SYNTOMIC COMPLEX AND p-ADIC NEARBY CYCLES

ABHINANDAN

ABSTRACT. In local relative p-adic Hodge theory, we show that the Galois cohomology of a finite
height crystalline representation (up to a twist) is essentially computed via the (Fontaine-Messing)
syntomic complex with coefficients in the associated F-isocrystal. In global applications, for smooth
(p-adic formal) schemes, we establish a comparison between the syntomic complex with coefficients in a
locally free Fontaine-Laffaille module and the p-adic nearby cycles of the associated étale local system
on the generic fiber.

1. INTRODUCTION

Let p denote a fixed prime and x a perfect field of characteristic p. Let K be a mixed characteristic
complete discrete valuation field with ring of integers Ok and residue field x and F' = W (k)[1/p] the
fraction field of ring of p-typical Witt vectors with coefficients in k. Fontaine’s crystalline conjecture for
a proper and smooth Og-scheme relates the p-adic étale cohomology of its generic fiber to the crystalline
cohomology of its special fiber. In [FM87], Fontaine and Messing initiated a program for proving the
crystalline conjecture via syntomic methods. By subsequent works of [KM92, Kato-Messing], [Kat94,
Kato] and with the remarkable work of [Tsu99, Tsuji], the crystalline conjecture was shown to be true.
There have been several proofs and generalizations of the crystalline comparison theorem: [Tsu99; Fal89;
Fal02; Niz98; Beil2; Sch13; YY14; AI13; CN17; BMS18; DLLZ18; GR22].

1.1. p-adic nearby cycles. Let X be a smooth (p-adic formal) Og-scheme with generic fiber X
and special fiber X,. Let j : X¢ — Xg and ¢ : X4y — Xg denote natural morphisms of sites. For
r >0, let #,(r)x denote the syntomic sheaf modulo p™ on X, ¢ (see §7 and §8 for the definition of the
syntomic complex). In [FM87], Fontaine and Messing constructed a period morphism from the syntomic
complex to the complex of p-adic nearby cycles,

af};{[ c Pn(r)x — TRIZ/p™ (1), (1.1)
where Z,(r) = sz(r), for r = (p — 1)a(r) + b(r) with 0 < b(r) < p — 1. For X a smooth and
proper Og-scheme and 0 < r < p — 1, by truncating (1.1) in degree < r, the map af}f is known to be
a quasi-isomorphism by [Kat87; Kat94, Kato], [Kur87, Kurihara] and [Tsu99, Tsuji]. In [Tsu96], Tsuji
generalised this result to proper and semistable schemes and non-trivial étale local systems arising from
(the pullback of) Fontaine-Laffaille modules over Op (see [FL82]). Moreover, in [CN17], Colmez and

Niziol proved a similar result for semistable (p-adic formal) schemes (in constant coefficients case) and
without any restrictions on r. In particular, for a smooth (p-adic formal) scheme we have the following:

Theorem 1.1 ([CN17, Theorem 1.1]). For 0 < k < r, the natural map
0411?,11\14 : Hk(yn(r)%) - i*Rkj*Z/p”(r)’X,

is a pN -isomorphism, i.e. its kernel and cokernel are killed by p” , where N = N(e,p,r) € N depends on
the absolute ramification index e of K, prime p and twist v but not on X or n.

Proof of Theorem 1.1 in [CN17] works by reducing the problem to the local setting, i.e. (p-adic
completion of) an étale algebra over O [Xlﬂ, e Xdﬂ], for some indeterminates Xy, ..., X4. Locally,
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Colmez and Niziol also show that it is enough to work with p-adic formal schemes and deduce the result
for schemes by invoking Elkik’s approximation theorem and a form of rigid GAGA (see [CN17, §5.1]).

For simplicity in the introduction, let R be the p-adic completion of OF[Xlﬂ, . ,de] and S :=
Ok ®0, R (see Assumption 2.1 for a more general setup). Let G := m$*(S[1/p],7), for a fixed geometric
generic point of Sp (S[1/p]). Denote by Syn(S, ) the r-th Tate twist of the (log-) syntomic complex (see
[CN17, §3.3] for details).

Theorem 1.2 ([CN17, Theorem 1.6]). If K contains enough roots of unity, then the maps

ozfaz :7<pSyn(S, r) — 7<;Rlcont (G, Zp(r)),
aquz : TgrSyn(S7 T)n — TSTRFcont(G5'7 Z/pn(r)) i TSTRF((SP S[l/p])éta Z/pn(’r))z

are p™V" -quasi-isomorphisms for a universal constant N, i.e. N does not depend on p, X, K, n orr.

One of our main goals in this article is to generalise Theorem 1.2 by studying syntomic complexes
with coefficients. Subsequently, by “gluing” the local results for relative Fontaine-Laffaille modules, we
will obtain a global generalisation of Theorem 1.1. Note that in the local setting, on the étale side, by
a K(m,1)-Lemma (see [Sch13, Theorem 4.9]), we can reduce to the setting of Z,-representations of Gg.
Then, due to the “crystalline” nature of our goal, we will consider G'g-stable Z,-lattices inside “finite
height” crystalline representations of G and certain natural invariants attached to such representations
as in [Abh21, §4].

1.2. Finite height representations. Fix p > 3, m € Nso, K = F((pm) and w = (m — 1

(see Remark 1.8 on the rationale behind our assumptions). Fix an algebraically closed field Fr(R)

containing F' O Foo = F(pp=). Let R denote the union of finite R-subalgebras R’ C Fr(R) such that
R'[1/p] is étale over R[1/p]. Set Roo := UpenR[upm, Xi/",....X)/""], Gr := Gal(R[1/p]/R[1/p)),
I'r = Gal(Rx[1/p]/R[1/p]), Hr := Ker (Gg — T'r) and note that we have I'r = Iy x I'p, where
Iy := Gal(Roo[1/p]/Fs R[1/p]) = Zy(1)? and T'p := Gal(Fu /F) — ZX.

Recall that [Fon90] showed a categorical equivalence between Z,-representations of Gp and étale
(¢, T'p)-modules over a certain period ring Ap; these results were generalised to the relative set-
ting in [And06], to establish a categorical equivalence between Z,-representations of Gr and étale
(¢, T'r)-modules over a certain period ring Apr (see §2.4). Moreover, Fontaine’s work on crystalline
representations of G, in [Fon82; Fon94a; Fon94b], was generalised to the relative case, in [Bri08], via
the construction of a fully faithful functor OD¢,s from the category of crystalline representations of Gg
to the category of filtered (p, d)-modules over R[1/p] (see §2.3).

Let ¢ = p(m)/m € AR, where 7 is the usual element of Fontaine (see §2.2). In [Abh21], we studied
finite g-height representations of Gr, a notion parallel to the arithmetic case, i.e. R = Op in [Wac96;
Wac97; Col99; Ber04] (see [ADh21, Remark 1.4]). A representation T € Repy, fee(Gr) is of finite
g-height if it admits a unique (p,'g)-module over a certain subring Ajg C Ap and satisfies certain
properties (see Definition 3.1); the aforementioned AE—module is called the Wach module associated to
T and denoted as N(T'). Moreover, we showed that finite g-height representations are closely related to
crystalline representations via a certain period ring (’)A%{?ﬂ C OAis(R), where the former is equipped
with structures induced from the latter (see [Abh21, §4.3]).

Theorem 1.3 ([Abh21, Theorem 4.24, Proposition 4.27]). Let T' be a Zy-representation of Gg and
assume that T is of positive finite q-height. Then V := T[1/p] is a positive crystalline representation
and we have an isomorphism of R[1/p]-modules OD (V) «— (OA%]?W DAt N(T))FR[I/p] compatible
with the respective Frobenii, filtrations and connections.

1.3. Syntomic coefficients and (p,I')-modules. In this subsection, we will assume the follow-
ing: Let T be a Z,-representation of G of positive finite g-height s and set V := T'[1/p] (see Definition
3.1). Assume that N(T') is free of rank = rkz, T over AE and M C OD,,s(V) is a finite free R-submodule
of rank = rkz T, such that M1/p] — ODgis(V) and satisfies Assumption 5.1 (see Example 5.2 for
obtaining M from N(7')).
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Our objective is to compute the continuous G r-cohomology of T'(r) using the syntomic complex for
R with coefficients in M C OD¢is(V). Set S = R[w] and note that we have a divided power thickening
RPP — S (using an “arithmetic” varaibale Xo, see §2.5) and the ring REP is equipped with a Frobenius
endomorphism ¢; let Q PD denote the p-adic completion of the module of differentials of RPP with

respect to Z. Set M_ PD .— RPD ®pr M equipped with the induced supplementary structures to obtain a
filtered de Rham complex (see §5.1),

Fil' Dy i= Fil' MZP — Fil' ' MZP @ gep Qpeo — Fil'2MEP @pep Qe — -+

Definition 1.4. Define the syntomz’c complex of S with coefficients in M and its modulo p™-version as
Syn(S, M,r) := [ Fil'Dg Pt D& | and Syn(S, M, 1)y, := Syn(S, M,r) @ Z/p", for n > 1.

Theorem 1.5 (see Theorem 5.5). Let T' be a positive finite q -height Zy-representation of Gr of height
s as above and r € N such that r > s+ 1. Then there exist p" -quasi- zsomorphzsms

aﬁaz T<r—s— ISyn(S M, T) X T<p—s— lRFcont<G57 ( ))7
[,az CT<pr—s5— 1Syn(S M 7")17,—7—<r s— lRFcont(G57T/p ( ))

where N = N(T,e,r) € N depends on the representation T', e = [K : F| and the twist r.

Similarly, we have a filtered de Rham complex with coefficients in M and one can also define the
syntomic complex of R with coefficients in M. Using Theorem 1.5 for w = (2 — 1 and Galois descent
(see Lemma 6.21), we obtain the following:

Corollary 1.6 (see Corollary 5.9). Let T' be a positive finite q-height Zy-representation of Gr of height
s as above and r € N such that r > s+ 1. Then there exist p -quasi-isomorphisms

ﬁaz CT<p—s— 1SyH(R M T) = T<r—s— 1chont(GRu ( ))7
Eaz CT<pr—s— 1SYH(R M T)n = T<r—s5— 1chont(GRaT/p ( ))

where N = N(p,r,s) € N depending on the prime p, twist r and height s of T.

The proof of Theorem 5.5 is broadly divided in two main steps. First, we modify the syntomic

complex with coefficients in M and relate it to a “differential” Koszul complex with coefficients in N(7')
(see Proposition 5.28). Next, we modify the Koszul complex from the first step to obtain a Koszul
complex computing the continuous G'g-cohomology of T'(r) (see Theorem 5.5 and Proposition 6.1). The
key idea behind relating these two steps is the comparison isomorphism in [Abh21, Theorem 4.24] and
a Poincaré Lemma (see §5.6). Our proof of Theorem 5.5 is inspired by [CN17], however our setting
demands several non-trivial generalisations of their ideas.

Remark 1.7. Setting 7' = Z,, in Theorem 1.5 we obtain a statement similar to Theorem 1.1 (note that
we truncate in degree < r — 1 as we are working with the syntomic complex instead of the log-syntomic
complex as in [CN17]).

Remark 1.8. In Theorem 1.5 we restrict to a finite cyclotomic K/F because we used the cyclotomic
Frobenius (Xo — (1 + X()? — 1) in Definition 1.4, instead of the Kummer Frobenius (Xo — X})) as
n [CN17]. For K/F finite, one should use Kummer Frobenius to define a log-syntomic complex (log-
structure with respect to Xg). Then it should be possible to obtain Theorem 1.5 for all finite extensions
K/F (with truncation in degree < r — s as in [CN17]). Furthermore, to obtain the statement over F
one coAuld pass to the limit over all finite extensions K/F. Alternatively, one could directly work over

C, = F as in [Gil21] to avoid complications arising from Frobenius on Xp. In the latter case, our proofs
can be adapted to obtain Theorem 1.5 for S = R®0,Oc, (with truncation in degrees <r —s— 1).

Remark 1.9. The case p = 2 is different from p > 3, as for p = 2, the constant N in Theorem 1.5 also
depends on the relative dimension of R/Op (see [CN17, Lemma 3.11}).

Using the fundamental exact sequence in p-adic Hodge theory (2.2), one can define a local Fontaine-
Messing period map for 7" as in Theorem 1.5 (see §6.7). Then we show the following:

N(T,e,r) _

Theorem 1.10 (see Theorem 6.19). The period map a S s p equal to aﬁaz from Theorem 1.5.
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1.4. Fontaine-Laffaille modules and p-adic nearby cycles. In this subsection, we will spe-
cialise Theorem 1.5 to the case of global relative Fontaine-Laffaille modules introduced by Faltings in
[Fal89, §II]. Let R denote the p-adic completion of an étale algebra over Op[X iﬂ, . ,de] with non-
empty geometrically integral special fiber (see §2.1 for details). Note that Theorem 1.5 and Corollary
1.6 are true in this setting as well. In [Abh21, §5], we considered the category MF|q g free(R, @, 0) of free
relative Fontaine-Laffaille modules of level [0, s] (see Remark 3.27 (i)) as a full subcategory of EJJIS’[VO’ 5 (1)
in [Fal89, §II]. To any M in MF[g g free([2, ®,0) one can functorially attach a representation Teyis(M) in
Repyz, free(GR), which admits a Wach module N(T') (see [Abh21, Theorem 5.4]) and satisfies Assumption
5.1 (see Example 5.2 (iii)).

