3.2]. However, as we are working with the Galois group
ΓR, which has “arithmetic = ΓF ” and “geometric = Γ′

R” parts, instead of beign a truely “geometric”
Galois group as considered in loc. cit., therefore, our arguments are of different nature and require
different computations. More precisely, recall that ΓR fits into the following exact sequence:

1 −→ Γ′
R −→ ΓR −→ ΓF −→ 1.

Furthermore, from (1.6), recall that ΓF fits into the following exact sequence:

1 −→ Γ0 −→ ΓF −→ Γtor −→ 1,
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where, for p ≥ 3, we have that Γ0
∼−→ 1 + pZp and for p = 2, we have that Γ0

∼−→ 1 + 4Z2.
Moreover, for p ≥ 3, we have that Γtor

∼−→ F×
p and the projection map ΓF → Γtor, admits a section

Γtor
∼−→ F×

p → Z×
p

∼←− ΓF , where the second map is given as a 7→ [a], the Teichmüller lift of a, and
the final isomorphism is induced by the p-adic cyclotomic character. Finally, for p = 2, we have that
Γtor

∼−→ {±1}, as groups.
Let us set N(1) := AR(1)⊗p2,AR

N equipped with the tensor product Frobenius and tensor product
action of Γ2

R, where Γ2
R acts on N via projection to the second coordinate. We will start by proving

some results on the cohomology of N(1) for the action of 1 × ΓR. The steps will be similar to the
“3-step” argument presented in Subsection 3.4. In particular, let us note that the results for the action
of the geometric part of ΓR in Subsection 5.2.1, are applicable for all primes p. However, for p = 2,
since F×

p is the trivial group, in Subsections 5.2.2 and 5.2.3, we will assume that p ≥ 3. For p = 2, the
arithmetic action of ΓR will be handled in Subsection 5.2.4. Finally, we will put everything together in
Subsection 5.2.5 to construct a stratification using the action of ΓR on Wach modules (see Proposition
5.31).

5.2.1. The action of Γ′
R. In this subsubsection, our first goal is to show the following claim:

Lemma 5.13. For each n ≥ 1, the following natural (φ, ΓR × ΓF )-equivariant sequence is exact:

0 −→ (N(1)/p1(µ))1×Γ′
R

p1(µ)n

−−−−−→ (N(1)/p1(µ)n+1)1×Γ′
R −→ (N(1)/p1(µ)n)1×Γ′

R −→ 0. (5.10)

Proof. The proof is similar to the proof of Lemma 3.43. To lighten notations, let us denote by
A(1) := AR(1), A(1) := AR(1)/p1(µ) and N(1) := N(1)/p1(µ). Instead of working with the action of
1 × Γ′

R, we will work with the q-connection arising from this action. More precisely, in the notation
of Definition 3.31, take D to be Λ̃R

∼−→ A(1)1×Γ′
R (see Lemma 3.47), and A to be A(1) equipped with

a Λ̃R-linear action of 1× Γ′
R and let {γ1, . . . , γd} be the topological generators of Γ′

R (see Subsection
3.1). Then, by setting q = 1 + p2(µ) and Ui = p2([X♭

i ]), for 1 ≤ i ≤ d, we know that A(1) satisfies the
hypothesis of Definition 3.31 (see the proof of Lemma 3.43). In particular, A(1) is equipped with a
Λ̃R-linear q-connection ∇q : A(1)→ qΩ1

A(1)/Λ̃R
, given as f 7→

∑d
i=1

γi(f)−f
p2(µ) d log(p2([X♭

i ])).
Next, we have that N is a Wach module over AR and N(1) = A(1)⊗p2,AR

N is equipped with the
tensor product Frobenius and the tensor product action of Γ2

R. Note that for any f ⊗ y in N(1) and
g in 1× ΓR, we have that (g − 1)(f ⊗ y) = (g − 1)y ⊗ y + g(f)⊗ (g − 1)y is in p2(µ)N(1). Therefore,
the operator

∇q : N(1) −→ N(1)⊗A(1) Ω1
A(1)/Λ̃R

x 7−→
d∑

i=1

γi(x)−x
p2(µ) d log([X♭

i ]),

satisfies the assumptions of Definition 4.7. Moreover, from the proof of Lemma 3.47 and Example
4.8, we see that the q-connection ∇q on N(1) is (p, µ)-adically quasi-nilpotent, and it is flat because
γi commute with each other. Let us also note that the action of 1 × Γ′

R is trivial on p1(µ) and
Λ̃R/p1(µ) ∼−→ ΛR

∼−→ A(1)1×Γ′
R (see (3.23), Example 3.36 and the proof of Lemma 3.47). Therefore,

we see that the q-connection on N(1), induced by reducing modulo p1(µ) the q-connection on N(1),
coincides with the q-connection on N(1) described in Example 4.10. Now consider the following exact
sequence of q-de Rham complexes:

0 −→ N(1)⊗A(1) qΩ•
A(1)/ΛR

p1(µ)n

−−−−−→ N(1)/p1(µ)n+1 ⊗A(1) qΩ•
A(1)/Λ̃R

−→

−→ N(1)/p1(µ)n ⊗A(1) qΩ•
A(1)/Λ̃R

−→ 0.

Since the action of 1×Γ′
R is continuous for the (p, p1(µ))-adic topology on N(1), therefore, we see that

(N(1)/p1(µ)n)1×Γ′
R = (N(1)/p1(µ)n)∇q=0. In particular, showing that (5.10) is exact, is equivalent to

showing that H1(
N(1)⊗A(1) qΩ•

A(1)/ΛR

)
= 0. Now, from Proposition 4.13, recall that the q-de Rham
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complex qΩ•
A(1)/ΛR

is naturally quasi-isomorphic to the de Rham complex Ω•
A(1)/ΛR

. Moreover, in
Proposition 4.17, we have shown that the de Rham complex N(1)⊗A(1) Ω•

A(1)/ΛR
is acyclic in positive

degrees, in particular, we see that H1(
N(1)⊗A(1) qΩ•

A(1)/ΛR

)
= H1(

N(1)⊗A(1) Ω•
A(1)/ΛR

)
= 0. Hence,

it follows that (5.10) is exact.

Let MΛ̃ := N(1)1×Γ′
R as a module over A(1)1×Γ′

R
∼←− Λ̃R (see Lemma 3.47), equipped with the

induced Frobenius and an induced semilinear and continuous action of ΓR × ΓF . Let us first note the
following:

Lemma 5.14. The sequence {p2(µ), p} is regular on MΛ̃.

Proof. From Definition 4.1 recall that {µ, p} is a regular sequence on N and p2 : AR → AR(1)
is faithfully flat from Lemma 3.15. Therefore, it follows that {p2(µ), p} is a regular sequence on
AR(1)⊗p2,AR

N . Since p2(µ) is invariant under the action of 1×Γ′
R, it follows that p2(µ)N(1)∩MΛ̃ =

p2(µ)MΛ̃. In particular, the natural map MΛ̃/p2(µ)MΛ̃ → N(1)/p2(µ)N(1) is injective. Hence,
MΛ̃/p2(µ)MΛ̃ is p-torsion free, as claimed.

Our next goal is to describe the action of 1 × ΓF ⊂ ΓR × ΓF on MΛ̃ more explicitly. So let us
consider the following (φ, 1× ΓF )-equivariant diagram

AR AR(1)

RJµK Λ̃R,

p2

∆′

ρ

ι ≀

where the map ι is described in Subsection 3.1, the map p2 is described in Subsection 3.2.2, the map
∆′ is described in Subsection 3.4.1 and we set ρ := ∆′ ◦ p2 ◦ ι. In particular, for the bottom horizontal
map we have that ρ(µ) = p2(µ) and ρ(Xi) = p1([X♭

i ]), for all 1 ≤ i ≤ d. Tensoring the right vertical
arrow with the Wach module N over AR, we obtain the following (φ, 1× ΓF )-equivariant map

∆′
N : N(1) = AR(1)⊗p2,AR

N −→ Λ̃R ⊗∆′◦p2,AR
N = Λ̃R ⊗ρ,RJµK N,

where we consider N as an RJµK-module via the isomorphism ι : RJµK ∼−→ AR, equipped with a
(φ, 1 × ΓF )-action (see Subsection 4.3.1). For each n ≥ 1, reducing the map ∆′

N modulo p1(µ)n and
taking (1× Γ′

R)-invariants of the source, we have the following (φ, 1× ΓF )-equivariant composition:

∆′
N : (N(1)/p1(µ)n)1×Γ′

R −→ (Λ̃R ⊗ρ,RJµK N)/p1(µ)n. (5.11)

Then we claim the following:

Lemma 5.15. For each n ≥ 1, the map ∆′
N in (5.11) is a (φ, 1 × ΓF )-equivariant isomorphism of

Λ̃R-modules. Moreover, (5.11) induces a Λ̃R-linear and (φ, 1× ΓF )-equivariant isomorphism

∆′
N : MΛ̃ := N(1)1×Γ′

R
∼−→ Λ̃R ⊗ρ,RJµK N. (5.12)

In particular, for each n ≥ 1, we have natural Λ̃R-linear and (φ, ΓR ×ΓF )-equivariant isomorphisms

MΛ̃/p1(µ)n ∼−→ (N(1)/p1(µ)n)1×Γ′
R . (5.13)

Proof. Note that for n = 1, from (5.11), we have the following ΛR-linear and (φ, ΓF )-equivariant
composition

MΛ = N(1)1×Γ′
R −→ ΛR ⊗ρ,RJµK N,

where N(1) := N(1)/p1(µ), and we have used that N(1)1×Γ′
R = N(1)∇q=0 = N(1)∇=0 = MΛ (in the

notations of Proposition 4.13 and Proposition 4.17), since the action of 1×Γ′
R is continuous on N(1).