Let X be a smooth (p-adic formal) scheme defined over O and cover X by affine (p-adic formal)
schemes {; };c7, where for all i € I, we have that 4; = Spec A; (resp. 4; = Spf A4;) such that its p-adic
completion A; is as above; we also fix compatible Frobenius lifts Vi : A; — A;. Take MF[g g, free (X, @, )
to be the category of finite locally free filtered Ox-modules M equipped with a quasi-nilpotent integrable
connection satisfying Griffiths transversality such that there exists a covering {; };cr of X as above with
My, € MF[07S]’free(A\i, ®,0), for all i € I (see §3.1). For M € MF g 4 free(X, @, ) we have an associated
étale Z,-local system L on the (rigid) generic fiber X of X (see [Fal89, Theorem 2.6%]). Our global result
is as follows:

Theorem 1.11 (see Theorem 8.8). Let X be a smooth (p-adic formal) scheme over Op and let M be
an object of MF[078]7free(%, ®,0) for 0 < s < p—2. Let L denote the associated Zy,-local system on the
(rigid) generic fiber X of X. Then forr > s+1 and 0 < k <r—s—1 the Fontaine-Messing period map

aynty t HE(Fu( M, 1)x) — i REGL/p™ (1)
is a p¥ -isomorphism, where N = N(p,r,s) € N depends on p, r and s but not on X or n.

The proof of Theorem 1.11 proceeds by reducing to the local setting, whence we may directly apply
Theorem 1.5.

Remark 1.12. In personal communications with Takeshi Tsuji, I learnt that in some unpublished work
he obtained similar results over F' and large enough p. However, our respective approaches are different
and this article includes more general local results and the arithmetic case as well.

Remark 1.13. Note that from [BMS19, §10], we have a prismatic syntomic complex and it is known
to compute p-adic nearby cycles in the case of constant coefficients. Using the results of [MT20] on
coefficients in integral p-adic Hodge theory and prismatic cohomology, it should be possible to obtain
an integral version of our results (in the geometric case, i.e. over F). Moreover, using the theory of
analytic prismatic F-crystals on the absolute prismatic site from [DLMS22; GR22], we should be able
to generalise those results to the arithmetic case as well. We will report on these ideas in future.

1.5. Outline of the paper. Sections 2-6 comprise the local part of the paper, while sections 7-8
consist of global applications. In §2.1 we describe our local setup, notations and some conventions. In
§2.2, §2.3 and §2.4 we quickly recall basics of period rings, crystalline representations and relative étale
(p,T')-modules. Subsection 2.5 introduces “good” crystalline coordinates and we define certain rings of
analytic functions convergent on some annulus following [CN17, §2]; these rings are denoted as RX, for
* € {+,PD, [u], [u, v], (0,v]+}, where we can take u = p/(p — 1) and v = p — 1. In §2.6, we equip these
rings with a Frobenius endomorphism and in §2.7, we consider their Frobenius-equivariant “cyclotomic”
embedding ¢y into period rings and define AE,W as the image of R; under teye1. The latter enables us

"I to the infinitesimal action of I'y := Gal(R[1/p]/S[1/p])
. Finally, in §2.8, we introduce certain big period rings, in particular,

to relate differential operators on the ring Ry’

}

on its “cyclotomic” image, i.e. A[

EE - and Eﬁ study a natural ﬁltratlon on the scalar extension of M to these rings and prove a version
of the filtered Poincaré Lemma. The latter, together with the results of §3.3, are key ingredients in
relating syntomic complexes with coefficients in M to Koszul complexes with coefficients in N(7"). The
motivation for our approach comes from the computations of [CN17, §2.6].

In §3.1 and §3.2, we recall the notion of finite height representations and their relationship to crys-
talline representations from [Abh21], as well as, prove some useful technical lemmas. In §3.3, we study
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a filtration on scalar extensions of Wach modules and prove another filtered Poincaré Lemma. The local
theory of relative fontaine-Laffaille modules is recalled in §3.4. Section §4 recalls the definition of Koszul
complexes computing continuous I'g-cohomology (see §4.2) and Lie I'g-cohomology (see §4.3).

In §5, we formulate our main local result, Theorem 1.5, and carry out the local syntomic computa-
tions for its proof. The aim of §6 is to carry out the (¢, T')-module side computations for the proof of
Theorem 1.5. To explain the content of these two sections to the reader, we introduce the following com-
mutative diagram of complexes (see the discussion after Theorem 6.19 for a more complete picture and
explanations), where all isomorphisms are p-power quasi-isomorphisms, i.e. the kernel and the cokernel
of the induced map on cohomolgy are killed by a fixed bounded power of p.

Koo(F'MEP) — Co(Kou(FTATP)) £ Co(Kp(FTAPP?)) — Ca(Kp(F T Auis))

U T<r | FES
Ko, (F7 ML) Ca(T(r))
| PL U AS
Ko .0, (Fr ALY Ca (Ko (T A5(r)))
| PL I
Ko 0, (F7 N Cr(Ky(Dr., (1))
Tgr? t® !
IC%Lie F(Fer[g,v}) CF(K(P(DW(T)))
L t" 0

Kpie rNE 1) S Kpn (N2 () i Kpr (V2 (1)) — K (D).

In the diagram, we set MX = RX @ M, NX = Agw DAt N(T), NX(r) = AE’W Dat N(T(r)), APP =
E%D ®@pg M, APPI = (APD)9=0, AEM = Ej[,g’v} @r M and T Acris = Aqis(R) ®z, T'. Moreover, using the

w
rings from the theory of (¢, T')-modules (see §2.4), we set T AlvY] = A%’”] ®z, T, TAZ(r) = Az®z, T(r),
D (r) = Apw Oat N(T'(r)) (see §2.7 for Ar ), and Dr_(r) = Ar,, ®Ap., Do(r). Furthermore, we
have G = Gg, I' = I'g with Cg and Cr denoting the complex of continuous cochains for G and T,
respectively. The letter “K” denotes the Koszul complex with subscripts: 0 denotes the operators
((1+ Xo)aixo, . ,XdaiXd), the subscript I' denotes the operators (79 — 1,...,74 — 1) for our choice of
topological generators of I', the subscript Lie I' denotes the operators (Vy,...,Vy), with V; = log~;

and the subscript 04 denotes ((1+ XO)%(()’ Xlaixl’ e Xdaixd) as operators on A%’U] and El[g’v} via the

isomorphism t¢y : E;’U] = A%’g. The letter “/C” denotes a certain subcomplex of the Koszul complex
(see §6.2, §6.3, §6.4, §6.5). ’

Let us now describe the maps in the diagram. FES denotes a map coming from the fundamental
exact sequences in (2.2) and (2.5). AS denotes a map originating from the Artin-Schreier theory in
(2.4). PL denotes the maps coming from the filtered Poincaré Lemma of §2.8. In the first column,
the map from the first to the second row is induced by the inclusion REP C R?;’”] (the p-power quasi-
isomorphism is shown by using the operator ¢ - left inverse of ¢ - and p-power acyclicity of the ¥ =0
eigencomplexes similar to [CN17, §3|, see §5.3 and §5.4); the maps from the second to the third row
and from the fourth to the third row are applications of the filtered Poincaré Lemma (see §5.5 and §5.6,
in particular, Proposition 5.28); the map from the fourth to the fifth row is given by multplication by
suitable powers of ¢, exploiting the relation 9; = (log~;)/t, and the map from the sixth to the fifth
row is multiplication by t" (see §6.2). In the fourth column, the map from the fourth to the third
row is the inflation map from I's to Gg, using the inclusion Ag,, C Az (one could use almost étale
descent to obtain the quasi-isomorphism); the map from the fifth to the fourth row uses the inclusion
Apr o C Ap (the quasi-isomorphism is obtained by decompletion techniques); the map from the sixth
to the fifth row is the comparison between the complex computing the continuous cohomology of I'g
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and the Koszul complex as in §4.2. The top two maps from the first to the second column are induced
by the respective inclusions RgD - EgD and Rq[;f’v] - Eg | The bottom map Laz between the first
and the second column is the Lazard isomorphism discussed in §6.3. The bottom map from the third to
the second column is induced canonically from the inclusion A(0 ot - A%; (see §6.4). From the third
to the fourth column, the top horlzontal map is induced 81m11ar to (6. 11) and the bottom horizontal
map is induced by the inclusion A ]+ C AR (the p-power quasi-isomorphism is proven by using the
operator v - left inverse of ¢ - and p power acyclicity of the ¢ = 0 eigencomplexes, a standard technique
in the theory of (¢, I')-modules, see §6.5 and §6.6).

Composition of the left vertical, bottom horizontal and right vertical arrows produces the p-power
quasi-isomorphism acaz of Theorem 1.5; composition of the top horizontal arrows gives the p-adic version
of the map aF M .S of Theorem 1.10. The proof of Theorem 1.5 follows from the discussion above and the
proof of Theorem 1.10 is the content of §6.7.

In §7 we describe our global setup and define the syntomic complex with coefficients globally. In
§8.1 and §8.2, we describe global relative Fontaine-Laffaille modules and construct the global Fontaine-
Messing period map as in [Tsu96, §5] and [Tsu99, §3.1]. Finally, in §8.3 we state and prove Theorem
1.11, by first reducing the problem to the local setting via cohomological descent [Tsu96; Tsu99], then
to the computation of Galois cohomology by a K (m,1)-Lemma [Sch13], whence the claim follows from
Corollary 1.6.

Notation. Let f: C1 — Cy be a morphism of complexes. The mapping cone of f is the complex Cone(f)
whose degree n part is given as C7™' @ C and the differential is given by d(cy, o) = (—d(c1),d(ca) —

f(c1)). Furthermore, we denote the mapping fiber of f by [Cy 7, (5] := Cone(f)[—1]. We also set

oL
l l = [[cy L 0y — [05 L 4]

s —>cy

In other words, this amounts to taking the total complex of the associated double complex.
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2. RELATIVE p-ADIC HODGE THEORY

In this section we will recall some constructions and results in local relative p-adic Hodge theory from
[And06; Bri08; ABO08] and describe some properties of the objects to be considered in sections §3 — §6.

2.1. Setup and notations. Let p > 3 be a fixed prime, x a perfect field of characteristic p, set
Op := W (k) the ring of p-typical Witt vectors with coefficients in x and set F' := Op[1/p]. Let F be a
fixed algebraic closure of F' so that its residue field, denoted as %, is an algebraic closure of k£ and set
Gr = Gal(F/F).

Convention. We will work under the convention that 0 € N, the set of natural numbers.

Let Z = (Zy,...,Zs) denote a set of indeterminates and for k = (ki,...,ks) € N° a multi-index, we
will write Z¥ := Z{“l .- ZFs_ For a topological algebra A we write A{Z} := { > kens ax Z¥, where ay €
Aand ax — 0 as |k| =X k; — +o00}.
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Assumption 2.1. Fixd € Nand X = (X1, Xo,..., Xy) aset of indeterminates. Let R be the p-adic com-
pletion of an étale algebra over Op{X, X '} with non-empty geometrically integral special fiber. In par-
ticular, R = OF{X, Xﬁl}{Zl, RN ZS}/ (Ql, R ,Qs), where Qz’(Zla RN ZS) S OF{X,Xil}[Zl, ey ZS]

for 1 <4 < s, are multivariate polynomials such that det (gg" is invertible in R.

i<iges

Fix an algebraic closure Fr (R) of Fr (R) containing F. Let R denote the union of finite R-subalgebras
S C Fr(R), such that S[1/p] is étale over R[1/p]. Let 77 denote a geometric point of the generic fiber
Sp (R[1/p]) (corresponding to Fr(R)) and let Gg = ¢ (Sp (R[1/p]),7) denote the étale fundamental
group. By [Gro63, Exposé V, §8], we can write this étale fundamental group as a Galois group (of the frac-
tion field of R[1/p] over the fraction field of R[1/p]), i.e. Gg := n¢*(Sp (R[1/p]),7) = Gal(R[1/p]/R[1/p]).

For n € N, let F}, := F(ppn). Fix some m € N>; and set K := F),,, with ring of integers Og. The
element @ = (pm — 1 in Ok is a uniformiser of K and its minimal polynomial P, (X) := ((1 + X)?" —
1)/((1 + X)?""" — 1) is an Eisenstein polynomial in Op[X] of degree e := [K : F] = p™ (p — 1).
Moreover, S = R[w] = Ox ®0, R is totally ramified over the prime (p) C R. Similar to above, we have
Galois groups G <G and Gg <4 GR respectively, such that Gr/Ggs = Gp/Gk = Gal(K/F). Note that
R and R[w] are small algebras in the sense of Faltings ([Fal88, §II 1(a)]).

For k € N; let Q’f% denote the p-adic completion of the module of k-differentials of R relative to Z.
Then, we have Q}{ = @?ZlR dlog X; and Q]f% = /\’f% Q}%. More explicitly, for 1 < ¢ < d, let us set 0; :=
XidiXi as an operator on R. Then for any f in R, its differential can be written as df = Zle 0i(f) dlogX;
in Q}%. Furthermore, R/pR —+ S/wS and for any n € N, R/p™R is a smooth Z/p"Z-algebra. Finally,
we fix a lift ¢ : R — R of the absolute Frobenius = — 2P over R/pR such that ¢(X;) = X for 1 <i <d.

Note that to carry out some computations in later sections, we will need to extend our base field (hence
the base ring) by adjoining a p-power root of unity (see K and S = R[w] above). As a consequence,
we will also require period rings defined for such rings. However, we will only recall the results by
fixing our base as R, because the period rings that we consider will only depend on R and we have
S =R CFr(R)=Fr(S) (see [And06; Bri08; ABOS| for general constructions).

Convention. Let A be a ring and I C A an ideal. An A-module M is I-adically complete if and only if
M = lim, M/I"M.

Notation. Let A be a Zp-algebra. A morphism f : M — N of two A-modules is said to be a
p"-isomorphism, for some n € N, if the kernel and cokernel of f are killed by p™.

2.2. Period rings. Let C, denote the p-adic completion of F. Recall that R is the union of finite

R-subalgebras S C Fr(R) = Fr (R[w]), such that S[1/p] is étale over R[1/p]. Let C*(R) denote the p-adic
completion of R and C(R) = C*(R)[1/p]. We define the tilt C*t(R) as C*(R)” := limg, .,» C*(R)/p =
limg,,» R/p and equip it with the inverse limit topology (where we equip R/p with the discrete topology)
and let C(R)" := CH(R)*[1/p"], for p’ := (p,p*/?,p*/?*,...) € CT(R)", and equipped with the coarsest
ring topology such that Cﬂﬁ)b is an open subring. These rings admit a continuous action of Gg.

Let us fix € := (1,(p, (p2,...) in (Czb) and X! := (Xi,Xil/p,Xil/pz,...) in C(R)’, for 1 < i < d. Set

Ai(R) := W(CH(R)®), the ring of p-typical Witt vectors with coefficients in C*(R)”. The absolute
Frobenius on (CJF(R)b lifts to an endomorphism ¢ : Ajr(R) — Ape(R) and the Gg-action extends to
a continuous (for the weak topology, see [AI08, §2.10]) action on A,¢(R). For z € CT(R)’, let [z] =
(2,0,0,...) in Ajyr(R) denote its Teichmiiller representative. So we have [¢] in Aj,¢(R) with o([]) = [g]?
and gle] = []X@), for g in Gg and x : Gg — Z, the p-adic cyclotomic character. Furthermore, let
7= le] = 1,7 := ¢ Yn) = [¢'/P] = 1, and £ := 7 /m;. Clearly, we have g(r) = (14+7)X9) —1 for g € Gr
and o(m) = (1 +m)P — 1.

We will use the de Rham period rings Bj (R) and Bgg (R) defined in [Bri08, Chapitre 5] and [Abh21,
§2.1]. These are F-algebras equipped with a natural action of G and a Gpg-stable filtration. We have
that t := log[e] = log(1 + ) = ZkeN(—l)l‘”,ro+11 converges in BJ;(R) and any g in Gg acts on ¢ by
the formula g(t) = x(g)t. Moreover, we will use fat period rings OB (R) and OBggr(R) defined in
[Bri08, Chapitre 5] and [Abh21, §2.1]. These are R[1/p]-algebras equipped with a natural action of Gg,
a (Gp-stable filtration and a Gpr-equivariant connection satisfying Griffiths transversality with respect
to the filtration. Furthermore, we have (OB;{R(R))(?:O = BiR(R), ((’)BdR(E))BZO R

= Bgr(R) and
(OB4r(R))“" = R[1/p].
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We will also use the crystalline period rings As(R), B;"m (R) and Bis(R), from [Bri()& Chapitre 6]
and [Abh21, §2.2], as subrings of Bqr (R). The ring As(R) is an Op-algebra and B, (R) and Beyis(R)
are F-algebras. These rings are equipped with a natural action of G, a G g-stable filtration (induced
from the filtration on Bqr(R)) and a G g-equivariant Frobenius endomorphism ¢. Note that ¢ converges
in Auis(R) and o(t) = pt. Moreover, we will use fat period rings OAis(R), OB:’HS (R) and OByis(R)
defined in [Bri08, Chapitre 6] and [Abh21, §2.2] as subrings of OBgr(R). The ring OAqis(R) is an
R-algebra and OB/, (R) and OB;s(R) are R[1/p]-algebras. These rings are equipped with a natural
action of G, a G g-stable induced filtration (from OBggr(R)), a G g-equivariant Frobenius endomorphism
¢ and a G g-equivariant induced connection (from OBggr(R)), satisfying Griffiths transversality with

respect to the filtration and commuting with ¢. Finally, by taking the horizontal sections for the

connection we have (OAcris(R))azo = Auis(R), (OB;S( ))8 =B!. (R), ((9Bms(7))8:0 = Bais(R),

Cris

and by taking Gp-invariants we have (OAgs(R ))G = R and (OB (R ))GR = (OBgis(R ))GR =
R[1/p].

2.2.1. Fundamental exact sequence. From the Artin-Schrier theory in [AI08, §8.1.1], we have an
exact sequence

0— Zp — Aue(R) —2 Air(R) — 0. (2.1)

Let r € N and write r = (p — 1)a(r) + b(r), with 0 < b(r) < p — 1, and set Z,(r) = —=Zy(r). From
P

[Tsu99, Theorem A3.26] and [CN17, Lemma 2.23], we have a p"-exact sequence called the fundamental

exact sequence in p-adic Hodge theory:

0 — Zy(r) — Fil' Acxis(R) 2% Acris(R) — 0. (2.2)

2.3. p-adic Galois representations. For the ring B = OBggr(R) and OB;is(R), we will con-
sider B-admissible p-adic representations in the sense of [Bri08, Chapitre 8] and [Abh21, §2.3]. Note
that OBgr(R) is a Gr-regular R[1/p]-algebra. Let V be a p-adic representation of Gg and we set
ODar(V) = (OBar(R) ®g, V). We say that V is de Rham if it is OBag(R)-admissible. The
R[1/p]-module ODgygr (V) is equipped with a decreasing, separated and exhaustive filtration and an in-
tegrable connection satisfying Griffiths transversality with respect to the filtration (all induced from
the corresponding structures on OBgr(R) ®q, V). Furthermore, ODggr(V) is projective over R[1/p]
and of rank < dim(V'). If V is de Rham, then for all » € Z, the R[1/p]-modules Fil"ODgg (V) and
gr"ODgr (V') are projective of finite type and the collection of integers r;, for 1 <4 < dimg,(V'), such
that gr="{ODgr(V) # 0 are called the Hodge-Tate weights of V' (see [Bri08, §8.3]). Moreover, we say
that V' is positive if and only if r; <0, for all 1 <7 < dimg, (V).

Next, we note that OBgs(R) is also a Gg-regular R[l/p] algebra. Let V be a p-adic represen-
tation of Gr and we set ODgis(V) := (OBeis(R) ®qQ, V) . We say that V is crystalline if it is
OBis(R)-admissible. The R[1/p]-module OD;s(V) is equipped with a Frobenius-semilinear opera-
tor ¢ induced from the Frobenius on (’)Bcris(ﬁ) ®q, V', where we consider the G p-equivariant Frobe-
nius on OBgis(R). Moreover, OD,is(V) is an R[1/p]-submodule of ODgyg(V'), and we equip the for-
mer with, induced from the latter, filtration and connection satisfying Griffiths transversality with
respect to the filtration. Additionally, we have dp = 0 over OD¢s(V). The module ODgs(V)
is finite projective over R[1/p| of rank < dim(V'). If V is crystalline, then the R[1/p]-linear ho-
momorphism 1 ® ¢ : R[1/p] @gp1/p),0 ODeris(V) — ODgpis(V) is an isomorphism and ODeis(V) is
called a filtered (¢,d)-module. Finally, the inclusion OBgis(R) C OBgr(R) induces an inclusion
OD¢is(V) C OD4r(V) (see [Bri08, §8.2 and §8.3]).

2.4. (p,I')-modules. In this subsection, we will briefly recall some results from the theory of relative
étale (o, I')-modules (see [And06; ABO8; AIO8] for details).

2.4.1. The Galois group I'r. Let F;, = F(uyn), for n € N, and Fyy = U, F,,. We take R,, to be
the integral closure of R ®¢,(x+1] OF, [Xfﬁn, ) ..prn} inside R[1/p] and set Reo := Up>m Ry, noting
that Fro C Roo[1/p]. From §2.2 recall that C(R) = C(R)[1/p] and C(R)” denotes its tilt. The ring
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C(R)’ is perfect of characteristic p and we set A= W (C(R)?), the ring of p-typical Witt vectors with
coefficients in C(R)®, and endow it with the weak topology (see [AI08, §2.10]). The absolute Frobenius
over C(R)’ lifts to an endomorphism ¢ : A# — Ag, which we again call the Frobenius. The continuous
action of G on C(R)” extends to a continuous action on A& commuting with Frobenius. The inclusion
F C R[1/p] induces inclusions (Cgj C C(R)’ and A% C A3 and the inclusion Oz C R induces inclusions
O, C CH(R) and Aint(OF) C Aint(R).

The ring R [1/p] is Galois over R[1/p| with Galois group I'r := Gal(Rs[1/p]/R[1/p]). Let I'p =
Gal(Fx/F) and Iy = Gal(Roo[1/p]/FsoR[1/p]), we have an exact sequence

1—Th—Tg—Tr—1, (2.3)

where Iy = Gal(Roo[1/p]/FR[1/p]) = Zp(1)* and x : Tr = Gal(Fs/F) = Z) (see [Bri08, p.
9] and [And06, §2.4]). The group I'p can be viewed as a subgroup of I'g, i.e. we can take a section
of the projection map in (2.3) such that for v € I'r and g € Iy, we have ygy™! = gX). So we
can choose topological generators {v,71,...,74} of I'r, such that vy = ~¢, with x(y0) = exp(p™), is
a topological generator of 'y = Gal(Ky/K), where Koo = Fy, and e = [K : F]. It follows that
{m,...,7a4} are topological generators of I'; and ~ is a topological generator of I'r. In particular, we
have y : T'jc = Gal(Foo/K) = 1+ p™Z,. The action of these generators on the elements of C(R)’, fixed
in §2.2, is given as y(¢) = eX(") and y;(¢) = ¢, for 1 < i < d; 7(X?) = eX? and ’yi(X?) = X;, for i #j
and 1 < j <d.

2.4.2. Etale (p,I'g)-modules. In [And06], Andreatta introduced the theory of étale (o, I'g)-modules
for p-adic representations of Gr (see [Abh21, §3.1] for a quick recollection). From loc. cit., let us recall
that we have characteristic p period rings ET ¢ E C (C(E)b. Let 7 denote the reduction modulo p of
7w in Aj(Of,). Then the characteristic p period rings above are T-adically complete and equipped
with a continuous Gg-action. Furthermore, we have rings E, € Er C R’ [1/p"], complete for the
T-adic topology and equipped with a continuous Gg-action. Moreover, we have (C*(E))HR = Roo,
(CH R = Ry, (CRP)™ = Ry [1/p], (BY)Hr = B} and Er = Ep,

In mixed characteristic, we have period rings A* € A ¢ W(C(R)?) equipped with an induced weak
topology, an induced Frobenius endomorphism ¢ and a continuous Gpr-action. Furthermore, we have
AL = AR C W(Ego[l /p’]), complete for the induced weak topology and equipped with an induced
Frobenius and a continuous I'z-action. Additionally, from [AI08], we have that AR = Ag, (AT)Hr =
A} and A/pA =E, and from [Abh21, Remark 3.7] we have AT /pA+ = ET.

Let D be a finitely generated A r-module equipped with a continuous (for the weak topology) and
semilinear action of I'p and a Frobenius-semilinear and I'g-equivariant endomorphism .

Definition 2.2. The A gr-module D is said to be étale if the linearisation of Frobenius, i.e. the natural
map 1® ¢ : Agr ®ay,, D — D, is an isomorphism.

Denote by (cp,FR)-Mod‘ZtR the category of étale (¢,I'r)-modules over Apr with morphisms be-
tween objects being continuous and (p,I'r)-equivariant morphisms of A g-modules. Furthermore, de-
note by Repr(G r) the category of finitely generated Zj,-modules equipped with a linear and con-
tinuous Gpr-action and morphisms between objects being continuous and G pg-equivariant morphisms
of Z,modules. Let T denote a Z,representation of Gp, then D(T) := (A ®z, T)Fr is an étale
(¢, T'r)-module over Apg. Furthermore, if T is finite free over Z,,, then D(T') is finite projective over Ap,
of rank = rkz T (see [And06, Theorem 7.11]). Finally, the functor D : Repy, (Gr) — (cp,I‘R)—ModitR,
induces an equivalence of categories (see [And06, Theorem 7.11})).

2.4.3. Overconvergent étale (¢,I'r)-modules. In [CC98], Cherbonnier and Colmez showed that
all Zy,-representations of G are overconvergent. Generalising this to the relative case, in [AB08], An-
dreatta and Brinon showed that all Z,-representations of G are overconvergent. We will quickly recall
the constructions useful for us.

Denote the natural valuation on O%p by v* and extend it to a map v* : CtH(R)” = R U {+oc} by

setting v’ (x) = L max{n € Q,z € 7 "CT(R)’}. Let v > 0 and let a € O(l’cp such that v’(a) = 1/v.
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Set

A%)’v] = {%pk[@"k] €Ay, vvb(xk) + k — 400 when k — —i—oo},
€
A%’”H — {kz;wpk [zx] € A%)’v} with vo”(z3) + k > ()} = p-adic completion of Ain¢(R)[p/[c]].
€

Note that we have A%W = A%)’U]Jr[l /[P"]]. The Gg-action on Aj¢(R) extends to these rings and

it commutes with the induced Frobenius ¢, where go(Ag’vH) = A%)’v/ PF and go(A%)’U}) = A%’U/ Pl
Moreover, we have that A(EO’U]+ C Blx(R) and A(EO’U] C Bar(R) for v > 1 (see [CN17, §2.4.2]). We use
these embeddings to induce filtrations on A%’UH and A%’U}.

Definition 2.3. Define the ring of overconvergent coefficients as ATE = UUGQ>OA%)’U]. Moreover, inside

Az, we set AR = Ap 0 AD and A0 = AN ADY. Define Al = Ap N AL = Uyeg., AR and
Af = AnAL = Uy, A0,

The rings defined above are equipped with a topology described in [AB08, §4]. We have an embedding
ATE C Ay compatible with the weak topology on Ag. Furthermore, ATE is stable under the induced
Frobenius ¢ and the G g-action which commutes with ¢ (see [And06, Proposition 7.2]). Finally, all rings
appearing above are equipped with a (¢, G'r)-action (induced from A4) and from [AIO8, Lemma 2.11]

we have that (A(Oﬂ’])HR’ =A% (ANHR = AT and Al /pAl, = Ep.
Define (gp,I’R)—Mod'iT to be the category of étale (¢, 'gr)-modules over A}i, similar to Definition
R
2.2. Let T € Repy (GR), then DY(T) := (AT ®z, T)H# is an étale (¢,I'g)-module over AE. Moreover,
if T is finite free over Z,, then DT(T) is finite projective over AE of rank = rkz T. The functor
Df : Repz, (Ggr) — (@,FR)—ModiT induces an equivalence of categories (see [AB08, Théoreme 4.35]).
R
Moreover, extension of scalars along A}r% — AR gives an isomorphism of étale (¢, 'g)-modules over Ag
as AR ®,; DI(T) = D(T).
R
Finally, we introduce the analytic rings to be used in §5. Let 0 < u < v and «,f € O(bcp, such
that v”(a) = 1/v and v"(8) = 1/u. Set A%] := p-adic completion of Ajy¢(R)|[[B]/p] and A[ﬁu’y] =
p-adic completion of Ain¢(R)[p/[c], [8]/p]. The Gg-action on Ajn¢(R) extends to these rings and com-
mutes with the extension of Frobenius to these rings, denoted again by ¢. For the homomorphism ¢,
[uly _ A [w/p] [uvly _ A lu/po/p] : : [u] + (7
we have that p(AZ') = Aﬁf and p(AZ") = A . Moreover, we have inclusions A" C By (R)
for u < 1 and A%’v} C BlR(R) for u <1 <w (see [CN17, §2.4.2]). We use these embeddings to induce
filtrations on A[ﬁu] and A%"v}.