Now, from Proposition 4.17 and Remark 4.18, we have that the composition above is precisely the
isomorphism in (4.7), in particular, for n = 1, (5.11) is an isomorphism. Now consider the following
Λ̃R-linear and (φ, 1× ΓF )-equivariant diagram
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0 MΛ (N(1)/p1(µ)n+1)1×Γ′
R (N(1)/p1(µ)n)1×Γ′

R 0

0 ΛR ⊗ρ,RJµK N (Λ̃R ⊗ρ,RJµK N)/p1(µ)n+1 (Λ̃R ⊗ρ,RJµK N)/p1(µ)n 0,

p1(µ)n

(5.11)≀ (5.11) (5.11)

p1(µ)n

where the first exact sequence is from (5.10). Using the diagram, an easy induction on n ≥ 1,
shows that the natural Λ̃R-linear and (φ, 1 × ΓF )-equivariant map in (5.11) is an isomorphism, i.e.
∆′

N : MΛ̃/p1(µ)n ∼−→ (Λ̃R ⊗ρ,RJµK N)/p1(µ)n. Moreover, as both N(1) and (Λ̃R ⊗ρ,RJµK N) are
p1(µ)-adically complete, taking the limit over n ≥ 1 and noting that limit commutes with right adjoint
functors, in particular, taking (1×Γ′

R)-invariants, we obtain the Λ̃R-linear and (φ, 1×ΓF )-equivariant
isomorphism in (5.12), i.e. ∆′

N : MΛ̃ = N(1)1×Γ′
R

∼−→ Λ̃R⊗ρ,RJµK N . Finally, note that for each n ≥ 1,
it is clear that we have a natural Λ̃R-linear and (φ, ΓR × ΓF )-equivariant inclusions MΛ̃/p1(µ)n ⊂
(N(1)/p1(µ)n)1×Γ′

R , in particular, the map in (5.13) is injective. Now consider the following Λ̃R-linear
and (φ, 1× ΓF )-equivariant morphisms

MΛ̃/p1(µ)n (5.13)−−−−→ (N(1)/p1(µ)n)1×Γ′
R

(5.11)−−−→
∼

(Λ̃R ⊗ρ,RJµK N)/p1(µ)n.

where it is easy to see that the composition is reduction modulo p1(µ)n of the isomorphism MΛ̃
∼−→

Λ̃R ⊗ρ,RJµK N . Since the last arrow is bijective, therefore, it follows that (5.13) is bijective as well.
This allows us to conclude.

5.2.2. The action of F×
p . In this subsubsection, we will assume p ≥ 3 and consider the invariants

of the exact sequence (5.10), for the action of 1× F×
p . More precisely, we claim the following:

Lemma 5.16. For each n ≥ 1, the following natural (φ, ΓR × Γ0)-equivariant sequence is exact:

0 −→M
F×

p

Λ
p1(µ)n

−−−−−→ (MΛ̃/p1(µ)n+1)1×F×
p −→ (MΛ̃/p1(µ)n)1×F×

p −→ 0. (5.14)

Proof. Using the Λ̃R-linear and (φ, ΓR×ΓF )-equivariant isomorphism (5.13), the exact sequence (5.10)
can be written as the following Λ̃R-linear and (φ, ΓR × ΓF )-equivariant exact sequence:

0 −→MΛ
p1(µ)n

−−−−−→MΛ̃/p1(µ)n+1 −→MΛ̃/p1(µ)n −→ 0.

By considering the associated long exact sequence for the cohomology of (1× F×
p )-action and noting

that H1(1 × F×
p , MΛ) = 0, since p − 1 is invertible in Zp, we obtain that the sequence in (5.14) is

exact.

Let us describe the Λ̃R-modules in Lemma 5.16 more explicitly. Recall that, from Construction
3.52, we have the ring Λ̃R,0 = Λ̃1×F×

p

R equipped with an induced Frobenius and an induced continuous
action of ΓR × ΓF . Moreover, MΛ̃ = N(1)1×Γ′

R is a Λ̃R-module equipped with an induced continuous
action of (φ, ΓR × ΓF ). Set MΛ̃,0 := M

1×F×
p

Λ̃ as a Λ̃R,0-module, equipped with an induced Frobenius
and an induced semilinear and continuous action of ΓR × Γ0. Furthermore, from (5.13) in Lemma
5.15, we have a natural ΛR-linear and (φ, 1 × ΓF )-equivariant isomorphism MΛ̃/p1(µ) ∼−→ MΛ, and
we set MΛ,0 := M

1×F×
p

Λ as a module over ΛR,0
∼←− Λ̃R,0/p1(µ) (see (3.29)), equipped with an induced

Frobenius and an induced semilinear and continuous action of Γ0. Then from the discussion before
(4.13), we have that MΛ,0 is a finitely generated ΛR,0-module and ΛR-linearly extending the natural
inclusion MΛ,0 ⊂ MΛ, induces a (φ, ΓF )-equivariant isomorphism of ΛR-modules ΛR ⊗ΛR,0 MΛ,0

∼−→
MΛ. More generally, we have the following:
Lemma 5.17. The Λ̃R,0-module MΛ̃,0 is finitely generated. Moreover, by Λ̃R-linearly extending the
natural inclusion MΛ̃,0 ⊂MΛ̃, we obtain a (φ, ΓR × ΓF )-equivariant isomorphism of Λ̃R-modules

Λ̃R ⊗Λ̃R,0
MΛ̃,0

∼−→MΛ̃

a⊗ x 7−→ ax.
(5.15)
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Furthermore, we have a natural (φ, Γ0)-equivariant isomorphism MΛ̃,0/p1(µ) = M
1×F×

p

Λ̃ /p1(µ) ∼−→

M
1×F×

p

Λ = MΛ,0.

Proof. From (5.12) in Lemma 5.15, we have a (φ, 1×ΓF )-equivariant isomorphism of Λ̃R-modules ∆′
N :

MΛ̃
∼−→ Λ̃R ⊗ρ,RJµK N , in particular, MΛ̃ is finitely generated over Λ̃R. Moreover, from Proposition

4.19, recall that N0 := NF×
p is a finitely generated module over RJµ0K = RJµKF×

p (see Lemma 3.4),
equipped with the induced action of (φ, Γ0), and we have a natural (φ, ΓF )-equivariant isomorphism
of RJµK-modules RJµK⊗RJµ0K N0

∼−→ N . Then, taking invariants of (5.12) under the action of 1×F×
p ,

induces a (φ, 1× Γ0)-equivariant isomorphism of Λ̃R,0-modules,

MΛ̃,0
∼−→ Λ̃R,0 ⊗ρ,RJµ0K N0. (5.16)

In particular, it follows that MΛ̃,0 is finitely generated over Λ̃R,0. Now consider the following natural
Λ̃R-linear diagram

Λ̃R ⊗Λ̃R,0
MΛ̃,0 MΛ̃

Λ̃R ⊗ρ,RJµ0K N0 Λ̃R ⊗ρ,RJµK N,

(5.15)

(5.16)≀ (5.11)≀

∼

where the bottom horizontal arrow is the extension along the (φ, 1×ΓF )-equivariant map ρ : RJµK→
Λ̃R (see the discussion before Lemma 5.15) of the (φ, ΓF )-equivariant isomorphism RJµK⊗RJµ0K N0

∼−→
N from Proposition 4.19. The diagram commutes by definition and it follows that the top horizontal
arrow, i.e. (5.15) is also an isomorphism. Finally, it is easy to see that the isomorphism (5.15) induces
a natural (φ, Γ0)-equivariant isomorphism MΛ̃,0/p1(µ) = M

1×F×
p

Λ̃ /p1(µ) ∼−→M
1×F×

p

Λ = MΛ,0.

Let us note an important observation for the action of ΓR × ΓF on MΛ̃.

Lemma 5.18. The action of 1 × ΓF is trivial on MΛ̃/p2(µ) and the action of ΓR × 1 is trivial on
MΛ̃/p1(µ).

Proof. From (5.12) in Lemma 5.15, recall that we have a (φ, 1 × ΓF )-equivariant isomorphism ∆′
N :

MΛ̃
∼−→ Λ̃R ⊗ρ,RJµK N . Now let g be any element of ΓF = 1× ΓF , then for any f ⊗ y in Λ̃R ⊗ρ,RJµK N ,

we have that
(g − 1)(f ⊗ y) = ((g − 1)f)⊗ y + g(f)⊗ (g − 1)y.

Since the action of 1×ΓF is trivial on Λ̃R/p2(µ) from Lemma 3.48 as well as on N/µN by definition, it
follows that (g−1)(f ⊗x) is an element of p2(µ)Λ̃R⊗ρ,RJµK N . Then using the (φ, 1×ΓF )-equivariant
isomorphism (5.12), it follows that for any x in MΛ̃, we have that (g − 1)x is an element of p2(µ)MΛ̃,
in particular, the action of 1 × ΓF is trivial on MΛ̃/p2(µ). Next, since the action of ΓR × 1 is trivial
on N(1)/p1(µ) (see the proof of Lemma 5.13), therefore, it easily follows that the induced action of
ΓR × 1 trivial on MΛ̃/p1(µ) ∼−→ (N(1)/p1(µ))1×Γ′

R (see (5.13) in Lemma 5.15). This concludes our
proof.

5.2.3. The action of 1 + pZp. In this subsubsection, we will assume that p ≥ 3 and consider
the invariants of the exact sequence (5.14), for the action of 1 × Γ0

∼−→ 1 × (1 + pZp), and show the
following:

Lemma 5.19. For each n ≥ 1, the following natural (φ, ΓR × 1)-equivariant sequence is exact:

0 −→M1×ΓF
Λ

p1(µ)n

−−−−−→ (MΛ̃/p1(µ)n+1)1×ΓF −→ (MΛ̃/p1(µ)n)1×ΓF −→ 0. (5.17)
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For each n ≥ 1, note that by reducing modulo p1(µ)n the (φ, ΓR × ΓF )-equivariant isomor-
phism in (5.15) and taking its (1× F×

p )-invariants, we obtain a (φ, ΓR × Γ0)-equivariant isomorphism
MΛ,0/p1(µ)n ∼−→ (MΛ/p1(µ)n)1×F×

p , because p1(µ) is invariant under the action of 1 × ΓF . Conse-
quently, the sequence in (3.31) can be rewritten as the following (φ, ΓR × Γ0)-equivariant sequence:

0 −→MΓ0
Λ,0

p1(µ)n

−−−−−→ (MΛ̃,0/p1(µ)n+1)1×Γ0 −→ (MΛ̃,0/p1(µ)n)1×Γ0 −→ 0. (5.18)

In order to prove that (5.18) is exact, we will now look at the action of ΓR × ΓF on MΛ̃ and MΛ̃,0,
respectively. We start with the following observation:
Lemma 5.20. The action of 1× Γ0 is trivial on MΛ̃,0/p2(µ0) and the action of ΓR × 1 is trivial on
MΛ̃,0/p1(µ).
Proof. Using the triviality of the action of 1 × ΓF on MΛ̃/p2(µ) from Lemma 5.18, the (φ, 1 ×
Γ0)-equivariant isomorphism MΛ̃,0

∼−→ Λ̃R,0 ⊗ρ,RJµ0K N0 (see (5.15) in Lemma 5.16) and the fact
that the action of 1 × Γ0 is trivial on Λ̃R,0/p2(µ0) (see Lemma 3.55) as well as on N0/µ0N0 (see
Proposition 4.19), it follows that the action of 1×Γ0 is trivial on MΛ̃,0/p2(µ0). Next, since the action
of ΓR × 1 is trivial on N(1)/p1(µ) (see the proof of Lemma 5.13), therefore, it easily follows that the
induced action of ΓR × 1 trivial on MΛ̃,0/p1(µ) ∼−→M

1×F×
p

Λ (see Lemma 5.17).