2.4.4. Fundamental exact sequences. The Artin-Schreier exact sequence in (2.1) can be upgraded
to the following exact sequences (see [AIO8, §8.1] and [CN17, Lemma 2.23]):

0— 7, — Ap —25 Ay — 0,

(07U]+ 1750 (07U/p}+
AR

(2.4)

0—7Zp, — A — 0, forv > 0.

Furthermore, for 0 < v < 1 < v, the exact sequence in (2.2) can be upgraded to a p*"-exact sequence
(see [CN17, Lemma 2.23]):

0 — Z,(r) — Fil Al 222, ploe/el g (2.5)

2.4.5. The operator . Let us define a left inverse ¢ of the Frobenius operator ¢ on the ring A.
From [ABO8, Corollaire 4.10] note that the A-module ¢~ '(A) is free with a basis given as u, /p

(1 4 m)eo/P[Xx3]1/P. .. [X3]@a/P where o = (a, ..., aq) is a (d + 1)-tuple with a; € {0,1,...,p — 1} for
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each 0 < i < d (note that to get this statement from loc.cit., one should replace ¢~ '(A) by A there and
take p-th root of the basis elements). Define an operator (a left inverse of ¢), denoted as ¢ : A — A
and given by the formula x zﬁ oTr,-1(a)/A © o H(x).

Proposition 2.4 ([AB08, §4.8)). Let z € A and write o' (z) = 3, Tala/p, then we have (z) = zg.
Moreover, for the operator ¥ we have ¥ o ¢ = id. Furthermore, ¢ commutes with the action of GRg,
Y(AT) C AT and Y(AT) C AT,

2.5. Crystalline coordinates. In this subsection, we will introduce good “crystalline” coordinates
(see [Abh21, §3.2]). Let 7 = Op[Xo] and 7 = Or[Xo]{X;'}. Sending Xy to @ = (ym — 1 induces a
surjective ring homomorphism 75 — O, whose kernel is generated by a degree e = [K : F] = p™ !(p —
1) Eisenstein polynomial P, = P,(Xg). Let R;,D denote the completion of Op[Xg, X, X 1] for the
(p, Xp)-adic topology. Sending X to w induces a surjective ring homomorphism R;D - O {X, X1},
whose kernel is again generated by P,. Recall that R is étale over Op{X, X !} and we have multivariate
polynomials Q;(Z1,...,Zs) € Op{X, X 1}[Z1,...,Z], for 1 <i < s, such that det (gg?) is invertible in
J
R. Set RE to be the quotient of the (p, Xp)-adic completion of R;yD[Zl, ..., Zs| by the ideal (Q1,...,Qs).
Again, we have that det (%%) is invertible in RY (since R < Rf). Hence, R} is étale over RY - and

smooth over Op. Sending X to @ induces a surjective ring homomorphism R} — R[w], whose kernel
is again generated by Py. Since P, = X§ mod p, we have that RE[PY /k!|reny = RE[XE/[k/e]!|ren-
Set RPP := p-adic completion of RE[PE /k!|xen.

Recall that Q}% denotes the p-adic completion of the module of differentials of R relative to Z and
we have Q}% = EB?ZIR dlog X; and QII%L = /\]}%Q}E' Moreover, since R is étale over R;D, therefore, for

S = R;D or RE, we have that Qf = ng‘go ® (@0l S dlogX;).

Definition 2.5. For 0 < u < v, define RSS’”H to be the p-adic completion of RE[p["*/¢l/XF]| ey and

set RO .= Rg’vH[l/XO]. Furthermore, define R to be the p-adic completion of REIXE /pluk/el], o,
define R to be the p-adic completion of RE[XE/pluk/el plvk/el /X E| cn and set Ry as the p-adic
completion of RE[1/X,]. We will write RX for * € {,+,PD, [u], (0,v]+, [u,v]} and for the arithmetic
case, i.e. R = Op, we will write r¥ instead. Going from R to RX only involves the arithmetic variable
Xy, so we have RX = r;@)@ RE, where ® denotes the p-adic completion of the usual tensor product.

Remark 2.6. Unless otherwise stated, we will assume (p —1)/p < u <wv/p <1 < v < p, for example,
we can take u = (p—1)/pand v =p — 1.

Definition 2.7. Define a filtration on the rings in Definition 2.5 as follows:

(i) Let S = ROV (v < 1), RO (v < 1), R (1 ¢ [u,v]) or Rw. As Py is invertible in S[1/p], we
put the trivial filtration on S.

(ii) Let S be the placeholder for all the remaining rings in Definition 2.5, in particular, we have
that P is not invertible in S[1/p]. Then there is a natural embedding S — R[w,1/p|[Px] =
R[w, 1/p][Xo — w], obtained by completing S[1/p] for the Py-adic topology and where we note
that Py and Xy — w generate the same ideal in R[w, 1/p][Ps]. We use this embedding to endow
S with a natural filtration Fil*S := S N P R[w, 1/p][Pw], for all k € Z.

Remark 2.8. Let us describe the filtration on the rings of Definition 2.7 (ii), more concretely. Note
that Fil*S = S, for k£ < 0. For any k € N, the ideal FilkRgD C RPP is topologically generated by
the elements P2 /n!, for n > k, i.e. Fil*REP is the closure of the ideal generated by such elements.

Similarly, the ideal FilkRz[g] C Rq[;d is topologically generated by the elements PL / plul for n > k. Using
this description, an easy computation shows that Fil* RY (Py/ p)kR[wu]. On the other hand, we have
that Fﬂ’fRQ’”H = Pf;Rg’UH. By definition, note that RE;““] = R[wu] + RS—?’UH, so we get that the ideal
FilkRg’v] C Rg’v] is topologically generated by Filqu[ﬁ] + FilkRg)’vH.

The following claim easily follows from Remark 2.8:

Lemma 2.9 ([CN17, Lemma 2.6]). For any k € N and f € RP;], we can write f = f1 + fo with
f1 € Fil*RY and f, € kT RE.
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2.6. Cyclotomic Frobenius. In this subsection, we will define a (cyclotomic) Frobenius endomor-
phism and its left inverse on the rings studied in the previous section (see [Abh21, §3.3]).

Definition 2.10. Over R;’D define the (cyclotomic) Frobenius as a lift of the absolute Frobenius modulo
p, denoted as ¢ : R;D — R;D and sending Xo — (1+Xo)? —1 and X; — X7, for 1 <i < d. Clearly, we
have that ¢(z) — P is in pRY  for any z in R 5. Using [CN17, Proposition 2.1], the Frobenius extends
to an endomorphism ¢ : Ré — RE. Finally,yby continuity, the Frobenius admits unique extensions
RPD — RPP Rl gl RO pOv/PIplul y LU/l and R, — R,

Recall that r = { Y ken akpﬂk?uJX(’f, such that a; € Op goes to 0 asi — +oo}. Denote by vx, :
P 5 NU {+00}, the valuation relative to X, i.e. if f = b XE, then vy, (f) = inf {k € N, b, # 0}.
For N € N, we set rgN ={f € n[g], vx,(f) > N} and define RI[;L!N to be the topological closure of
TE;L}N @+ RE C R[wu].

Lemma 2.11. Let s € Z and N € N> such that N > se/u(p — 1), then 1 —p~%p is bijective on RE;L}N.

Proof. The claim follows from [CN17, Lemma 3.1], where by explicit computations, one shows that
p_ksgpk(R[wu}N) C p”(k)RE;‘]N, where n(k) depends on k and goes to +00 as k — 4o00. So it follows that

the series of operators ) ;o pF5pF converge as an inverse to 1 — p~*¢ on RE;L] N- [ ]

2.6.1. The operator . Set uy := (1 + X)* X" - X7 where a = (g, ..., aq) is a (d + 1)-tuple
with o; € {0,...,p — 1} for each 0 < i < d. Over the ring R, we have Op-linear differential operators
=1+ XO)& and 9; = Xidixi, for 1 < i < d. Therefore, for 0 < i < d, we have that dju, = ajuq
and p(uq) = ub.

Lemma 2.12 ([CN17, Proposition 2.15]). Any x in Rz /p can be uniquely written as x =Y, co(x), with
Oioco () = aico(x), for 0 <i < d. Moreover, there exists a unique o in Ry /p, such that co(x) = 2B ug.
Furthermore, if x is in RL/p, then co(z) belongs to RE /p.

Proposition 2.13. Any = in Ry can be uniquely written as v = Y, ca(z), with co(z) in ¢(Re)uq.
Moreover, if x is in RE with co(x) = ©(20)Ua, then co(z) belongs to RE, for all o, and d;co () — aico ()
belongs to pRL, for 0 < i < d. Finally, if x is in RQ’UH then cqo(z) is in RSWO’”H, for all a.

Proof. The first two claims follow from Lemma 2.12 and the last from [CN17, Proposition 2.15]. |

Definition 2.14. Define the left inverse ¢ of the Frobenius ¢ on S = Rt or S = R, by the formula
¥(z) = ¢~ (co(z)). Since R is an extension of degree p?*! of ¢(Ry), with basis the u,’s, and since
o(uq) = ub, for all a, therefore, we have that Ter/w(Rw)(ua) = 0, if @ # 0, and we can define ¢

intrinsically as ¢(x) := Zﬁgpfl o Trr_ /o(ro) ()

The operator ¢ defined above is closely related to the operator defined in Proposition 2.4 (also
denoted 1); the relation will become clear in §2.7). Note that ¢ is not a ring morphism; it is a left inverse
to ¢ and, more generally, we have that ¥ (o(z)y) = z¢(y). Also, we have that 9; o ¢ = py o 9; and
;0 =p Mo, fori=0,1,...,d. Indeed, the first equality can be obtained by checking on the basis
elements u,, and the second equality is obtained by an easy computation using Proposition 2.13.

For any k € N, we can write X} = Z?;é o(ajr)(1 + Xo)?, for some ajj, in RS. Therefore, by
continuity, we obtain the following:

Lemma 2.15. (i) The definition of 1 extends to surjective maps RQ’UH — RSS”’”]*, R[wu] — Rlé’,“] and
Rlwl — Rlpwrl,

(ii) For the same reasons, the maps x — co(x) also extend and lead to decompositions S = ©ySa,
where So, = SN @(Rw)ug for S = RE, with x € {,+, [u], (0,v]+, [u,v]}. Since ¥(z) = ¢~ (co(z)),

therefore, we have that SY=9 = Da£0Sa-

Lemma 2.16. Let S = RX, for x € {,+,[u], (0,v]+, [u,v]}. Then, for 0 < i < d, the operator 0; on
S* /pSX* is given by multiplication by oy, where oy is the i-th entry in a = (ao, . .., aq).
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Proof. If * € {,+}, then the claim was already shown in Proposition 2.13. For % € {[u], (0, v]+, [u, v]},
the elements of SX are those of the form 3 ..y prkX(])“xk, where x;, € ST goes to 0 when k — o0
and 7 is determined by “x”. Let x = ZkeZkaX(’ka. Then, note that for 1 < i < d, we have that
0i(Xkay) — i Xbar = X (0i(ar) — asar) belongs to pS* by Proposition 2.13. Therefore, the claim
follows for all 1 <i < dand % € {,+, [u], (0,v]+, [u, v]}. Next we will look at the case of i = 0. We first
assume that x is in S and write © = 3oy P 24, >0 <p(a] k) (14 Xo)?, for some ajj in ST. Then,
ca(x) = ijo S ken PEo(a.8) ¢ ag—jia1, o) (Tk) (1 + Xo)?, where ag — j denotes its value modulo p.
Since 9o(C(ag—ja1, aq)(@k)) = (@0 = J)C(ag—j.ar, aq) (k) belongs to pST and dp o p = pp o dy, therefore,
we get the desired conclusion for i = 0 and 2 in S™. Next, assume that z is in S+ and using the
result for S, we get that dy(x) — apz belongs to pSN SO+ — pgOv+  Finally, by combining the results
for St and SO+ we get the conclusion for any z in S[*%l. This allows us to conclude. |

Proposition 2.17. Assume that v < p.
(i) Let x in RY=0, then X5 (z) = v (p(Xo)*x), for all k € Z.
(i) o(XgPVROVPT) ¢ Xxg NROMY for all N € N.

(iii) The natural map @a¢0¢(R£’”]+)ua — (RQ’““”H)”’:O is an isomorphism.

Proof. The claim in (i) follows from an elementary computation. Claims in (ii) and (iii) follow from
[CN17, Proposition 2.16]. [ |

2.7. Cyclotomic embedding. In this subsection, we will describe the relationships between period
rings discussed in §2.2 and §2.4, as well as, for the ring RX, where * € { ,+,PD}. Define a morphism
of rings teyel : R;’D — Ait(R), by sending Xo — 7, = ¢ ™ () and X; — [Xib], for 1 < i < d. The
map Leyc admits a unique extension to an embedding RE — Ajyy (R) such that 6o Leyel 1S the projection
RY — R[w] (see [Abh21, Lemma 3.12]). This embedding commutes with the respective Frobenii,
i.e. Leyel © 9 = 0 Leyel. By continuity, the morphism ¢ty extends to embeddings RED C Auis(R),

Mo Al RO ¢ ALY Rl ¢ Alvhand R, ¢ A Denote by A% the image of R under
Leyel - These rings are Stable under the action of G and the action factors tﬁrough T'r; we equip these
rings with the induced action of I'g. Moreover, for x € {+,PD, [u], [u, ], (0,v]+}, we equip AF, _ with
a filtration using Definition 2.7 and tcyq. It is easy to see that for u < 1 < v, the filtration on Aﬁ,w

coincides with the filtration induced via the embedding A};’w C BCTR(R), where we consider the natural
filtration on B (R) (see §2.2). From [CN17, §2.4.2], note that we have (¢, I'r)-equivariant inclusions
A%:;CA%%CAH for u > - 1 and o' < 2.