Remark 5.21. From Lemma 5.20, note that the action of 1 × Γ0 is trivial on MΛ̃,0/p2(µ0) and the
element p1(µ) is invariant under the action of 1×Γ0 on Λ̃R,0. Therefore, it follows that for any g in Γ0
and any x in MΛ̃,0/p1(µ)n we have that (g − 1)x is an element of p2(µ0)MΛ̃,0/p1(µ)n. In particular,
for n = 1, using the isomorphism MΛ̃,0/p1(µ) ∼←−MΛ,0 from Lemma 5.17, we get that for any g in Γ0
and any x in MΛ,0 the element (g − 1)x belongs to µ0MΛ,0.

Using the action of 1× Γ0 on MΛ̃,0, we will define a q-connection (see Definition 4.7). Recall that
in Subsection 3.4.3, in order to define a q-de Rham complex over Λ̃R,0, we fixed the following element
in Λ̃R,0 as a parameter (see (3.33)):

s̃ = 1⊗p̃−p̃⊗1
p̃⊗1 = p2(p̃)−p1(p̃)

p1(p̃)

Moreover, if γ0 is any element of 1×Γ0, then from Lemma 3.57 we have that (γ0− 1)s̃ = up2(µ0), for
some unit u in Λ̃R,0.

In the rest of this subsubsection, we will fix the choice of a topological generator γ0 of 1×Γ0 such
that χ(γ0) = 1 + pa, for a unit a in Zp. Let us now consider the following operator on MΛ̃,0:

∇q,s̃ : MΛ̃,0 −→MΛ̃,0

x 7→ (γ0−1)x
(γ0−1)s̃ .

(5.19)

From the triviality of the action of 1 × Γ0 on MΛ̃,0/p2(µ0) (see Lemma 5.20) and from Lemma 3.57,
it follows that the operator ∇q,s̃ is well-defined. For each n ∈ N, using Remark 5.21, the operator in
(5.19), induces well-defined operators ∇q,s̃ : MΛ̃,0/p1(µ)n −→ MΛ̃,0/p1(µ)n. As the operator ∇q,s̃ is
an endomorphism of MΛ̃,0/p1(µ)n, we can define the following two term Koszul complex:

KMΛ̃,0/p1(µ)n(∇q,s̃) :
[
MΛ̃,0/p1(µ)n ∇q,s̃−−−−→MΛ̃,0/p1(µ)n]

. (5.20)

In particular, for n = 1, we set s := µ0/p in ΛR,0, then using Remark 5.21 and the fact that (γ0−1)s =
vµ0, for some unit v in ΛF,0 (see Lemma 3.58), we have a well-defined operator

∇q,s : MΛ,0 −→MΛ,0

x 7→ (γ0−1)x
(γ0−1)s .

Note that the operator above coincides with the operator defined in (4.14) and the complex from (5.20)
for n = 1, coincides with the complex from (4.15). Therefore, from Proposition 4.25, we have that the
cohomology of the Koszul complex KMΛ,0(∇q,s) vanishes in degree 1, i.e. H1(KMΛ,0(∇q,s)) = 0.
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Remark 5.22. Considering s̃ as a parameter, similar to Remark 3.59, the operator ∇q,s̃ in (5.19),
may be considered as a q-connection in non-logarithmic coordinates, in the sense of Definition 4.7 and
Remark 3.32. Then, (4.15) is the q-de Rham complex arising from such a q-connection. Similarly,
considering s as a parameter, the operator ∇q,s on MΛ,0, may be also considered as a q-connection in
non-logarithmic coordinates, in the sense of Definition 4.7 and Remark 3.32.

Proof of Lemma 5.19. Note that using the (φ, ΓR × Γ0)-equivariant isomorphism MΛ,0/p1(µ)n ∼−→
(MΛ/p1(µ)n)1×F×

p (see the discussion before (5.18)), we can rewrite the exact sequence in (5.14) as
follows:

0 −→MΛ,0
p1(µ)n

−−−−−→MΛ̃,0/p1(µ)n+1 −→MΛ̃,0/p1(µ)n −→ 0.

Then, using the operator ∇q,s̃ in (5.19) and the Koszul complex defined in (5.20), we obtain an exact
sequence of Koszul complexes:

0 −→ KMΛ,0(∇q,s) p1(µ)n

−−−−−→ KMΛ̃,0/p1(µ)n+1(∇q,s̃) −→ KMΛ̃,0/p1(µ)n(∇q,s̃) −→ 0.

Considering the associated long exact sequence, and noting that H1(KMΛ,0(∇q,s)) = 0 from Proposi-
tion 4.25, we obtain the following exact sequence:

0 −→M
∇q,s=0
Λ,0

p1(µ)n

−−−−−→ (MΛ̃,0/p1(µ)n+1)∇q,s̃=0 −→ (MΛ̃,0/p1(µ)n)∇q,s̃=0 −→ 0.

Since the action of 1 × Γ0 is continuous on MΛ̃,0 for the (p, p1(µ))-adic topology, therefore, we see
that (MΛ̃,0/p1(µ)n+1)∇q,s̃=0 = (MΛ̃,0/p1(µ)n+1)1×Γ0 , for each n ∈ N. Hence, from the preceding exact
sequence we obtain that the sequence in (5.18) is exact, and therefore, the sequence (5.17) is exact as
well.

5.2.4. The case p = 2. In this subsubsection, our goal is to prove a statement similar to Lemma
5.19, for p = 2. From (1.6), recall that ΓF fits into the following exact sequence:

1 −→ Γ0 −→ ΓF −→ Γtor −→ 1,

where, we have that Γ0
∼−→ 1 + 4Z2 and Γtor

∼−→ {±1}, as groups.
We will first look at the action of Γtor on MΛ̃. Let σ denote a generator of Γtor. Then, from (A.2),

recall that by setting MΛ̃,+ := {x ∈MΛ̃ such that σ(x) = x} and MΛ̃,− := {x ∈MΛ̃ such that σ(x) =
−x}, we have a natural injective map of Λ̃R,+-modules

MΛ̃,+ ⊕MΛ̃,− −→MΛ̃, (5.21)

given as (x, y) 7→ x + y. Note that the action of 1× ΓF is continuous for the (p, p1(µ))-adic topology
on MΛ̃, so it follows that MΛ̃,+ is a (p, p1(µ))-adically complete Λ̃R,+-submodule of MΛ̃, stable under
the action of (φ, ΓR × ΓF ) on MΛ̃, and similarly, MΛ̃,− is a complete Λ̃R,+-submodule of MΛ̃, stable
under the action of (φ, ΓR × ΓF ). Equipping MΛ̃,+ and MΛ̃,− with induced structures, we see that
(5.21) is (φ, ΓR × ΓF )-equivariant.

Now, from (5.13), recall that MΛ̃/p1(µ) ∼−→ (N(1)/p1(µ))1×Γ′
R = MΛ. Similar to above, in

Subsection 4.3.3, we defined ΛR,+-modules MΛ,+ and MΛ,− and showed that their natural inclusion
in MΛ induces a natural (φ, ΓF )-equivariant isomorphism of ΛR,+-modules MΛ,+ ⊕MΛ,−

∼−→ MΛ,+
(see (4.21) in Lemma 4.26).

Lemma 5.23. For each n ≥ 1, reduction modulo p1(µ)n of (5.21), induces a natural (φ, ΓR ×
Γ0)-equivariant isomorphism

MΛ̃,+/p1(µ)n ∼−→ (MΛ̃/p1(µ)n)1×Γtor . (5.22)

Moreover, for n = 1, the (φ, ΓF )-equivariant isomorphism MΛ̃/p1(µ) ∼−→MΛ from (5.13), induces a
natural (φ, ΓF )-equivariant isomorphism

MΛ̃,+/p1(µ) ∼−→ (MΛ̃/p1(µ))1×Γtor ∼−→MΛ,+. (5.23)



Prismatic F -crystals and Wach modules 72

Proof. Let us consider the following natural (φ, ΓR × Γ0)-equivariant commutative diagram:

0 MΛ̃,+/p1(µ) MΛ̃,+/p1(µ)n+1 MΛ̃,+/p1(µ)n 0

0 (MΛ̃/p1(µ))1×Γtor (MΛ̃/p1(µ)n+1)1×Γtor (MΛ̃/p1(µ)n)1×Γtor 0,

p1(µ)n

(5.21) (5.21) (5.21)

p1(µ)n

(5.24)

where the top row is exact and the vertical maps are injective because we have p1(µ)nMΛ̃ ∩MΛ̃,+ =
p1(µ)nMΛ̃,+, as p1(µ) is invariant under the action of 1 × ΓF . As the action of 1 × Γtor ⊂ 1 × ΓF is
trivial on MΛ̃/p2(µ) from Lemma 5.18, therefore, for each n ≥ 1 and x in MΛ̃/p1(µ)n, we see that
(σ−1)x is an element of p2(µ)(MΛ̃/p1(µ)n). Then from Lemma A.11, it follows that the bottom right
horizontal arrow in (5.24) is surjective, in particular, the bottom row is exact.

Next, by composing the left vertical arrow in (5.24) with the (φ, ΓF )-equivariant isomorphism
MΛ̃/p1(µ) ∼−→MΛ from (5.13), we obtain a natural (φ, ΓF )-equivariant injective map MΛ̃,+/p1(µ)→
MΛ,+, and we will show that it is surjective as well. Indeed, since the action of 1 × ΓF is trivial on
MΛ̃/p2(µ) from Lemma 5.18 and the action of ΓF is trivial on MΛ/µMΛ using (4.7) in Proposition 4.17,
therefore, by using Lemma A.11 it follows that the Λ̃R-linear and (φ, 1 × ΓF )-equivariant surjective
map MΛ̃ ↠ MΛ from (5.13), induces a Λ̃R,+-linear and (φ, 1×Γ0)-equivariant surjective map MΛ̃,+ ↠
MΛ,+, which factors through (5.23). In particular, we get that the composition in (5.23) is bijective,
therefore, the left vertical arrow in (5.24) is also bijective. Now, using the diagram (5.24), an easy
induction on n ≥ 1, gives that for each n ≥ 1, the right vertical arrow is bijective. Hence, it follows
that the natural (φ, ΓR×Γ0)-equivariant map MΛ̃,+/p1(µ)n → (MΛ̃/p1(µ)n)1×Γtor , induced by (5.21),
is bijective for each n ≥ 1.

From Lemma 5.23, we obtain the following:

Lemma 5.24. For each n ≥ 1, the following natural (φ, ΓR × Γ0)-equivariant sequence is exact:

0 −→ (MΛ̃/p1(µ))1×Γtor p1(µ)n

−−−−−→ (MΛ̃/p1(µ)n+1)1×Γtor −→ (MΛ̃/p1(µ)n)1×Γtor −→ 0. (5.25)

Proof. The sequence (5.25) is the same as the second row of the diagram (5.22), which was shown to
be exact in the proof of Lemma 5.23.

Next, we will look at the action of 1× Γ0
∼−→ 1× (1 + 4Z2) on MΛ̃,+ and show the following:

Lemma 5.25. For each n ≥ 1, the following natural (φ, ΓR × 1)-equivariant sequence is exact:

0 −→ (MΛ̃/p1(µ))1×ΓF
p1(µ)n

−−−−−→ (MΛ̃/p1(µ)n+1)1×ΓF −→ (MΛ̃/p1(µ)n)1×ΓF −→ 0. (5.26)

For each n ≥ 1, note that by reducing modulo p1(µ)n the (φ, ΓR × ΓF )-equivariant isomorphism
in (5.15) and taking its (1 × Γtor)-invariants, we obtain a (φ, ΓR × Γ0)-equivariant isomorphism
MΛ,+/p1(µ)n ∼−→ (MΛ/p1(µ)n)1×Γtor , because p1(µ) is invariant under the action of 1 × ΓF . Con-
sequently, the sequence in (5.17) can be rewritten as the following (φ, ΓR × Γ0)-equivariant sequence:

0 −→MΓ0
Λ,+

p1(µ)n

−−−−−→ (MΛ̃,+/p1(µ)n+1)1×Γ0 −→ (MΛ̃,+/p1(µ)n)1×Γ0 −→ 0. (5.27)

In order to prove that (5.27) is exact, we will now look at the action of ΓR × ΓF on MΛ̃ and MΛ̃,+,
respectively. From (3.40) recall that we set ν = µ2

1+µ in AF , and we make the following observation:

Lemma 5.26. The action of 1× Γ0 is trivial on MΛ̃,+/p2(ν) and the action of ΓR × 1 is trivial on
MΛ̃,+/p1(µ).
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Proof. For the first claim, note that ν is invariant under the action of Γtor and we have that p2(ν)MΛ̃∩
MΛ̃,+ = p2(ν)MΛ̃,+. So, if x is an element of MΛ̃,+ and g any element of 1× Γ0, then it is enough to
show that (g − 1)x is an element of p2(ν)MΛ̃. Moreover, note that ν and µ2 differ by a unit in AF .
Therefore, we are reduced to showing that (g − 1)x is an element of p2(µ)2MΛ̃. Now, using Lemma
5.18, we can write (g − 1)x = p2(µ)y, for some y in MΛ̃. Let σ be a generator of 1 × Γtor and note
that σ(x) = x. Then, we have that σ(p2(µ))σ(y) = p2(µ)y, in particular, (σ − 1)y = −(2 + p2(µ))y.
Again using Lemma 5.18, we can write −p2([p]q)y = (σ − 1)y = p2(µ)z, for some z in MΛ̃. So we
get that −py = 0 mod p2(µ)MΛ̃. Note that (p2(µ), p) is a regular sequence on MΛ̃ (see Lemma 5.14).
Therefore, we conclude that y = 0 mod p2(µ)Λ̃R, i.e. y is an element of p2(µ)Λ̃R and (g−1)x = p2(µ)y
is an element of p2(µ)2Λ̃R, as claimed. The second claim easily follows from Lemma 3.48.

Remark 5.27. From Lemma 5.26, note that the action of 1 × Γ0 is trivial on MΛ̃,+/p2(ν) and the
element p1(µ) is invariant under this action. Therefore, it follows that for any g in 1× Γ0 and any x
in MΛ̃,+/p1(µ)n, we have that (g − 1)x is an element of p2(ν)MΛ̃,+/p1(µ)n. In particular, for n = 1,
using the isomorphism MΛ̃,+/p1(µ) ∼−→ MΛ,+ from (5.23), we get that for any g in Γ0 and any x in
MΛ,+, the element (g − 1)x belongs to νMΛ,+.

Using the action of 1× Γ0 on MΛ̃,+, we will define a q-connection (see Definition 4.7). Recall that
in Subsection 3.4.4, in order to define a q-de Rham complex over Λ̃R, we fixed the following element
in Λ̃R,+ as a parameter (see (3.42)):

τ̃ = 1
p2([p]q)δ

(p2([p]q)
p1([p]q) .

Moreover, if γ0 is any element of 1× Γ0, then from Lemma 3.71 we have that (γ0 − 1)τ̃ = up2(ν), for
some unit u in Λ̃R,+.

In the rest of this subsubsection, we will fix the choice of a topological generator γ0 of 1×Γ0 such
that χ(γ0) = 1 + 4a, for a unit a in Z2. Let us now consider the following operator on MΛ̃,+:

∇q,τ̃ : MΛ̃,+ −→MΛ̃,+

x 7→ (γ0−1)x
(γ0−1)τ̃ .

(5.28)

From the triviality of the action of 1 × Γ0 on MΛ̃,+/p2(ν) (see Lemma 5.26) and from Lemma 3.71,
it follows that the operator ∇q,τ̃ is well-defined. For each n ∈ N, using Remark 5.27, the operator in
(5.28), induces well-defined operators ∇q,τ̃ : MΛ̃,+/p1(µ)n −→ MΛ̃,+/p1(µ)n. As the operator ∇q,τ̃ is
an endomorphism of MΛ̃,+/p1(µ)n, we can define the following two term Koszul complex:

KMΛ̃,+/p1(µ)n(∇q,τ̃ ) :
[
MΛ̃,+/p1(µ)n ∇q,τ̃−−−−→MΛ̃,+/p1(µ)n]

. (5.29)

In particular, for n = 1, we set τ := ν/8 in ΛR,+, then using Remark 5.27 and the fact that (γ0−1)s =
vν, for some unit v in ΛF,+ (see Lemma 3.72), we have a well-defined operator

∇q,τ : MΛ,+ −→MΛ,+

x 7→ (γ0−1)x
(γ0−1)τ .

Note that the operator above coincides with the operator defined in (4.24) and the complex from (5.29)
for n = 1, coincides with the complex from (4.25). Therefore, from Proposition 4.31, we have that the
cohomology of the Koszul complex KMΛ,+(∇q,s) vanishes in degree 1, i.e. H1(KMΛ,+(∇q,τ )) = 0.

Remark 5.28. Considering τ̃ as a parameter, similar to Remark 3.73, the operator ∇q,τ̃ in (5.28),
may be considered as a q-connection in non-logarithmic coordinates, in the sense of Definition 4.7 and
Remark 3.32. Then, (4.25) is the q-de Rham complex arising from such a q-connection. Similarly,
considering s as a parameter, the operator ∇q,τ on MΛ,+, may be also considered as a q-connection in
non-logarithmic coordinates, in the sense of Definition 4.7 and Remark 3.32.
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Proof of Lemma 5.25. Note that by using the (φ, ΓR×Γ0)-equivariant isomorphism MΛ,+/p1(µ)n ∼−→
(MΛ/p1(µ)n)1×Γtor (see the discussion before (5.27)), we can rewrite the exact sequence in (5.25) as
follows:

0 −→MΛ,+
p1(µ)n

−−−−−→MΛ̃,+/p1(µ)n+1 −→MΛ̃,+/p1(µ)n −→ 0.

Then, using the operator ∇q,τ̃ in (5.28) and the Koszul complex defined in (5.29), we obtain an exact
sequence of Koszul complexes:

0 −→ KMΛ,+(∇q,τ ) p1(µ)n

−−−−−→ KMΛ̃,+/p1(µ)n+1(∇q,τ̃ ) −→ KMΛ̃,+/p1(µ)n(∇q,τ̃ ) −→ 0.

Considering the associated long exact sequence, and noting that H1(KMΛ,+(∇q,τ )) = 0 from Propo-
sition 4.31, we obtain the following exact sequence:

0 −→M
∇q,τ =0
Λ,+

p1(µ)n

−−−−−→ (MΛ̃,+/p1(µ)n+1)∇q,τ̃ =0 −→ (MΛ̃,+/p1(µ)n)∇q,τ̃ =0 −→ 0.

Since the action of 1×Γ0 is continuous on MΛ̃,+ for the (p, p1(µ))-adic topology, therefore, we see that
(MΛ̃,+/p1(µ)n+1)∇q,τ̃ =0 = (MΛ̃,+/p1(µ)n+1)1×Γ0 , for each n ∈ N. Hence, from the preceding exact
sequence we obtain that the sequence in (5.27) is exact, and therefore, the sequence (5.26) is exact as
well.

5.2.5. Stratification on Wach modules. In this subsubsection we will construct a stratification
on a Wach module over AR and prove Proposition 5.31 stated below. The most important input for
our arguments is Theorem 4.5.

Let N be the Wach module over AR and set recall that N(1) = AR(1)⊗p2,AR
N is equipped with

a (φ, Γ2
R)-action (see the discussion before Subsection 5.2.1). Moreover, from the discussion before

Proposition 4.32, recall that we have a φ-equivariant homomorphism ∆N : N(1) → N induced by
tensoring ∆ : AR(1)→ AR with N . After reducing ∆N modulo p1(µ)n, we claim the following:

Proposition 5.29. Let n ∈ N≥1 then ∆N modulo p1(µ)n restricts to a (φ, ΓR × 1)-equivariant
isomorphism of AR/µn-modules

∆N : (N(1)/p1(µ)n)1×ΓR ∼−→ N/µnN.

where the AR-module structure on the source is defined via the map p1 : AR → AR(1).