Note that the precedlng dlscuss10n works Well for R[w], where w = (pm — 1 with m > 1. For R, one
can repeat the constructions above to obtain the period ring AE - A_I;,w (see [Abh21, §3.3.2]), equipped
with an induced filtration Fil*Af, = A} NFil*A}, _ = nFAJ; (see [Abh21, Lemma 3.17]). Recall that,

Lemma 2.18 ([Abh21, Lemma 3.14]). The element t/7 is a unit in A - C A - C A[u] C A[u )

Lemma 2.19. For k € Z and * € {+,PD, [u], [u,v]}, we have FﬂkAE,w N WAE}W = wFilkilARw, as
submodules of AE -

Proof. Let A = ARw and B = R[w, 1/p|[Px] = R[w,1/p][Xo — @] (see Definition 2.7 for the latter
ring), where @ = (pm — 1. Using the inverse of the isomorphism tcyci : RX = AE - = A, we may regard
A as a subring of B. 7

We will prove the claim by induction on k. Note that the claim is trivial for £ < 0 and for &k = 1
we have that Fil*A N4 = 71A. So, let k € N>9 and assume that the claim is true for k — 1, i.e.
Fil*"'AN7A = 7Fil* 2 A. Now, note that Fil*AN7A = FilFANFil* AN 1A = Fil* A N 7Fil*24. In
particular, to get the claim, it is enough to show that Fil*AN#Fil* 24 = #Fil* ' A. Let 2 be an element
of Fil*A N 7Fil*~2A and write 2 = my, for some y in Fil*"2A. From the description of the filtration on
A in Definition 2.7, it follows that we can write 2 = £*2’ and y = ¢*=2y/, for some 2’ and ¢/ in B (note
that teyel(Pw) = §). Since B is {-torsion free and m = {my, we get that {2’ = my’ in B. But we have
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m—1 -1 m—1

T =1+m)P" —1l=(m—w+Gm)P —1=(Tm—w@)z+(— 1, for some z in B and ¢, = (on

(note that 7y, = teya(Xo)). Moreover, from Definition 2.7, recall that £ and m,, — @ generate the same
ideal in B. Therefore, we obtain that ({, — 1)y’ = &’ — (7, — w)zy’ is an element of {B. As (¢, — 1) is
a unit in B, it follows that we have 3’ = ¢y, for some y” in B. So, we can write y = £F2y/ = ¢F=1y/",
and see that it belongs to £¥"1BN A = Fil* ' A. Hence, 2 = 7y is an element of 7Fil* "' A4, in particular,
Fil* A N 7Fil*2A ¢ 7Fil* ' A. The other inclusion, i.e. 7Fil* 1A c Fil*A N 7Fil*~2A, is obvious. This
concludes our proof. |

Lemma 2.20 ([CN17, Lemma 2.35]). If v < p, then

(i) The element W;fm_lm is a unit in Ag’;]Jr;
(ii) In Ag’ng, the element p is divisible by rLp=bp™” el , hence also by =" ’.
(iii) Let v =p— 1, then 7,;P" 7 is a unit in A( ”/p]+ and p/w € A(O v/pl+

Next, we prove some claims for the action of I'g.

Lemma 2.21. Let k € N and note that for x € {+,PD,[u]} and i € {0,1,...,d}, we have that
m myk k+1
(i = D™, 7)) AR € o)A

Proof. Let ¢ = 0 and note that we have (y9 — 1)m,, = 7z, for some = € AE’W. Since 7 = (1 +m,)P" —1,
we get that (yo — 1), belongs to (pmﬂ'm,ﬂ'%m)AEw. Moreover, (yo — )72 = (72 + 7p)P" — 7l
belongs to (p™my,, 78, ) AJr . Proceeding by induction on k > 1 and using the fact that 79 — 1 acts as
a twisted derivation (i.e. for all x,y in Aer7 we have (y0 — L)zy = (7o — D)z -y + v0(x) (70 — 1)y), we
conclude that (yo — 1)(pm7rm,7rfnm)kAE7w C (p™mm, 7k, )kHAJr
written as f =3, cn famh/([n/e]!), such that f, is in A;%w and goes to 0 p-adically as n — +o0. For
notational convenience, we take n = je, for some j in N, and see that (yo — 1)7¢/j! is in (p™, wfnm)AE%.
Proceeding by mductlon on k > 1 and using that y9 — 1 acts as a twisted derivation, we conclude that
(o = 1) (p™, 7' ) AR, © (pman) T ARD,

Next, for i € {1,...,d}, note that we have (y; — 1)[X?] = 7[X?] is in (pm,w%m)AJ}%w and (y; —
D(X2]7Y) = —n(1 +7) "' [X?]~! belongs to (p™mp,, " )AL - Proceeding by induction on k > 0 and
using the fact that v; — 1 also acts as a twisted derivation, we conclude that (y; — 1) (p"mpm, ﬂpmm)kAE = C
)kJrl

Furthermore, any f in A%]%_V, can be

(p ﬂ-mv 7Tm

and the fact that v; — 1 acts as a twisted derivation, we conclude that (v; — 1)(pm,7r£’nm)kA1§Pw -

Agw Again, by the description of elements of AEPP R.» using the discussion for Agw

(p™, b, )kHA}%BU. Finally, the claim for A%]w follows in a similar manner. [ |

Lemma 2.22. We have that (yo — l)Agg”;]Jr C (pm’]'['m77r£:L)A§g:g+ and (v; — 1)A( vt~ 7AY 0v]+ . for

i € {1,...,d}. Moreover, for i € {0,1,...,d} and k € N, we have that (v; — 1)( , o) A%ﬂg C
k-l-lA[u,'u]
( ) m) Ryw*

Proof. Let i = 0 and from the proof of Lemma 2.21, we have that (7o — 1)y, is in (p" 7, W%m)AE,w. So
we conclude that (yo — 1)A% , belongs to (p"'mm, 75, ) A% . Observe that vo(mm) = x(Y0)Tma, where
x(70) = exp(p™) is in Z, and a is a unit in AL . So, we can write (yo — 1)m,t = p™z/(x(70)amm)

and, therefore, (vo — 1)(p/m,) belongs to (pmwm,wﬁlm)Ag]7’g+. Proceeding by induction on £ > 1 and

using the fact that o — 1 acts as a twisted derivation, we conclude that (yo — 1) (p" 7y, Wﬁlm)kAgg”;]Jr C
(™, T2 )k+1A(0 o)+

For 1 <4 < d, from the analysis for AE’W in Lemma 2.21, we already have that Wi_l)AE,w C WAE,W
Since passing from AE,W to Agg’vH involves only the arithmetic variable m,,, on which ~; acts trivially.
Therefore, we conclude that (y; — l)A(O’”]+ C WA(O’UH and proceeding by induction on k > 1 and using

that 7;—1 acts as a twisted derivation, we get that (v;—1) (p™mp, 78") Ag;;]Jr C (p" 7, 7L, )k+1Agg7’g+.
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This shows the first claim. Finally, the claim for A%’;], follows by combining discussion above with Lemma
2.21 for Al u

7w.

2.8. Filtered Poincaré Lemma. In this subsection we will state and prove a filtered version of
the PD-Poincaré Lemma which will be useful for §5.

2.8.1. Fat period rings. We recall the definition from [CN17, §2.6] and [Abh21, §3.4]. Let A and B
be two p-adically complete filtered Op-algebras. Let ¢ : B — A be a continuous injective homomorphism
of filtered Op-algebras and let f : B®o, A — A denote the ring homomorphism sending  ® y — ¢(z)y.

Definition 2.23. Define E to be the p-adic completion of the divided power envelope of B ®p, A, with
respect to Ker f.

For consistency in notations, in the following definition, we write A s (E) as A%D.
Definition 2.24. In the notation of Definition 2.23, we record the following:
(i) Let * € {PD, [u], [u,v]} and define E}’é’w =FE for B=RX, A= AE@ and ¢ = teyal (see §2.7).
(ii) Let » € {PD, [u], [u,v]} and define E% =FE,for B=RX, A= A% and ¢ = toyal (see §2.7).
Remark 2.25. Let us note some properties of the ring E in Definition 2.24:
(i) The ring F is the p-adic completion of B®o, A adjoin (@1 —1®«(x))¥ for all 2 in B and n € N,

amd(V;—l)[ld forOﬁiﬁdandkEN,whereVi:lgzgé) forlgigdand%:%.

The morphism f : B ®o, A — A extends uniquely to a continuous morphism f : £ — A.

(ii) The ring E is equipped with an Z-indexed decreasing filtration, which we define to be Fil"E := E
for r <0, and for » > 0, define Fil" E to be the topological closure of the ideal generated by elements
of the form z1x9 Hglzo(Vi — 1)[1“'], with 1 in Fil"™' B, z9 in Fil"?A and r1 + 79 + Z?:o k; >r.

(iii) From [CN17, Lemma 2.36], we have that any element x in F can be uniquely written as =z =
Sgeni+1 T (1 — Vo)lkol .. (1 — V)lkal | with xy in A for all k = (ko, k1, ..., kg) € N1 and 23 — 0
as |k| = >4, ki — +00. Moreover, an element z is in Fil” E if and only if 2y is in Fil’ "%l A4, for
all k € N1,

(iv) The ring E is equipped with a natural A-linear continuous de Rham differential operator d :
E — Q%E /A" Moreover, by the description of the filtration on E in (iii), it is easy to see that
the differential operator satisfies Griffiths transversality with respect to the filtration, i.e. we have
d:FilI'E —» FiI' '®g Q}E/A. In the special case that ¢ : B =+ A, we see that F is further equipped
with a natural B-linear continuous de Rham differential operator d : £ — Q}E /B satisfying Griffiths
transversality with respect to the filtration.

Lemma 2.26. Rings in Definition 2.2/ have desirable properties:

(i) In Definition 2.2/ (i), the tensor product Frobenii ¢ @ p on RX ®0, AE,w’ for x € {PD, [u], [u,v]},
— EW_ and ERY -

extend respectively uniquely to continuous morphisms Eg% — E]};j?v, E}[g’]w

El[,g”;/p]. Moreover, the actions of Ggr on AE,w extend respectively uniquely to continuous actions

of Gr on EE%, El[g,i]w and El[f{”;], which commute with the respective Frobenii. Furthermore, we

Y,U} .

have (¢, GRr)-equivariant inclusions EE% C El[g]w C El[f{w

(ii) In Definition 2.2 (ii), the tensor product Frobenii ¢ @ ¢ on RX ®0, A%, for x € {PD, [u], [u,v]},

extend respectively uniquely to continuous morphisms E%D — E%D, E%d — E%d and E%’U] —

E%’U/p]. Moreover, the actions of Gr on A% extend respectively uniquely to continuous actions of

GpRr on E%D, E}%u] and E%’v], which commute with the respective Frobenii. Furthermore, we have

(¢, Gr)-equivariant inclusions E%D C E%} C E%’v}.
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(iii) The natural (o, T r)-equivariant inclusion of rings AE,w C A% induces a natural (o, I'R)-equivariant
injective homomorphism of rings EE@, C E%. Moreover, the filtration and the Agyw—linear con-
nection on E}%w are respectively induced from the filtration and A%-lz'near connection on E%, n
particular, FilTEE’w = EE,W N Fil”E% C E%, for allr € Z.

Proof. Claims in (i) and (ii) follow from [CN17, Lemma 2.38]. The claim in (iii) follows from the
description of EE@ and E% in Remark 2.25 and the fact that AE@ N Fier% = AEW NFil"Bgr(R) =
Fil"AEw, for all r € Z. |

Remark 2.27. From Definition 2.24 and Lemma 2.26, note that we have a natural embedding O A is(R) C
EED compatible with the respective Frobenii, Acris(ﬁ)-linear connections and actions of Gg, and the
natural filtration on the former is induced from the filtration on the latter. Furthermore, from §3.2
recall that we have the ring OA ) C OAqis(R) and from [Abh21, Remark 4.20] we have an alternative
construction of (’)AP% using the embeddlng R C RPP = APD (the last morphism is teyel in §2.7).
This induces an embedding OA - C E —_ compatible with the respective Frobenii and actions of I'p,
and the natural filtration on the former is 1nduced from the filtration on the latter. Denote the Op-linear
differential operator over AED R 88 04 and the Op-linear differential operator over REP (as well as over

R) as Og. Then the induced differential operators 0p ® 1+ 1 ® 94 over OALD > as well as, E};%, are
compatible.