Proof. Let us first consider the following (φ, 1×ΓR)-equivariant short exact sequence of AR(1)-modules:

0 −→ N(1)/p1(µ) p1(µ)n

−−−−−→ N(1)/p1(µ)n+1 −→ N(1)/p1(µ)n −→ 0

Then for p ≥ 3 using Lemma 5.13, Lemma 5.16 and Lemma 5.19, and for p = 2 using Lemma 5.13,
Lemma 5.24 and Lemma 5.25, it follows that the following (φ, ΓR × 1)-equivariant sequence is exact:

0 −→ (N(1)/p1(µ))1×ΓR
p1(µ)n

−−−−−→ (N(1)/p1(µ)n+1)1×ΓR −→ (N(1)/p1(µ)n)1×ΓR −→ 0. (5.30)

Now, consider the following φ-equivariant commutative diagram with exact rows:

0 (N(1)/p1(µ))1×ΓR (N(1)/p1(µ)n+1)1×ΓR (N(1)/p1(µ)n)1×ΓR 0

0 N/µN N/µn+1N N/µnN 0,

p1(µ)n

≀ ∆N ∆N ∆N

µn

where the top row is the exact sequence in (5.30). For n = 1, from Theorem 4.5, in particular, from
Proposition 4.32, recall that we have the isomorphism ∆N : (N(1)/p1(µ))1×ΓR

∼−→ N/µN . Then, by
using the diagram, an easy induction on n ≥ 1, gives the φ-equivariant isomorphism

∆N : (AR(1)/p1(µ)n+1 ⊗p2,AR
N)1×ΓR ∼−→ N/µn+1N.
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Finally, we need to check the (ΓR × 1)-equivariance of ∆N , the proof of which is similar to that of
[MT20, Lemma 3.19]. From Lemma 3.78 recall that for any g in ΓR and a in AR(1)/p1(µ)n+1, we
have that ∆((g, g)a) = g(a), which implies that ∆N ((g, g)(x)) = g(∆N (x)), for any g in ΓR and x
in N(1)/p1(µ)n+1. So if x is (1 × ΓR)-invariant, then for g1, g2 in ΓR, we have that ∆N ((g1, g2)x) =
∆N ((g1, g1)x) = g1(∆N (x)). This concludes our proof.

An immediate consequence of Proposition 5.29 is the following:

Proposition 5.30. Let N be a Wach module over AR. Then the (φ, ΓR)-equivariant homomorphism
∆N : AR(1) ⊗p2,AR

N → N induced by ∆ : AR(1) → AR restricts to a (φ, ΓR × 1)-equivariant
isomorphism of AR-modules

∆N : (AR(1)⊗p2,AR
N)1×ΓR ∼−→ N,

where the AR-module structure on the source is defined via the map p1 : AR → AR(1).

Proof. Note that by construction ∆N is (φ, ΓR× 1)-equivariant. Moreover, AR is µ-adically complete
and N is a finite AR-module, in particular, we have that N = limn N/µnN . Similarly, AR(1) is
p1(µ)-adically complete, so we have that AR(1)⊗p2,AR

N = limn
(
AR(1)/p1(µ)n⊗p2,AR

N
)
. Now, recall

that inverse limit commutes with right adjoint functors, in particular, with taking (1×ΓR)-invariants.
So we get that

(AR(1)⊗p2,AR
N)1×ΓR =

(
lim

n
AR(1)/p1(µ)n ⊗p2,AR

N
)1×ΓR

= lim
n

(
AR(1)/p1(µ)n ⊗p2,AR

N
)1×ΓR ∼−−→

∆
lim

n
N/µnN = N,

where the isomorphism follows from Proposition 5.29. This concludes our proof.

Using Proposition 5.30 we can define a natural stratification on a Wach module over AR as follows:

Proposition 5.31. Let N be a Wach module over AR and let ε : AR(1)⊗p1,AR
N → AR(1)⊗p2,AR

N
be the AR(1)-linear homomorphism induced by the inverse of the isomorphism in Proposition 5.30.
Then we have the following:

(1) The homomorphism ε is a stratification on N with respect to AR(•).

(2) The action of ΓR on evStrat
AR

(N, ε), whose underlying AR-module is N , coincides with the original
action of ΓR on N , i.e. evStrat

AR
(N, ε) ∼−→ N as Wach modules over AR.

Let us first note that the construction of the stratification ε in Proposition 5.31 is functorial in N .
In particular, we have defined a functor

StratAR(•) : (φ, ΓR)-Mod[p]q
AR
−→ Stratan,φ(AR(•)). (5.31)

Moreover, from the statement of Proposition 5.31 it is clear that the functor StratAR(•) in (5.31) is a
quasi-inverse to the functor evStrat

AR
in (5.9). We note the following:

Lemma 5.32. The AR(1)-linear homomorphism ε in Proposition 5.31 is Γ2
R-equivariant.

Proof. It is enough to show that ε(1 ⊗ g1(y)) = (g1, g2)(ε(1 ⊗ y)), for all y in N and g1, g2 in ΓR.
Similar to the last part of the proof of Proposition 5.29 we note that for any x in AR(1)⊗p1,AR

N , we
have that ∆N ((g1, g2)x) = g1(∆N (x)). Then, by setting y = ∆N (x) we get the claim.

The goal of the rest of this subsubsection is to prove Proposition 5.31. To this end, we need a result
analogous to Proposition 5.30 over AR(2). Recall that we have (φ, Γ3

R)-equivariant maps ri : AR →
AR(2), for i = 1, 2, 3, where AR(2) is equipped with an action of Γ3

R as discussed before Construction
5.10 and AR is equipped with an action of Γ3

R via projection onto the ith-coordinate. Similarly, we
have natural (φ, Γ3

R)-equivariant maps pij : AR(1)→ AR(2) for (i, j) ∈ {(1, 2), (2, 3), (1, 3)} and where
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AR(2) is equipped with an action of Γ3
R via projection onto the (i, j)th-coordinate. Now, let N be a

Wach module over AR as above and consider the AR(2)-module AR(2) ⊗r3,AR
N equipped with the

tensor product Frobenius and the tensor product action of Γ3
R, where Γ3

R acts on N via projection onto
the third coordinate. Note that the multiplication map ∆ : AR(2)→ AR is (φ, ΓR×1×1)-equivariant,
where ΓR×1×1 acts on AR via projection onto the first coordinate. The multiplication map ∆ induces
a (φ, ΓR × 1 × 1)-equivariant map ∆N : AR(2) ⊗r3,AR

N → N , where ΓR × 1 × 1 acts on N (in the
target) via projection onto the first coordinate. Then we claim the following:

Proposition 5.33. Let N be a Wach module over AR. Then the homomorphism ∆N : AR(2)⊗r3,AR

N → N induced by ∆ : AR(2)→ AR restricts to an injective map

∆N : (AR(2)⊗r3,AR
N)1×ΓR×ΓR −→ N.

Proof. Recall that inverse limit commutes with right adjoint functors, in particular, with taking
(1 × ΓR × ΓR)-invariants. Moreover, AR is µ-adically complete, N is a finite AR-module and AR(2)
is p1(µ)-adically complete. Therefore, we have that,

(AR(2)⊗r3,AR
N)1×ΓR×ΓR = (lim

n
AR(2)/p1(µ)n ⊗r3,AR

N)1×ΓR×ΓR

= lim
n

(AR(2)/p1(µ)n ⊗r3,AR
N)1×ΓR×ΓR

∆N−−−→ lim
n

N/µnN = N.

Since limit is a left exact functor, to show the claim, it is enough to show that the following map is
injective

(AR(2)/p1(µ)n ⊗r3,AR
N)1×ΓR×ΓR −→ N/µnN.

We will show this by induction on n ∈ N≥1. For n = 1, from Theorem 4.5, in particular, from Remark
4.33, recall that we have a (φ, Γ2

R)-equivariant isomorphism (see (4.32)),

AR(1)/p1(µ)⊗p1,AR
N

∼−→ AR(1)/p1(µ)⊗p2,AR
N,

where Γ2
R acts on N in the left hand term via projection onto the first coordinate and on N in the right

hand term via projection onto the second coordinate. Moreover, the composition AR
p1−−→ AR(1) p13−−−→

AR(2) coincides with the composition AR
r1−−→ AR(2). Similarly, the composition AR

p2−−→ AR(1) p13−−−→
AR(2) coincides with the composition AR

r3−−→ AR(2). So, by base changing the top horizontal
isomorphism in (4.32) along AR(1) p13−−−→ AR(2), we obtain a (φ, Γ3

R)-equivariant isomorphism

AR(2)/p1(µ)⊗r1,AR
N

∼−→ AR(2)/p1(µ)⊗r3,AR
N, (5.32)

where Γ3
R acts on N in the source via projection onto the first coordinate and on N in the target via

projection onto the third coordinate. Now consider the following diagram,

(AR(2)/p1(µ)⊗r1,AR
N)1×ΓR×ΓR (AR(2)/p1(µ)⊗r3,AR

N)1×ΓR×ΓR

N/µN N/µN,

∼

∆N

∼
id

r1≀

where the top horizontal arrow is obtained as (1 × ΓR × ΓR)-invariant of (5.32) and the left vertical
arrow is the natural isomorphism from Lemma 5.34. The commutativity of the diagram follows from
(4.32) and the observation that the composition AR

r1−−→ AR(2) ∆−−→ AR is the identity. Therefore,
the right vertical arrow is bijective as well, i.e. we obtain a (φ, ΓR)-equivariant isomorphism

(AR(2)/p1(µ)⊗r3,AR
N)1×ΓR×ΓR ∼−→ N/µN.

To prove our claim, we will now proceed by induction on n ≥ 1. From the discussion above, we see that
the claim is true for n = 1, so let N(2) := AR(2)/p1(µ)⊗r3,AR

N and assume that ∆N mod p1(µ)n is
injective for some n ∈ N≥1. Now consider the following diagram with exact rows



Prismatic F -crystals and Wach modules 77

0 (N(2)/p1(µ))1×ΓR×ΓR (N(2)/p1(µ)n+1)1×ΓR×ΓR Q 0

0 N/µN N/µn+1N N/µnN 0,

p1(µ)n

≀ ∆N ∆N ∆N

where Q is the cokernel of the top left horizontal arrow. It is easy to see that we have an injective
map Q→ (N(2)/p1(µ)n)1×ΓR×ΓR

∆N−−−→ N/µnN , where the injectivity of the first map is obtained by
considering the long exact sequence for the (1 × ΓR × ΓR)-cohomology of the short exact sequence
0 → N(2)/p1(µ) p1(µ)n

−−−−→ N(2)/p1(µ)n+1 → N(2)/p1(µ)n, and the second map is injective by the
induction assumption. Therefore, it follows that the middle vertical arrow in the diagram above is
injective as well. This proves the claim, allowing us to conclude.