Lemma 2.28. For r € Z and * € {+,PD, [u], [u,v]}, we have FilrEE’w N WEE@ = wFilT_lE]"é’w, as
submodules of EEW

Proof. Let E := ng and A := Ang, for x € {+,PD,[u],[u,v]}. The claim is trivial for » < 0,
so assume that r > 1. Note that we have 7Fil""'F c Fil"E N 7E, so we need to show the reverse
inclusion. Let x be any element of Fil"EN7FE, and write x = my, for some y in E. From the description
of the filtration on F in Remark 2.25 (iii), we have a unique presentation of x as Yy cya+1 2k(1 —
Vo) kol ... (1 — Vp)lkdl | with zy in Fil"~® A for all k € N¥+!, Moreover, we have a unique presentation of
Y as Yy gendt+1 Yk (1 — Vo)lkol ... (1 = Vy)lkal | with gy in A for all k € N4*+1. Then using the equality = = my,
we get that xy = 7y, for all k € N1, Now, from Lemma 2.19 and the fact that A is m-torsion free, it
follows that zy is an element of 7rFil“‘k|_1A, hence, z is an element of 7Fil" ' E. |

Finally, to work with various filtered modules later, we define a filtered ring (analogous to OBggr(R))
containing all the rings described so far and inducing the same filtrations as described above. From
[Bri08, Proposition 5.2.2], recall that the natural inclusion BJz C OBJy(R) extends to a BJg-linear
isomorphism of rings B [T}, ..., Ta] — OB4r(R), by sending the indeterminate T; — X; — [X?], for
each 1 <17 < d. We enlarge OBdR( ) by setting,

B i= Bip[To. Tv.... T, and B = B*[L/1]

in particular, we have natural inclusions of rings (’)B:ir (R) C B™ and OBdR( ) C B. We equip the
latter rings with filtrations similar to [Bri08, p. 52]. Set Fil"Bt := (¢, Ty, ..., Ty)"B™, for all r € N, and
Fil'B+ = B*, for r < 0. Moreover, set Fil’B := ¥, .yt "Fil"B* and Fil"'B := ¢"Fil’B, for all r € Z.
Similar rings were studied in [AI12, §3.2.1], in the more general setting of semistable schemes. Now,
employing arguments similar to [Bri08, Proposition 5.2.5, 5.2.6 & 5.2.8], the following is clear:

Lemma 2.29. Let x; denote the image of T; in gr'BY and y; denote the image of T;/t in gr°B, for
0 <i < d. Then, we have that gr*BT = C(R)[t, x,...,x4], where the grading is given by the degree
of the polynomial in t,xo, ..., x4, and gr*B — C(R)[t,t~ 1,0, - . .,Y4], where the grading is given by the
degree of t, in particular, we have gr’BY =5 C(R)[yo,...,vq]. Moreover, the filtration on BT is the
same as the induced filtration from B, i.e. FiI'BT = Fil"BN BT C B, for allr € Z.

Remark 2.30. From Lemma 2.29 and the description of the natural filtration on OBQ'R(R) in [B1’108, p-
52], it is clear that the filtration on OB (R) is induced from the filtration on B*, i.e. Fil'OBI;(R) =
OB, (R)NFil"B* C BT, for all 7 € Z. Then it also follows that Fil"OBgr(R) = OB4r (R )ﬂF1l7"B C B,
for all r € Z.
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Now, recall that we have an inclusion of rings A%’U} - B:{R(E) and the former is equipped with a

filtration induced from the latter (see §2.4.3). Then, upon using the description of Ej[gg from Remark

2.25 (i), we see that the preceding embedding naturally extends to an injective ring homomorphism
E%’U] — Bt via V; — 1+ T;/[X?], for 1 <i < d, and Vo — 1+ Tp/(1 4 7). Using the description of

the filtration on E%;] from Remark 2.25 and the filtration on B* from above, we see that,

Lemma 2.31. The filtration on E%’v} is induced from the filtration on BT, i.e. FilrE%’v} = E%’U] N
Fil"B* c B*, for allr € Z.

Remark 2.32. Let S be any ring out of Agis(R), OAuis(R), OA%%, RX, ng, E%, for x €
{PD, [u], [u,v]}. Then using Remark 2.27, Remark 2.30 and Lemma 2.31 it is easy to see that Fil"§ =
S[1/p]NFil"B C B and Fil"(S[1/p]) := S[1/p] NFil"B = (Fil"S)[1/p] C B, for all r € Z.

2.8.2. Filtered R-modules. Let M be a finitely generated p-torsion free R-module such that M[1/p]
is a finite projective R[1/p]-module. Moreover, assume that M[1/p] is equipped with a decreasing,
separated and exhaustive filtration by R[1/p]-submodules {Fil"M[1/p]|},ecz, such that Fil*M[1/p] =
M{[1/p] and Fil°M[1/p] = 0, for some a,b € Z, and for each r € Z, the R[1/p]-modules Fil" M[1/p] and
gr” M[1/p] are finite projective. Next, let S be a filtered R-algebra equipped with a Z-indexed decreasing
filtration such that the natural map R — S is injective and the induced filtration on R is trivial (see
Remark 2.34 for examples). Consider the S[1/p]-module Mg[1/p] := S®r M[1/p] and we equip Mg[1/p]
with a tensor product filtration given as Fil"Mg[1/p] := Fil'S @p FilV M[1/p], for all r € Z.

Lemma 2.33. The filtration {Fil" Mg[1/p]}rez is a well-defined Z-indexed decreasing filtration on Mg[1/p]
by S[1/p]-submodules. Moreover, we have gr” Mg[1/p] = ®itj—rgr’S @ g gr? M[1/p], for each r € Z.

Proof. We need to check that Fil"Mg[1/p] is an S[1/p]-submodule of Mg[1/p], for each r € Z. So, for
each j € Z, let us consider the following exact sequence of finite projective R[1/p]-modules, in particular,
flat R-modules,

i+j=r

0 — FiV "' M[1/p] — Fil/ M[1/p] — gr/ M[1/p] — 0. (2.6)
Extending scalars in (2.6) along the natural map R — S and by decreasing induction on j > a, it is easy
to see that the natural map S ®g FilV M[1/p] — S @z Fil*M[1/p] = S ®r M[1/p] is injective. Therefore,
for any i 4+ j = r, it follows that the natural map Fil'S @ Fil/ M[1/p] < S ®r Fil! M[1/p] — Mg[1/p]
is injective, where the first arrow is obtained by tensoring the R-linear inclusion Fil’S C S with the
flat R-module Fil’ M[1/p] and the second arrow is as above. Hence, for each r € Z, we get that
Fil"Mg[1/p] = Y, -, FiI'S @g FiY M[1/p] is an S[1/p]-submodule of Mg[1/p]. It is clear that the
filtration is decreasing.
Next, let us note that upon tensoring (2.6) with Fil’S and gr’S, we obtain the following R-linear
commutative diagram:

0 0 0
0 — Fil'"lS @ FiV T M[1/p] — Fil'"1S @g FiV M[1/p] — Fil'"'S @p gt/ M[1/p] — 0
0 — Fil'S @ FiV ' M[1/p] —— Fil'S @ FiIVM[1/p] — Fil'S@pgiM[1/p] — 0 (2.7)

0 — gr'S @ FiVTIM[1/p] —— gr'S @ FiVM[1/p] —— gr'S @p gt/ M[1/p] — 0

0 0 0.

Since Fil M[1/p] and gr’/ M[1/p] are finite projective modules over R[1/p], in particular, flat modules
over R, we get that all rows and columns of (2.7) are exact. From the diagram, it easily follows that we
have gr” Mg[1/p] = @®i+j—rgr'S @ gr/ M[1/p], for each r € Z. [ |
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Remark 2.34. Let S be any ring out of OAis(R), (’)Ag{?ﬂ, RX . ng or E%, for » € {PD, [u], [u,v]},
equipped with the filtration as discussed in §2.2, Definition 2.7 and §2.8.1. Then from Lemma 2.33 the
S[1/p]-module Mg[1/p] := S ®r M[1/p] is equipped with a well-defined Z-indexed decreasing tensor
product filtration by S[1/p]-submodules. Moreover, after inverting p above or letting S[1/p] be any ring
out of OBis(R), OBz (R), OB4r(R), BT or B, note that from the discussions in §2.2, Definition 2.7
and §2.8.1, the ring S[1/p] is equipped with a Z-indexed decreasing filtration (in the latter cases we abuse
notations by using S[1/p], even though S is not well defined). Then by employing arguments similar
to the proof of Lemma 2.33 (use R[1/p] and S[1/p] in place of R and S, respectively), we see that the
S[1/p]-module Ms[1/p] := S[1/p|®@ gy M[1/p] is equipped with a well-defined Z-indexed decreasing ten-
sor product filtration by S[1/p]-submodules given as Fil" Mg[1/p] := 3 ;, ;. FiliS[l/p] RR[1/p] Fil/ M [1/p].
Moreover, for each r € Z, we have gr" Ms[1/p] = @iy j=rgr'S[1/p] @gp /) e/ M[1/p].

Next, let S and S’ be two filtered R-algebras equipped with respective Z-indexed decreasing filtrations
such that the natural maps R — S and R — S’ are injective and the induced filtration on R is trivial
(see Remark 2.36 for examples). Assume that S C S" and Fil"S = SN Fil"s’, for all r € Z. Set
Mgs[1/p] := S ®r M[1/p] and Mg/[1/p] :== S’ ®@r M[1/p], equipped with the tensor product filtration as
in Lemma 2.33. Note that Mg[1/p] C Mg/[1/p] and we claim the following:

Lemma 2.35. For each r € Z, we have Fil"Mg/[1/p] N Mg[1/p] = Fil"Mg[1/p], as submodules of
Mg[1/p].

Proof. Let us first note that an easy induction on 7 shows that proving the equality Fil" "' Mg [1/p] N
Mg[1/p] = Fil"*1 Mg[1/p] is equivalent to proving the equality Fil" ! Mg [1/p]NFil" Mg[1/p] = Fil"** Mg[1/p].
Next, consider the following diagram with R-linear exact rows,

0 —— Fil"" ' Mg[1/p] —— Fil"Mg[1/p] —— gr"Ms[1/p] —— 0

| | | (2.8)

0—— Filr+1MS/[1/p] E— FﬂTMS/[l/p] — gI‘TMS/[l/p] — 0.

From the diagram (2.8), it is easy to see that proving the equality Fil" ™ Mg/ [1/p]|NFil" M = Fil" 1 Mg[1/p]
is equivalent to showing that the right vertical arrow in the diagram (2.8) is injective. Now, using
Lemma 2.33, note that we have gr"Mg[l/p] = @1 j—rgr'S @pr gr/ M[1/p], for each r € Z. Similarly,
we also have that gr" Mg = @®;1j—rgr'S’ ®g gr'! M[1/p], for each r € Z. Since Fil’'S’ n S = Fil'S,
therefore, by using a diagram similar to (2.8), it follows that the natural R-linear map gr’S — gr's’
is injective, for all i € Z. Furthermore, as griM|[1/p] is flat over R, it follows that the natural map
gr'S @p gr! M[1/p] — gr'S’ @ gr! M[1/p] is also injective. Hence, it follows that the right vertical arrow
in (2.8) is injective, allowing us to conclude. |

Remark 2.36. Let S and S’ be any two rings out of OA;s(R), OA%%, RX, E};w or E%, for x €
{PD, [u], [u,v]}, equipped with the filtrations as discussed in §2.2, Definition 2.7 and §2.8.1. Then these
rings satisfy the assumptions of Lemma 2.35 and for the respective tensor product filtrations on Mg[1/p]
and Mg/[1/p], as in Lemma 2.33, it follows that we have Fil" Mg [1/p] N Mg[1/p] = Fil"Mg[1/p], for
all 7 € Z. Moreover, after inverting p above or letting S[1/p] or S’[1/p] be any ring out of OBeis(R),
(’)BXR(E), OBg4r(R), BT or B, note that by Remark 2.34, the respective tensor product filtrations on
Mg[1/p] and Mg/[1/p] are well defined. Then by employing arguments similar to the proof of Lemma
2.35 (use R[1/p], S[1/p] and S’[1/p] in place of R, S and S’, respectively), we see that for each r € Z,
we have Fil"Mg/[1/p] N Mg[1/p] = Fil"Mg[1/p], as submodules of Mg/[1/p].

Lemma 2.37. Let S = E][gg and set Mg[l/p] = EI[;‘;] ®@pr M[1/p], equipped with the tensor prod-

uct filtration as in Lemma 2.33. Assume that Fil°M[1/p] = M[1/p]. Then for any r € N, we have
Fil" Mg[1/p] N mMs[1/p] = 7Fil" " Ms[1/p], as submodules of Mg[1/p].

Proof. The claim is trivial for » = 0, so assume that » > 1. We will prove the claim by induction on r.
Note that for r = 1, we have that Fil"Mg[1/p] N mMg[1/p] = nMgs[1/p]. So, let r € N>o and assume
that the claim is true for 7 — 1, i.e. Fil" "' Mg[1/p] N mMs[1/p] = 7nFil""2Mg[1/p]. Then, we see that,

Fil" Mg[1/p] N wMs[1/p] = Fil" Mg[1/p] N Fil"~* Mg[1/p] N 7Mg[1/p] = Fil" Ms[1/p] N wFil"~2Mg[1/p].
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In particular, to get the claim, it is enough to show that Fil” Mg[1/p]N7Fil"~2Mg[1/p] = 7Fil" "' Mg[1/p)].
Now, consider the following diagram with exact rows,

0 —— Fil"'Mg[1/p] —— Fil""2Ms[1/p] —— gr"2Ms[1/p] —— 0

: ; : o

0 —— Fil"Mg[1/p] —— Fil" *Mg[1/p] —— gr"*Mg[1/p] — 0,

where the left and middle vertical arrows are multiplication-by-7 and the right vertical arrow is the
induced map, which we again denote as multiplication-by-7. Note that that all the vertical arrows in
(2.9) are R-linear. Moreover, from the diagram (2.9), we see that showing the equality Fil"Mg[1/p] N
7Fil""2Mg[1/p] = 7Fil"! Mg[1/p] is equivalent to showing that the right vertical arrow in (2.9) is injec-
tive. Note that by using Lemma 2.33 and Remark 2.34, we have that gr" 2Mg[1/p] = @it j—r—28r'S @p
grf M[1/p] and similarly for gr"~1Mg[1/p]. Therefore, the right vertical arrow in (2.9) induces R-linear
maps griS@per! M[1/p] 5 gri-1S@per! M[1/p], for i+j = r—2. As gr/ M[1/p] is a projective R-module
and the preceding map is R-linear, it is enough to show that the map gr’S = grit1S. induced from the
multiplication-by-m map Fil’'S = Fil“*1S. is injective. This follows from Lemma 2.28. Hence, we obtain
that the right vertical arrow in (2.9) is injective, in particular, Fil" Mg[1/p]N7Mg[1/p] = wFil" = Mg[1/p],
for each r € N. |

Next, we note an application of Lemma 2.35, which will be used in §5. Let V be a positive crystalline
representation of Gg as in §2.3 and let OD;s(V) denote the associated filtered (¢, d)-module over
R[1/p]. From [Bri08, Proposition 8.3.1 and Proposition 8.3.2], we know that OD¢is(V), Fil"OD¢is(V)
and gr"OD,is(V) are finite projective R[1/p]-modules, for all » € N. Let us assume that ODs(V) is
finite free over R[1/p] and there exists a finite free R-submodule M C ODyg;s(V) such that M[1/p] =
ODis(V). Let S and S’ be as in Lemma 2.35 and equip Mg and Mg with induced filtrations, i.e.
Fil"Mg := Fil"Mg[1/p] N Mg C Mg[1/p] and Fil" Mg := Fil"Mg/[1/p] N Mg C Mg/[1/p]. As M is free
over R, the natural map Mg — Mg is injective and we note the following:

Lemma 2.38. For each r € N, we have Fil"Mg = Fil" Mg N Mg, as submodules of Mg:. Moreover, if
S = E}g’g, then we have Fil" Mg N 7wMg = 7nFil" "' Mg, as submodules of Mg.

Proof. The first claim is obvious from the definition of the respective filtrations on Mg and Mg and using
Lemma 2.35. For the second claim, using Lemma 2.37, note that Fil" Mg N 7mMg = wFilT_lMS[l/p] N
Mg = nFil" "' Mg, as claimed. |

Finally, let us note that V' is a crystalline representation of G g, in particular, a de Rham represen-
tation and we have M[1/p] = ODg;is(V). Then by the definition of de Rham representations, we have a
natural OBgr (R)-linear isomorphism agr : OBqr(R) ®gj1/, M[1/p] — OB4r(R) ®q, V, compatible
with the tensor product filtration of Remark 2.34 on the left and the filtration on the right is induced by
the natural filtration on OBgr(R). In particular, we have that aqr (Fil"(OB4r(R) ®gp/p M[1/p])) —
Fil"OBgr (R) ®q, V, for all r € Z. Extending scalars along the natural map OBg4r(R) — B from §2.8.1,
we obtain the following B-linear isomorphism,

CXBiB@R[l/p} MI1/p] L)B@QPV. (2.10)

We equip the source of ap with the tensor product filtration of Remark 2.34 and the target with the
filtration induced by the natural filtration on B. Then by using Lemma 2.29 in an argument similar to
the proof of [Bri08, Proposition 8.3.2], we obtain the following:

Lemma 2.39. The isomorphism in (2.10) is compatible with the respective filtrations described above,
i.e. OCB(FHT(B QR[1/p] M[l/p])) = FﬂTOBdR(E) ®Q, V, for all r € Z.

Proof. Note that (2.10) is an isomorphism and the filtation on M|[1/p] is exhaustive, so it is enough to
show that the maps on the associated graded pieces, induced by (2.10), are bijective. For each r € Z,
consider the following diagram:
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Diyj=ret’ OBAR(R) @pj1/p) g/ M([1/p] —— gr"OBgr(R) @ V

Ditj=rgl' B @pup gt/ M[1/p] ———— gi"B®V,
where the top horizontal arrow is the isomorphism induced by the filtration compatible OBgg (R)-linear
isomorphism agr, the left vertical arrow is induced by the compatibility of filtrations on the source of
agr and ap (see Remark 2.35) and the right vertical arrow is induced by the compatibility of filtrations
on the target of agr and ap (see Lemma 2.29). Now, recall that from Lemma 2.29 we have gr'B —
t'C(R)[yo, - - - ,y4) and from [Bri08, Proposition 5.2.6] we have that gr'OBgr(R) — t'C(R)[y1,- - -, Yd)-
In particular, we see that gr'B — Z[yo] ®@zgr' OBgr(R). Therefore, it follows that the bottom horizontal
arrow of the diagram above is given as the extension of scalars along Z — Z[yo| of the top horizontal
arrow, hence, it is also an isomorphism. This allows us to conclude. |

2.8.3. Poincaré Lemma. In the notation of Definition 2.23, let us set A = Agw, B = RX and

d[ X} d[Xx? )
E = ng, for x € {PD, [u], [u,v]}. Let wy := 1+[[)?3§] [[Xiﬁ]’ for 1 <i < d. Set Q! := @ Zw;
and QF := A¥ Q! for all £ € N. Then, we have Q’fE/B = F ®z QF and from Remark 2.25 (iv), note that

for r € Z, we have the following filtered de Rham complex of E relative to B,

and w; :=

Fil'Qy p = Fil'E — Fil' 'E®z Q' — Fil' Bz Q2 — -

From the discussion before Lemma 2.38, let M be a finite free R-module such that M[1/p] =
OD,is(V'), where V is a positive crystalline representation of Gg. Moreover, we set Mp := B ®p M,
equipped with a filtration induced from the tensor product filtration on Mp[1/p], and similarly, we set
Mg = E ®r M, equipped with a filtration induced from the tensor product filtration on Mg[1/p].
Furthermore, the B-linear differential operator on F induces a quasi-nilpotent integrable connection
d: Mg — MpogpQj s satistying Griffiths transversality with respect to the filtration (since O(Fil"E) C

Fil""'E). In particular, for each r € Z, we have the following filtered de Rham complex,

Fil'Mp ® Q% p := Fil' Mg — Fil''Mp @ Q) — Fil' ?Mp ©p QF)p — -+
=Fil'Mp — Fil" 'Mp @7 Q' — Fil" 2Mp @7 Q% — -+ .

Using the equality Mp = Mg:o and Lemma 2.38, let us note that we have Fil"Mpg = Fil"Mg N Mg:o =
(Fil" Mg)?=" and we obtain the following filtered Poincaré Lemma:

Lemma 2.40. The natural map Fil"Mp — Fil" Mg ® Q.E/B s a quasi-isomorphism.

Proof. We have a natural injection € : Fil"Mp — Fil" Mg, so we give a contracting (B-linear) homotopy.
Note that M is a finite free R-module, so we may choose {f1,..., fn} as an R-basis of M. Now define a
B-linear map h° : Mp — Mg as Z?Zl a;fj — Z;'Z:1 ajofj, where a; is in F and ajq is the projection to
the 0-th coordinate (see Remark 2.25 (iii), where 0 corresponds to the coordinate (0,...,0)). Moreover,
note that after inverting p and using the tensor product filtration on Mg[1/p], we get that h° induces a
B[1/pl]-linear map h° : Fil"Mg[1/p] — Fil"Mp[1/p]. In particular, we obtain an induced B-linear map
RV : Fil"Mp — Mp N Fil"Mp[1/p] = Fil"Mp. Tt is clear that we have h%e = id.

Next, for ¢ > 0, define a B-linear map h?¢ : Mg ®@z Q! — Mg ®7 Q971 given by the formula
B (fja5 T (Vi = DM Viwiy Ao A Vi, ) = a5 TIEe(Vi = DFHnIVgwi, Ao A Vigw,, i &y =
0 and 0 otherwise (here § denotes the Kronecker d-symbol). Moreover, note that after inverting p
and using the tensor product filtration on Mg[1/p|, we get that h? induces a B[1/p]-linear map h? :
Fil" " Mg[1/p] @z Q4 — Fil" 9" Mp[1/p] @z Q91 In particular, we obtain an induced B-linear map
he : Fil"" Mg @z Q1 — Fil' 9" Mg @7 Q171 Tt is easy to see eh? + hld = id and dh? + h?H'd = id.
Hence, we obtain the desired B-linear homotopy, proving the claim. |
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3. FINITE HEIGHT p-ADIC REPRESENTATIONS

In this section, we will recall the notion of relative Wach modules from [Abh21] and prove some lemmas
that will be used later. We will use the setup and notations of §2.1, in particular, we fix some m € N>1.

Notation. For an algebra S admitting a Frobenius endomorphism ¢ and an S-module M admitting a
Frobenius-semilinear endomorphism ¢ : M — M, we will denote by ¢*(M) C M the S-submodule
generated by the image of ¢.

3.1. Relative Wach modules. Set q := ¢(m)/7 in A}, and let T be a free Z,-representation of
GRr. Then, note that we have an AE—submodule DH(T) = (AT ®Q, T)r c D(T), equipped with
induced commuting actions of (¢, I'r).

Definition 3.1 ([Abh21, Definition 4.8]). A Z,-representation 7" is said to be positive and of finite
q-height if there exists a finite projective AE—Submodule N(T) c D™(T) of rank = rky, T, stable under
the action of ¢ and I'p and satisfying the following conditions:

(i) The natural Ap-linear map Ag ® ,+ N(T') = D(T) is a (¢, 'g)-equivariant isomorphism, where
R
N(T) is equipped with the induced action of (¢, 'g);

(ii) The Aj-module N(T')/¢*(N(T)) is killed by ¢* for some s € N;
(iii) The induced action of I'r on N(T')/7N(T) is trivial;
(iv) There exists R’ C R finite étale over R such that A}, @ AL N(T) is free over Aj,,.

The height of T is defined to be the smallest s € N satisfying (ii) above. Furthermore, a positive finite
g-height p-adic representation V' of G is a representation admitting a positive finite g-height Z,-lattice
T C V and we set N(V) := N(T)[1/p], satisfying properties analogous to (i)-(iv) above. The height
of V' is defined to be the height of T'. For k € Z, let T'(k) := T ®z, Zy(k), V (k) := T(k)[1/p], define
N(T(k)) := W%N(T)(k) and N(V (k)) := 7rL,QN(V)(k) and set height of T'(k) = (height of T') — k. We call
these twists as representations of finite q-height.

For general properties of Wach modules, we refer the reader to [Abh21, §4.2]. Let us note that there
is a natural filtration on Wach modules attached to finite g-height representations.

Definition 3.2. Let V be a finite g-height represenation of Gr. For each r € Z, set Fil'N(V) :=
{z in N(V), such that ¢(x) is in ¢"N(V)} and Fil"N(T) := Fil'N(V) N N(T") Cc N(V).

Lemma 3.3. We have Fil'"N(T') = {z in N(T), such that p(z) is in ¢"IN(T)}. Moreover, we have that
Fil'N(T(k)) = 7 *Fil'**N(T) (k) and FiI'N(V (k) = 7 FFil"T*N(V) (k).

Proof. The first claim is true because ¢"N(V) N N(T) = (¢"Bf, N A}) @ o+ N(T) = ¢"N(T). To show
R

the second claim, let 77 *2 ® €®* be an element of Fil" 7~ *N(T)(k), with 2 € N(T') and ¢®* a Z,-basis of

Zy(k). By assumption, (7 %z ® e®%) = (qm) Fp(z) ® ¥ belongs to "7 *N(T)(k). Therefore, we see

that ¢(z) belongs to ¢"tFN(T)), i.e. z is in Fil"**N(T'). The converse, 7~ *Fil"**N(T')(r) c Fil"N(T'(k)),

is obvious. |

Lemma 3.4. Let T be a finite g-height Zy-representation of Gr. Then, we have FiI'N(T) N 7N(T) =
7Fil"IN(T) € N(T), for all7 € N. For V = T[1/p], a similar statement is true for N(V').

Proof. Using Lemma 3.3, one can reduce to the case of positive finite g-height representations. The
claim is obvious if Fil""?N(T") = N(T'). So we may assume that Fil""'N(T") € N(T), i.e. r > 2. Let
be any element of Fil"N(T") N #IN(T') and write x = 7y, for some y € N(T'). We will show that y is in
Fil""'N(T). Note that ¢(z) is in ¢"N(T), where ¢ = ¢(7)/7 = p + ma, for some a € A}. Therefore,
we get that mp(y) is in ¢" " IN(T), i.e. mo(y) = ¢" "'z, for some z in N(T). In particular, we have
¢ 'z = p"lz = 0 mod 7N(T). However, N(T)/7xN(T) is p-torsion free since A}/7rA}, — R and
N(T) is projective over A%. So, it follows that z is in 7N(T'), i.e. y belongs to Fil""'N(T). The other
inclusion is obvious, since 7Fil""*N(T") C Fil"N(T). This concludes our proof. [
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Remark 3.5. Set Fil" Ay (R) := £"Ajue(R) and Fil"A := A NFil" Ay (R) C Aine(R), for each 7 € N.
If T is a positive finite g-height Z,-representation of G, then from [Abh21, Lemma 4.53] note that, for

the filtration on Wach modules as in Definition 3.2, we have Fil'N(T") = N(T) N Fil"Aj(R) ®z, T =

N(T)NFil"A ®z, T C Ajnt(R) @z, T, for each r € N.

The operator 1 defined in §2.4 commutes with the action of Gg, so by linearity, it extends to a map
¢ : D(T) — D(T) and from Proposition 2.4 we get that ¥(D*(T)) ¢ D*(T).

Lemma 3.6. Let T' be positive finite q-height Z,-representation of Gr of height s. Then for k > s, we
have Y(N(T'(k))) C N(T'(k)).

Proof. Note that we have ¢°IN(T) C ¢*(IN(T')). So, for k > s and x in N(7'(k)), we must have that
o(m*)z = (gm)*x is in p*(N(T)(k)). Therefore, 1(x) belongs to ﬂ—lkN(T)(k) = N(T'(k)). [

3.2. Wach modules and crystalline representations. From [Abh21, §4.3.1], we have an
R-algebra (’)APR% C OAis(R) equipped with a Frobenius endomorphism ¢, a continuous action of I'g,
a I'p-stable filtration and an AE%—linear integrable connection satisfying Griffiths transversality with
respect to the filtration and commuting with the action of ¢ and I'g.

Theorem 3.7 ([Abh21, Theorem 4.24, Proposition 4.27, Corollary 4.26]). Let V' be a finite q-height

representation of Ggr, then V is crystalline. Moreover, if V' is positive then we have an isomorphism of

R[1/p]-modules M[1/p] := (OALD ®,+ N(V))FR 5 ODgis(V), compatible with respective Frobenii,
’ R

filtrations and connections. Furthermore, we have a natural (’)A%%—linear isomorphisms
OARL @5+ N(V) = OARL, @ M[1/p] = OARZ, @ ODais(V), (3.1)

compatible with the respective Frobenii, filtrations, connections and the actions of I'g.