The following result was used above:

Lemma 5.34. Extending scalars along r1 : AR → AR(1), gives a (φ, Γ3
R)-equivariant map r1 : N →

AR(2) ⊗r1,AR
N . Then, reduction modulo µ, restricts r1 to an R-linear φ-equivariant isomorphism

r1 : N/µN
∼−→ (AR(2)/p1(µ)⊗r1,AR

N)1×ΓR×ΓR .

Proof. Note that the map r1 : R
∼−→ (AR(2)/p1(µ))1×ΓR×ΓR is a φ-equivariant isomorphism by

Remark 3.76. Moreover, we have that,

(AR(2)/p1(µ)⊗r1,AR
N)1×ΓR×ΓR = (AR(2)/p1(µ))1×ΓR×ΓR ⊗r1,AR

N.

Hence, we get the claimed isomorphism r1 : N/µN
∼−→ (AR(2)/p1(µ)⊗r1,AR

N)1×ΓR×ΓR .

We have all the necessary input to prove Proposition 5.31 similar to that the proof of [MT20,
Proposition 3.18].

Proof of Proposition 5.31. For the first claim, note that from the definition of ε it is clear that its base
change along ∆ : AR(1) → AR is the identity. Moreover, by using Lemma 5.32 we get that the base
changes p∗

ij(ε) : AR(2)⊗ri,AR
N → AR(2)⊗rj ,AR

N , for (i, j) ∈ {(1, 2), (2, 3), (1, 3)} are Γ3
R-equivariant.

Therefore, restrictions of p∗
13(ε) and p∗

23(ε) ◦ p∗
12(ε) to N have images in (AR(2) ⊗r3,AR

N)1×ΓR×ΓR ,
and their composition with the injective map ∆N in Proposition 5.33 is the identity. So it follows
that p∗

13(ε) = p∗
23(ε) ◦ p∗

12(ε), since both sides are AR(2)-linear. We also get that ε is an isomorphism
since we can give its inverse as its base change along the involution AR(1) ∼−→ AR(1) swapping the
two factors. This proves the first claim.

To show the second claim, let g in ΓR. From Lemma 5.32 we have the following diagram

AR(1)⊗(γ,1),AR(1) (AR(1)⊗p1,AR
N) AR(1)⊗(γ,1),AR(1) (AR(1)⊗p2,AR

N)

AR(1)⊗p1,AR
N AR(1)⊗p2,AR

N.

∼
1⊗ε

1⊗(g,1)≀ 1⊗(g,1)≀

∼
ε

From the diagram it is clear that the image of any x in N under the left vertical arrow is g(x) while its
image under the right vertical arrow is x. Base changing the diagram along the (ΓR × 1)-equivariant
map ∆ : AR(1)→ AR, we obtain the following diagram:

AR ⊗g,AR
N N

N N,

∼
∆∗((g,1)∗(1⊗ε))

1⊗g≀ id≀

∼
id

where the left vertical arrow is the action of g on N . This concludes our proof.
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A. Some basic definitions and lemmas
In this section, we collect some standard definitions to enhance the readability of the text. For more
details, the reader should look at the cited references. Let p be a fixed prime number.

A.1. Basic definitions. Let R be a commutative ring and let D(R) denote the derived∞-category
of R-modules.

Definition A.1. Let S denote a commutative R-algebra. Take P• → S to be a simplicial resolution
of S by polynomial R-algebras. Define the cotangent complex of R→ S to be the simplicial S-module
LS/R := Ω1

P•/R ⊗P• S. Its wedge powers will be denoted by ∧i
SLS/R = Ωi

P•/R ⊗P• R for i ≥ 1. This
definition is independent of the choice of the resolution P•.

Remark A.2. The object in D(R) defined by LS/R coincides with that attached to the simplicial
R-module Ω1

P•/A via the Dold-Kan correspondence (and similarly for the wedge powers). One may
also obtain LS/R by left Kan extending the functor Ω1

−/R on polynomial R-algebras to all simplicial
commutative R-algebras. Restricting to commutative R-algebras one obtains the cotangent complex
(upto isomorphism) described in Definition A.1.

Definition A.3. Let a, b ∈ Z ∪ {±∞}.

(1) An object M in D(R) has p-complete Tor amplitude in [a, b] if M ⊗L
R R/pR in D(R/pR) has Tor

amplitude in [a, b].

(2) An object M in D(R) is p-completely (faithfully) flat if M⊗L
R R/pR in D(R/pR) is concentrated

in degree 0 and it is a (faithfully) flat R/pR-module.

Definition A.4 (Quasisyntomic site, [BMS19, Definition 4.10]). We define the following:

(1) A ring R is called quasisyntomic if it is p-complete, has bounded p∞-torsion and LR/Zp
in D(R)

has p-complete Tor amplitude in [−1, 0]. Denote by Qsyn the category of quasisyntomic rings.

(2) A map R → S of p-complete rings with bounded p∞-torsion is said to be quasyntomic (resp.
quasisyntomic cover) if S is p-completely flat (resp. p-completely faithfully flat) over R and LS/R

in D(S) has p-complete Tor amplitude in [−1, 0]. Endow Qsynop with the structure of a site via
the quasisyntomic covers (see [BMS19, Lemma 4.17]).

Definition A.5 (Perfectoid rings, [BMS18, Definition 3.5]). A ring R is called perfectoid if it is
p-adically complete and there is some π in R such that πp = pu for some unit u in R×, the ring
R/p is semiperfect, i.e. the absolute Frobenius map on R/p is surjective, and the kernel of the map
θ : Ainf(R)→ R is principal.

Definition A.6 (Quasiregular semiperfectoid rings, [BMS19, Definition 4.20]). A ring S is called
quasiregular semiperfectoid if S is quasisyntomic in the sense of Definition A.4 (1), there exists a map
R → S with R perfectoid in the sense of Definition A.5 and S/pS is semiperfect, i.e. the Frobenius
on S/pS is surjective. Denote by Qrsp the category of quasiregular semiperfectoid rings and endow
Qrspop with the topology generated by quasisyntomic covers.

Definition A.7. Let (X,O) denote a ringed topos. An O-module E is called a vector bundle on
(X,O) if there exists a cover {Ui} of X and finite projective O(Ui)-modules Pi such that E |Ui

∼−→
Pi ⊗O(Ui) OUi , for each i. Denote by Vect(X,O) the category of all vector bundles on (X,O).

Definition A.8 (Koszul complex, [BMS18, Definition 7.1]). Let M be an abelian group and for
i = 1, . . . , d, let fi : M → M denote d commuting endomorphisms of M . The Koszul complex
KM (f1, . . . , fd) is defined to be the following complex:

M
(f1,...,fd)−−−−−−→

⊕
1≤i≤d

M −→
⊕

1≤i1<i2≤d

M −→ · · · −→
⊕

1≤i1<···<ik≤d

M −→ · · · ,
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where the differential from M at the index i1 < · · · < ik to M at the index j1 < · · · < jk+1 is nonzero
if and only if the set {i1, . . . , ik} is contained in the set {j1, . . . , jk+1}, and in that case the differential
is given as (−1)nfjn , where n is the unique integer in {1, . . . , k + 1} such that jn does not belong to
the set {i1, . . . , ik}.

We note the following fact from the proof of [BMS18, Corollary 12.5]:

Lemma A.9. For 1 ≤ i ≤ d, if fi are d commuting endomorphisms of an abelian group M and hi are
d automorphisms of M commuting with each other and f ′

is, then we have a natural quasi-isomorphism
of complexes

KM (f1h1, . . . , fdhd) ∼−→ KM (f1, . . . , fd).

A.2. Modules with Z×
p -action. In this subsection, we will consider objects admitting a con-

tinuous action of ΓF
∼−→ Z×

p . From (1.6), recall that ΓF
∼−→ Z×

p , via the p-adic cyclotomic character,
fits into the following exact sequence:

1 −→ Γ0 −→ ΓF −→ Γtor −→ 1,

where, for p ≥ 3, we have Γ0
∼−→ 1 + pZp and for p = 2, we have Γ0

∼−→ 1 + 4Z2. Moreover,
for p ≥ 3, we have that ω : Γtor

∼−→ F×
p and the projection map ΓF → Γtor, admits a section

Γtor
∼−→ F×

p → Z×
p

∼←− ΓF , where the second map is given as a 7→ [a], the Teichmüller lift of a. Finally,
for p = 2, we have Γtor

∼−→ {±1}, as groups.

A.2.1. The action of F×
p . In this subsubsection, we will assume that p ≥ 3 and recall the definition

of F×
p -decomposition from [Iwa59, Section 3] (∆-decomposition in loc. cit.). For 0 ≤ i ≤ p− 2, let ϵi

denote the following element in the group ring ZpJΓF K:

ϵi = 1
p−1

∑
a∈Fp

ω(a)−ia.

Then it is easy to check that we have ϵ2
i = ϵi, ϵiϵj = 0 for i ̸= j, ∑p−2

i=0 ϵi = 1.
Now, let M be a compact Zp-module admitting a continuous action of ΓF . Set Mi := ϵi(M) for

0 ≤ i ≤ p− 2. Then we have a canonical decomposition of M as follows:

M =
p−1⊕
i=0

Mi. (A.1)

Here, each Mi can also be characterised as the submodule of all x in M such that ax = ω(a)ix for all
a in F×

p . We will refer to the decomposition of M in (A.1) as the F×
p -decomposition of M . Moreover,

since the action of F×
p and Γ0 commute with each other, therefore, we see that each Mi admits a

continuous action of Γ0.

A.2.2. The action of {±1}. In this subsubsection, we will assume that p = 2 and recall the
following construction: Let M be a compact Zp-module admitting a continuous action of ΓF and
let σ be a generator of Γtor

∼−→ {±1}. Then we set M+ := {x ∈ M such that σ(x) = x} and
M− := {x ∈ M such that σ(x) = −x}. Using these notations, we have a canonical injective map of
Zp-modules

M+ ⊕M− −→M, (A.2)
sending (x, y) 7→ x + y. Note that the map (A.2) need not be surjective. If M = A is a Zp-algebra,
then it is easy to verify that A+ is a Zp-algebra as well, A− is an A+-module and the map in (A.2) is
A+-linear.

Let us consider the ring ZpJq− 1K and equip it with a Zp-linear action of Γtor given as σ(q) = q−1.
Let M be a topological ZpJq − 1K-module admitting an action of Γtor such that the induced action of
Γtor is trivial on M/(q − 1)M , in particular, ZpJq − 1K satisfies these conditions. Then we note that
the operator ∇σ := σ−1

q−1 is well-defined on M and we claim the following:
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Lemma A.10. The ZpJq − 1K-module M admits an ZpJq − 1K∇σ=0-linear decomposition M =
M∇σ=0 ⊕M∇σ=1.

Proof. Let us first note that ∇2
σ = ∇σ. Indeed,

∇2
σ = σ−1

q−1 ◦
σ−1
q−1 = 1

q−1
(σ(σ−1)

σ(q)−1 −
σ−1
q−1

)
= 1

q−1
( 1−σ

q−1−1 −
σ−1
q−1

)
= 1

q−1
( q(σ−1)

q−1 −
σ−1
q−1

)
= σ−1

q−1 = ∇σ.

As ∇σ is an idempotent operator on M , it follows that M admits a decomposition M = ∇σ(M) ⊕
(∇σ − 1)M = M∇σ=1 ⊕M∇σ=0. It is easy to see that the decomposition is ZpJq− 1K∇σ=0-linear.

Let M and N be two ZpJq − 1K-modules admitting actions of Γtor such that the induced action of
Γtor is trivial modulo (q − 1) and let M ↠ N be a ZpJq − 1K-linear map compatible with the action
of Γtor. Then we claim the following:

Lemma A.11. The ZpJq − 1KΓtor-linear map MΓtor → NΓtor is surjective.

Proof. Note that we hve MΓtor = M∇σ=0 and similarly for N . We get the claim by using the
decomposition in Lemma A.10.

B. δ-rings and divided power algebras
The content of this section has been adapted from some notes of Takeshi Tsuji on prismatic envelopes;
we are thankful to him for sharing his computations.

In this section, we will describe certain prismatic envelopes explicitly. We begin this section by
fixing some terminology. Let p be a fixed prime and A a commutative ring. A δ-ring is a pair (A, δ)
where A is a commutative ring and δ : A→ A is a map of sets with δ(0) = δ(1) = 0 and satisfying:

δ(x + y) = δ(x) + δ(y) + xp + yp − (x + y)p

p
,

δ(xy) = xpδ(y) + ypδ(x) + pδ(x)δ(y).
(B.1)

Given a δ-ring (A, δ) define an endomorphism φ : A → A by the formula φ(x) = xp + pδ(x), for any
x in A. This determines a lifting of (the absolute) Forbenius on A/pA. Then the product formula in
(B.1) can be rewritten as

δ(xy) = φ(x)δ(y) + δ(x)yp. (B.2)

If A is p-torsion-free then any lift φ : A→ A of the absolute Frobenius on A/pA determines a unique
δ-structure on A given as δ(x) = (φ(x)− x)/p for all x in A.

A δ-homomorphism f : A → B between δ-rings is a homomorphism of the underlying rings
compatible with the respective δ-structures, i.e. f ◦ δ(x) = δ ◦ f(x), for all x in A. For a δ-ring A, a
δ-algebra over A is a δ-ring B equipped with a δ-homomorphism A → B. A δ-ideal of a δ-ring A is
an ideal I of the underlying ring, stable under δ, i.e. δ(I) ⊂ I. If I is a δ-ideal of a δ-ring A, then the
quotient ring A/I is equipped with a unique δ-structure over A. Now, let S be a subset of a δ-ring A.
Then, we see that the ideal of A generated by {δn(S)}n≥1 is stable under δ and it is the smallest δ-ideal
of A containing S. (Note that for any ideal J of A, the map J → A/J , given by x 7→ δ(x) mod J , is a
φ-semilinear homomorphism of A-modules by (B.1) and (B.2).) We write this ideal as (S)δ and call
it the δ-ideal generated by S. If I is an ideal of A, then we write Iδ for (I)δ. If the ideal I is generated
by a subset S of I, then we have Iδ = (S)δ because the latter contains I. This implies that if B is a
δ-algebra over a δ-ring A and I a δ-ideal of A, then the ideal IB of B generated by I is a δ-ideal of
the δ-ring B.

A δ-subring of a δ-ring A is a subring A′ ⊂ A, stable under the δ-structure on A, i.e. δ(A′) ⊂ A′.
Similarly, a δ-subalgebra of a δ-algebra B over a δ-ring A is an A-subalgebra B′ ⊂ B, stable under
the δ-structure on B, i.e. δ(B′) ⊂ B′. Let S be a subset of a δ-algebra B over a δ-ring A and note
that δ(A[δk(S), 1 ≤ k ≤ n]) ⊂ A[δk(S), 1 ≤ k ≤ n + 1], for each n ∈ N≥1. (Note that for any



Prismatic F -crystals and Wach modules 81

A-subalgebra B′ of B, the subset {x in B′ such that δ(x) in B} of B′ is an A-subalgebra by (B.1) and
(B.2)). This implies that the A-subalgebra of B generated by {δn(S)}n≥1 is stable under δ and it is
the smallest δ-subalgebra of B over A containing S; we denote this δ-subalgebra by A[S]δ and call it
the δ-subalgebra of B over A generated by S.

Assumption B.1. Let A be a δ-ring equipped with an element q such that φ(q) = qp. Set µ := q− 1
and assume that φn(µ) is a nonzerodivisor on A, for each n ∈ N. Moreover, assume that A and A/µA
are p-torsion free.

In the rest of this section we will consider a δ-ring A satisfying Assumption B.1. Set [p]q = qp−1
q−1 =

1 + q + · · · + qp−1. Then, by Assumption B.1, we see that for each n ∈ N, the element φn([p]q) is a
nonzerodivisor on A. Before proceeding further, we note a simple lemma on regular sequences.

Lemma B.2. Let R be a ring.

(1) If a sequence {x, y} is regular on R, then x is regular on R/yR.

(2) Let x, y1, . . . , yd be elements of R. If the sequence {x, y1, . . . , yd} is regular on R, then x is
regular on R/

∑d
i=1 yiR.

Proof. The claim in (1) is obtained by applying the snake lemma to the map induced by multiplication
by y on the exact sequence 0→ R

x−−→ R→ R/xR→ 0. We will prove the claim in (2) by induction on
d, where the case d = 1 is clear from (1). So let d ≥ 2 and assume that x is regular on R′ = R/

∑d−1
i=1 yiR.

Now, as yd is regular on R′ by assumption, therefore, the claim in (1) implies that x is regular on
R′/ydR′ = R/

∑d
i=1 yiR.

Remark B.3. By using Lemma B.2 (1), we see that for the ring A as in Assumption B.1, the quotient
A/pA is µ-torsion free. Moreover, since φn(µ) = µpn mod pA, for each n ∈ N, and A is p-torsion free,
therefore, by using Lemma B.2 (1), we get that A/φn(µ)A is p-torsion free.

Let A denote the p-torsion free algebra A/µA and note that image of φn([p]q) in A is p, for every
n ∈ N. Moreover, the lifting of Frobenius on A induces a lifting of Frobenius on A. Furthermore, as
A/µA is p-torsion free, we see that the image of δ([p]q) in A is δ(p) in A/pA, which can be computed
as (φ(p) − pp)/p = 1 − pp−1. Hence, it follows that δ([p]q) is a unit modulo any power of the ideal
(p, µ) ⊂ A.

Assumption B.4. Let B be a δ-algebra over A. Assume that B and B/µB are p-torsion free and
φn(µ) is a nonzerodivisor on B, for each n ∈ N. Let Y0, Y1, . . . , Yd be elements of B such that the
sequence {Y1, . . . , Yd} is regular on B and the sequence {Y0, Y1, . . . , Yd} is regular on B/[p]qB and
B/(p, µ)B.

Remark B.5. Similar to the case of A as in Remark B.3, by using Lemma B.2 (1), we see that B/pB
is µ-torsion free and B/φn(µ)B is p-torsion free, for each n ∈ N.

Let I denote the set of natural numbers {0, 1, . . . , d}. Let C0 := B[Y0,0, . . . , Yd,0] denote a poly-
nomial ring over B in d + 1 variables Y0,0, . . . Yd,0, and let D0 := C0/([p]qYi,0 − Yi, i ∈ I). Moreover,
set E0 to be the B-subalgebra of B[1/[p]q] generated by yi := Yi/[p]q, for i ∈ I. Then the surjective
homomorphism of B-algebras C0 → E0 via Yi,0 7→ yi for i ∈ I, induces a surjective homomorphism of
B-algebras,

D0 −→ E0. (B.3)

Set B := B/µB, C0 := C0/µC0, D0 := D0/µD0 and E0 := E0/µE0, and write Y i,0 (resp. yi) for the
image of Yi,0 (resp. yi) in C0 (resp. E0). We claim the following:

Lemma B.6. With notations as above, we have the following:

(1) The homomorphism (B.3) is an isomorphism.
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(2) The algebra E0 is p-torsion free.

Proof. Note that we have D0[1/[p]q] ∼−→ B[1/[p]q][Yi,0, i ∈ I]/(Yi,0−yi, i ∈ I) ∼−→ B[1/[p]q]. Therefore,
to show (1), it suffices to show that D0 is [p]q-torsion free. Now, note that by Assumption B.4, the
element [p]q is regular on C0 and the sequence {[p]qY0,0−Y0, . . . , [p]qYd,0−Yd} is regular on C0/[p]qC0.
Hence, from Lemma B.2 (2), it follows that [p]q is regular on D0. For (2), note that using claim (1), we
are reduced to showing that D0 is p-torsion free. Moreover, as C0 is p-torsion free, by using Lemma
B.2 (2), we see that it is enough to show that the sequence {[p]qY0,0 − Y0, . . . , [p]qYd,0 − Yd} is regular
on C0/pC0. Now note that C0/pC0 = C0/(p, µ)C0 and since [p]q is in the ideal (p, µ) ⊂ A, therefore,
by Assumption B.4, we get that the sequence {[p]qY0,0 − Y0, . . . , [p]qYd,0 − Yd} is regular on C0/pC0.
This concludes our proof.

The lifting of Frobenius on B naturally extends to B[1/p, 1/φn([p]q), n ∈ N] and its E0-subalgebra
E0[1/p, 1/φn([p]q), n ∈ N] is stable under φ. Let E be the δ-subalgebra of E0[1/p, 1/φn([p]q), n ∈ N]
generated over B by yi, for all i ∈ I. Note that we have E0 ⊂ E. Now, recall that φn([p]q) = p mod µB,
for each n ∈ N, therefore, we get that E0[1/p, 1/φn([p]q), n ≥ 1]/µ

∼−→ E0[1/p]. Via the preceding
isomorphism, the lifting of Frobenius on E0[1/p, 1/φn([p]q), n ≥ 1] induces a lifting of Frobenius on
E0[1/p]. Define E to be δ-subalgebra of E0[1/p] generated over B by yi, for all i ∈ I. Note that we have
E0 ⊂ E by Lemma B.6 (2) and the natural ring homomorphism E0[1/p, 1/φn([p]q), n ≥ 1]→ E0[1/p]
induces the following surjective ring homomorphism compatible with φ,

E −→ E. (B.4)

We will study the δ-rings E and E by comparing them to the δ-rings obtained by universally
adjoining Yi/[p]q, for all i ∈ I, to the δ-rings B and B, respectively. Let C denote a polynomial ring
over B in variables Yi,n, for i ∈ I and n ∈ N. Equip C with a lifting of Frobenius φ compatible
with that on A and defined on the variables as φ(Yi,n) = Y p

i,n + pYi,n+1, for each i ∈ I and n ∈ N.
Since, C is p-torsion free, therefore, for δ-structure associated to φ, we have δ(Yi,n) = Yi,n+1, for each
i ∈ I and n ∈ N. Set C := C/µC equipped with a lifting of Frobenius induced by that of C. Denote
by Y i (resp. Y i,n) the image of Yi (resp. Yi,n) in C. We define D (resp. D) to be the quotient of C
(resp. C) by the δ-ideal generated by [p]qYi,0 − Yi (resp. [p]qY i,0 − Y i), for all i ∈ I. Then we have
a φ-compatible (in particular, δ-compatible) surjective homomorphism of B-algebras C → E (resp.
surjective homomorphism of B-algebras C → E) defined by sending Yi,n to δn(yi) (resp. by sending
Y i,n to δn(yi)), for each i ∈ I and n ∈ N. The preceding ring homomorphisms induce surjective
horizontal arrows in the following diagram:

D = C/([p]qYi,0 − Yi)δ E,

D = C/(pY i,0 − Y i)δ E,

(B.4) (B.5)

where the left vertical arrow is induced by the isomorphism D/µD
∼−→ D and the diagram commutes

by definition. In particular, all arrows in the diagram (B.5) are surjective.
For each i ∈ I and n ∈ N, let C

(i)
n be the B-subalgebra of C generated by Yi,m for 0 ≤ m ≤ n. Set

C
(i)
−1 := B and note that we have δ(C(i)

n−1) ⊂ C
(i)
n , for each n ∈ N.

Lemma B.7. For each i ∈ I and n ∈ N≥1, the element δn([p]qYi,0 − Yi) in C
(i)
n can be written as

δn([p]qYi,0 − Yi) = φn([p]q)Yi,n + c0Y p
i,n−1 + ∑p−1

k=0 ckY k
i,n−1,

where c0 = φn−1(δ([p]q)) ∑n−1
m=0 pm(p−1) is in A and ck is in C

(i)
n−2, for each 0 ≤ k ≤ p− 1.

Proof. We will prove the claim by induction on n. For n = 1, note that we have

δ([p]qYi,0 − Yi) = δ([p]qYi,0) + δ(−Yi)−
∑p−1

k=1
1
p

(p
k

)
([p]qYi,0)k(−Yi)p−k

= φ([p]q)Yi,1 + δ([p]q)Y p
i,0 + δ(−Yi)−

∑p−1
k=1

1
p

(p
k

)
[p]kq (−Yi)p−kY k

i,0,
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which is of the required form because the elemenets δ(−Yi), [p]q and Yi belong to C
(i)
−1 = B. Now,

let n ≥ 1 and assume that the claim holds for δn([p]qYi,0 − Yi), with c0 in A and ck in C
(i)
n−2. Set

b = c0Y p
i,n−1 + ∑p−1

k=0 ckY k
i,n−1 in C

(i)
n−1 and note that we have

δn+1([p]qYi,0 − Yi) = δ(φn([p]q)Yi,n + b)
= δ(φn([p]q)Yi,n) + δ(b)−∑p−1

k=1
1
p

(p
k

)
(φn([p]q)Yi,n)kbp−k

= φn+1([p]q)Yi,n+1 + δ(φn([p]q))Y P
i,n + δ(b)−∑p−1

k=1
1
p

(p
k

)
φn([p]q)kbp−kY k

i,n.

As the elements φn([p]q) and b are in C
(i)
n−1, therefore, it is enough to show that δ(b) is of the form

pp−1c0 + ∑p−1
k=0 dkY k

i,n, for some dk in C
(i)
n−1. From (B.1), note that for any x and y in C

(i)
n−1, we have

that δ(x + y) = δ(x) + δ(y) mod C
(i)
n−1 and from (B.2), for x in C

(i)
n−2 and y in C

(i)
n−1, we have that

δ(xy) = φ(x)δ(y) mod C
(i)
n−1. Therefore, we can write

δ(b) = φ(c0)δ(Y p
i,n−1) + ∑p−1

k=0 φ(ck)δ(Y k
i,n−1) mod C

(i)
n−1.

Now, we have that δ(1) = 0 on A because A is p-torsion free, and by using Lemma B.8, for each
1 ≤ k ≤ p, we have

δ(Y k
i,n−1) = ∑k

j=1
(k

j

)
pj−1Y

p(k−j)
i,n−1 Y j

i,n.

Note that Yi,n−1 is in C
(i)
n−1 and Y p

i,n appears only when k = p, in which case the coefficient of Y p
i,n is

pp−1. This allows us to conclude.

The following fact was used above:

Lemma B.8. Let R be a δ-ring and x any element of R. Then for each n ∈ N≥1, we have

δ(xn) = ∑n
j=1

(n
j

)
pj−1xp(n−j)δ(x)j .

Proof. We will prove the claim by induction on n. The case n = 1 is obvious, so assume that the claim
holds for some n ≥ 1. Then, we have that

δ(xn+1) = δ(xn)xp + xnpδ(x) + pδ(x)δ(xn)
= ∑n

j=1
(n

j

)
pj−1xp(n+1−j)δ(x)j + xnpδ(x) + ∑n

j=1
(n

j

)
pjxp(n−j)δ(x)j+1.

In the final term of the second line of the displayed equation above, by replacing j with k − 1,
for 2 ≤ k ≤ n + 1, and expanding, it easily follows that the expression thus obtained is the sum∑n+1

j=1
(n+1

j

)
pj−1xp(n+1−j)δ(x)j .

Let Cn be the B-subalgebra of C generated by Y i,m, for all i ∈ I and 0 ≤ m ≤ n. Set C−1 := B
and note that we have δ(Cn−1) ⊂ Cn, for each n ∈ N. Define Dn to be the quotient of Cn by the
ideal generated by δm(pY i,0 − Y i), for all i ∈ I and 0 ≤ m ≤ n. Note that the B-algebras C0 and D0
coincide with those defined before Lemma B.6. For each i ∈ I and n ∈ N≥1, let us set

X(i)
n := δn(pY i,0 − Y i)− pY i,n ∈ C, (B.6)

and by Lemma B.7 note that it is contained in unY
p
i,n−1 + ∑p−1

k=0 Y
k
i,n−1Cn−2 ⊂ Cn−1, where un =

φn−1(δ(p)) ∑n−1
m=0 pm(p−1) is in A. In particular, we see that for each n ∈ N, we have

Dn+1 = Dn[Y i,n+1, i ∈ I]/(pY i,n+1 + X
(i)
n+1, i ∈ I). (B.7)

The inclusion maps Cn ↪→ Cm ↪→ C, for 0 ≤ n < m, induce maps Dn → Dm → D and an isomorphism

colim
n

Dn
∼−→ D. (B.8)
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Lemma B.9. With notations as above, we have the following:

(1) The homomorphism Dn → Dn+1 induces an isomorphism Dn[1/p] ∼−→ Dn+1[1/p], for each
n ∈ N.

(2) Let Sn denote the image of Dn/pDn in Dn+1/pDn+1, for each n ∈ N. Then, we have Sn =
(Dn/pDn)/(X(i)

n+1, i ∈ I) and Dn+1/pDn+1 = Sn[Y i,n+1, i ∈ I], for each n ∈ N.

(3) For each n ∈ N, the algebra Dn is p-torsion free.

Proof. The claim in (1) follows immediately from (B.7) and the fact that X
(i)
n+1 is in Cn. For (2), note

that by taking the reduction modulo p of (B.8), we get that

Dn+1/pDn+1 = (Dn/pDn)/(X(i)
n+1, i ∈ I)[Y i,n+1, i ∈ I].

To prove (3), let us first recall that D0 is p-torsion free by Lemma B.6. So, for each n ∈ N, by
Lemma B.2 (2) and (B.7), it suffices to show that the sequence {X(i)

n+1, i ∈ I}, where X
(i)
n+1 is in

Cn, is regular on (Dn/pDn)[Y i,n+1, i ∈ I], i.e. it is regular on Dn/pDn. For n ≥ 1, the claim
follows because we have Dn/pDn = Sn−1[Y i,n, i ∈ I] and un+1 modulo p is a unit in A/pA (see
the discussions after (B.6) and before Assumption B.4). For n = 0, it suffices to show that the
sequence {{[p]qYi,0 − Yi, i ∈ I}, {X(i)

1 , i ∈ I}} is regular on C0/pC0. As [p]q is contained in the ideal
(p, µ) ⊂ B, we are reduced to showing that the sequence {{−Yi, i ∈ I}, {X(i)

1 , i ∈ I}} is regular
on C0/pC0 = B/(p, µ)[Y i,0, i ∈ I]. This is obvious since u1 modulo p is a unit in A/pA (see the
discussions after (B.6) and before Assumption B.4). Hence, the lemma is proved.

Now, note that reducing the top arrow in (B.5) modulo µ, we obtain the following commutative
diagram with surjective arrows:

D/µD E/µE,

D E.

≀ (B.4) (B.9)

Proposition B.10. All arrows in the diagram (B.9) are isomorphisms.

Proof. By definition, the left vertical arrow in (B.9) is an isomorphism and all arrows are surjective.
Hence, it suffices to show that the lower horizontal arrow is injective. Note that we have the following
commutative diagram:

D0[1/p] D[1/p]

E0[1/p] E[1/p].

(B.3)≀

The top horizontal arrow is a bijection by (B.8) and Lemma B.9 (1), the left vertical arrow is a bijection
by Lemma B.6 and the bottom horizontal arrow is a bijection by the definition of E. Therefore, it
follows that the right vertical arrow is a bijection as well, i.e. D[1/p] ∼−→ E[1/p]. Finally, from (B.8)
and Lemma B.9 (3), note that D is p-torsion free. Hence, it follows that the map D → E in (B.9) is
injective. This completes our proof.
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