Remark 3.8. In Theorem 3.7, the OAYD -module OAYD ©,+ N(V) is equipped with the following
K k) R
structures: a Frobenius endomorphism, given as ¢ ® ¢; an AE%—linear connection, given by the nat-
ural A%%—linear differential operator O ® 1 (see Remark 2.27 for notations); an action of I'p, where
any g in I'p acts as g ® g; an N-indexed decreasing filtration given as the tensor product filtration,
ie. FilT(OAg]?w Dat N(V)) =X j=r FilZOAg?ﬂ ®at Fil’N(V'). The aforementioned filtration is well
defined because each term Fil'OAYD @ ,+ FiVN(V) is an OALD -submodule of OAYY ®,+ N. In-
b R . bl . X b R
deed, note that the OAEP -linear composition Fil'OAYD ® ,+ FIVN(V) — Fil'OARY ®,+ N(V) —
tl K R K R
OA%%, ® AL N(V) is injective, where the first arrow is obtained by tensoring the Ajf-linear inclusion

FiVN(V) — N(V) with the flat Aj-module Fili(’)A}%% (see [Abh23, Remark 3.25]) and the second
arrow is obtained by tensoring the AE—linear inclusion FiliOAg]?w — OAE]’?E with the flat AE—module
N(V). The module M[1/p] is equipped with induced structures, in particular, the filtration on M[1/p]
is given as Fil"M[1/p] = (Fil"(OARY, AF N(V)))FR and its compatibility with the Hodge filtration on
ODy,is(V) is shown in [Abh21, §4.5.1]. Futhermore, in (3.1), the structure of the Frobenius, filtration,
connection and the action of I'g on the left-hand term is clear from the discussion above. The middle
and right-hand terms are equipped with the following structures: a Frobenius endomorphism, given as
© ® p; an A%%—linear connection, given as Ogr ® 1 + 1 ® dp, where Jp is the connection on ODgs(V)
(see §2.3); an action of I'g, where any g in I'g acts as ¢ ® 1; an N-indexed decreasing filtration given
as the tensor product filtration (see Lemma 2.33), where we use the filtration on M[1/p| as above and
the Hodge filtration on OD¢s(V). As the respective connections on OA%% and ODyis(V) satisfy
Griffiths transversality with respect to their respective filtrations, therefore, it follows that the connec-
tion on OAE% ®pr ODis(V') described above also satisfies Griffiths transversality with respect to the
tensor product filtration. Then, by the compatibility of the isomorphisms in (3.1) with connections and
filtrations, we see that the respective connection on each term of (3.1) satisfies Griffiths transversality
with respect to the filtration on it. Finally, note that the left-hand isomorphism in (3.1) is given as
ab®@xr—aRb® x.

The proof of Theorem 3.7 depends on the following important observation:
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Lemma 3.9 ([Abh21, Proposition 4.27]). Let V' be a positive finite q-height representation of Gr such
that the AE—module N(T') is finite free of rank = dimg, V. Then there exists a finite free R-module

My C M = (OAIP}PW ®at N(T))FR, stable under the Frobenius and such that My[1/p] = M[1/p] —
ODy.is(V') are free R[1/p]-modules of rank = dimg, V.

Proposition 3.10. Let V be a positive finite q-height representation of Gr of height s such that N(T)
is free over AL, Let My C M := (OAED ®A+ N(T))FR be the free R-module obtained in Lemma 5.9.
Then the R-module My/¢*(My) is k’zlled by pmS

Proof. In order to prove the claim, we will use without recalling constructions and notations from
the proof of [Abh21, Proposition 4.28]. Let f = {fi,..., fs} be an Aj-basis of N(T). Then from
Lemma 3.9 and the proof of [Abh21, Proposition 4.28], we have that M is a free R-module with a
basis given as g = {g1,...,gn}, where g = ¢"(f)¢©™(A) for some A in GL(h, OSEP). It is easy to
see that My is independent of the choice of the Af-basis of N(T). Note that we have ¢ = ¢(m)/m =

pe(m/t)(t/m), and since 7/t is a unit in OAE% (see Lemma 2.18), therefore, we obtain that ¢ and p

are associates in OAPD Furthermore, N(7)/¢*(N(T')) is killed by ¢°, where s is the height of V. So
(OA%%®A+ N(T ))/(pm *(O A%%@A;N(T)) is killed by p™*, where we write p™* ((’)AE%@A;N(T)) =
69?:1(9Ag]3pcpm( fi). Now, recall that det A is a unit in OSEP (see [Abh21, Lemma 4. 43]) therefore,

©™(det A) is a unit in (’)ARW and ¢™(A) is invertible over (’)ARw, in particular, OAYD ®@p My —

™ *(OA Dat N(T)). So, it follows that the cokernel of the natural inclusion (’)A > ®@r My C
OALP Row @ A% N(T ) is killed by p™*. Moreover, the observation above also implies that the cokernel of
the injective map ©™* (OAIP}DW ®@r My) € OALY @i My = ™ *(OA%]?W Dat N(T)) is killed by p™*
In other words, we get that p™ (OAI%]?Z ®R Mo) C ™ *((’)A%BU ®r M) C p* (OAE—{% ®pg Mp). Finally,

since the action of the Frobenius commutes with the action of I'g, therefore, by taking I' g-invariants we
get that p"* My C ¢*(My), i.e. Mo/¢*(My) is killed by p™*. [

Remark 3.11. From the proof of Proposition 3.10, note that we have an inclusion ps(OAE% Q@+

’ R

N(T)) C ¢*(OAED. ®a+ N(T)). Since the Frobenius commutes with the action of I'r, therefore, by
’ R

taking I'p-invariants of the preceding inclusion, we get that p*M C ¢*(M). Moreover, from Lemma
3.9 and Proposition 3. 1() since My C M, therefore, it also follows that the cokernel of the composition
OA ~®OrM — OA - ® AL N(T) is killed by p™* (in fact, the cokernel is killed by p®, see Remark

3.13).

Remark 3.12. Using Theorem 3.7, we equip M C M[1/p] with a p-adically quasi-nilpotent integrable
connection 0: M — MQ®Rg Q}z and an induced filtration compatible with the tensor product filtration on
OALP AL N(V) (see [Abh21, §4.5.1]); the connection satisfies Griffiths transversality with respect to

the ﬁltratlon Furthermore, using the explicit description of My in Proposition 3.10, we obtain an induced
filtration on My and an induced p-adically quasi-nilpotent integrable connection 0 : My — My Qg Q}%,
satisfying Griffiths transversality with respect to the filtration.

Remark 3.13. Note that we fixed m € N>; in the beginning and the R-modules obtained above depend
on this choice. In particular, let 1 < m < m’ with w = (m — 1 and @’ = Cpm/ — 1. Then we have an

inclusion OARD € OALD, and we obtain that M = (OA%%@AEN(T))FR C (OAIP}{DW,®A§N(T))FR =
M’'. As the cokernel of (’)A > @p M — OALRD = ®at N(T) is killed by p™* (see Remark 3.11) and
(’)A R @R M C OA - ®R M’ therefore, the cokernel of OA Y, @r M — (’)APD / ®A+ N(T )

is also killed by p™. In particular, taking m = 1, we see that the cokernel of OAP]?W, ®r M !
OA%%, ® AL N(T) is always killed by p®. Finally, let My and M/, be R-modules respectively obtained

for m and m’ in Lemma 3.9, then we have that ¢ ~™(M}) € M.

3.3. Filtrations and a Poincaré Lemma. Let T be a positive finite ¢g-height Z,-representation
of Gg and set V = T[1/p]. Let N(T) denote the associated Wach module over A% and set M :=
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(OAPD At N(T))'? as a finitely generated p-torsion free R-module. Now consider the following
’ R
diagram:
B ®gpyp M[1/p] —<— B®gup N(V)

Zi zlﬂ (3.2)

B ®g(1/p) ODeris(V) —=— B@gp sy V.

where the bottom horizontal arrow is the filtration compatible B-linear isomorphism from (2.10) (see
Lemma 2.39); the left vertical arrow is the extension of the R[1/p]-linear isomorphism M][1/p] —
OD.is(V) (see the second isomorphism in (3.1) of Theorem 3.7), along R[1/p] — B, compatible with
the respective (tensor product) filtrations; the top horizontal arrow is the extension of the (’)A%%—linear
isomorphism OAEJ?W ®r M[1/p] = (’)A%% ®at N(V) (see the first isomorphism in (3.1) of Theorem
3.7), along (’)A%BD — B (see Remark 2.32); the right vertical arrow is the B-linear extension of the

natural inclusion N(V) C Ajn¢(R) ®q, V C B®g, V. The diagram commutes by definition and the right
vertical arrow is an isomorphism since the other three arrows are isomorphisms (see [Abh21, §4.5] for a
similar diagram over OB;s(R)). Using the left vertical arrow of the diagram (3.2), for each r € Z, we
set

Fil'(B @44 N(V)) = BHFI"B ®q, V). (3.3)

By the compatibility of the left vertical arrow and the bottom horizontal arrow of (3.2) with the respective
filtrations, an easy diagram chase in (3.2) shows that, for each r € Z, the top horizontal arrow induces
a B-linear isomorphism,

a: Fil"(B®g M[1/p]) — Fil"(B ®AE N(V)). (3.4)

3.3.1. Filtration on scalar extensions of Wach modules. Let S be any ring out of As(R),
OA.is(R), Ang for x € {+,PD,[u], [u,v],(0,0]+}, Ef, for x € {PD,[u],[u,v]}, or EX for x €
{PD, [u], [u,v]}. Let us set Ng := § DAt N(T'). Note that we have a natural embedding Ng —
B ® AL N(V) and we equip the former with an induced filtration from the latter, i.e. for each r € Z,
using (3.3), set

Fil"Ng := Ns N Fil"(B Dat N(V)) cB Dat N(V). (3.5)

Similarly, we set Fil"Ng[1/p] := Ng[1/p] N Fil"(B ®at N(V)), for each r € Z, and it is clear that
Fil"Ng = Ng N Fil"Ng[1/p].

Remark 3.14. Let us take S and S’ to be any two rings out of Ais(R), OAuis(R), A?%,w for * €
{+,PD, [u], [u,v], (0,v]+}, B} , for * € {PD, [u], [u,v]}, or EX for x € {PD, [u], [u, v]}, such that S C 5"
Then from the definition of filtrations on Ng and Ng in (3.-5?, it is clear that Fil"Ng = Ng NFil"Ng C
Ngr.

Lemma 3.15. The filtration on Ng in (3.5) is stable under the natural action of Gr on Ng.

Proof. Let us consider the following diagram,

B g M(1/p) —2— Bl @, N(V)

J J (3.6)

B®gpy M[1/p] —=— B ®a1 N(V),

where the bottom horizontal arrow is the top horizontal isomorphism of (3.2); the top horizontal arrow
is the extension of the OA%Pw—linear isomorphism OA%% ®r M[1/p] = OAE%, ®at N(V) (see the

first isomorphism in (3.1) of Theorem 3.7), along the G'g-equivariant map (’)A%% — E%’v] (see Remark
[u
R
vertical maps are extensions of scalars along the map E%’U] — B (see Lemma 2.31). Now by using the

2.27) and compatible with the respective Frobenii, A. *|_linear connections and the actions of G R; the
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compatibility of the tensor product filtrations for extension of scalars EJ[Q — B (see Remark 2.35) and
the isomorphism in (3.4), an easy diagram chase in (3.6) shows that, for each r € Z, the top horizontal

[u,v

arrow induces the following EE | linear isomorphism,

o Fil'(Ew @p M[1/p]) = Fil' (B2 @, N(V)). (3.7)

As the source of (3.7) is stable under the natural action of G on E%’v} ®pr M]|1/p] and the top horizontal
arrow of (3.6) is Gr-equivariant, therefore, it follows that the target of (3.7) is stable under the natural

action of G on E%’U] ® A N(V). Finally, note that every S admits a G g-equivariant injective map

S — E%’v] (see §2.8.1), so by using Remark 3.14, we obtain that Fil"Ng is stable under the natural
action of G on Ng. [ |

Remark 3.16. Let S be any ring out of OAguis(R), B, for *x € {PD [ul, [u,v]}, or EX for * €
{PD, [u], [u,v]}. Then by extending the (’)APD -linear isomorphism OALD @p M[1/p] — (’)AR w®at
N(V) (see the first isomorphism in (3.1) of Theorem 3.7), along the G r- equlvarlant map OARD  — S
(see Remark 2.27), we obtain an S-linear isomorphism S ®g M[1/p] — S ® A N(V) Compatlble with

the respective Frobenii, the actions of Gg and the natural A%, _-linear or A*—hnear (depending on S)
extension of the respective connections. Moreover, by using Remark 3.14 and an argument similar to
the proof of Lemma 3.15 shows that, for each r € Z, the isomorphism in (3.7) induces a G r-equivariant
S-linear isomorphism,

o Fil'(S @p M(1/p]) =5 Fil'(S @51 N(V)). (3.8)

In particular, as the connection on S ®pr M[1/p] satisfies Griffiths transversailty with respect to the
tensor product filtration, therefore, similar to Remark 3.8, it follows that the connection on S® ,+ N(V)
R

satisfes Griffiths transversality with respect to the filtration in (3.5).

Remark 3.17. Let E = E]’;Mw or E%, for * € {PD, [u], [u,v]} and we claim that Fil"(F ®at N(V)) =
Y it j=r FI'E-FIVN(V), where Fil'E-FiVN(V) denotes the image of Fi' E® , + FIVN(V) — E® , + N(V).
"R . R
Indeed, using Lemma 2.31, Remark 3.5 and (3.4), it easily follows that Fil'E - FiVN(V) C Fil"(B ® 5+
. . R
N(V)), in particular, from (3.5) we deduce that 3>, ;_, Fil'E- FIVN(V) C Fil"(E® 4+ N(V)). To show
R
the reverse inclusion, recall that Fil"M[1/p] = Fil"ODes(V) is a finite projective R[1/p]-module (see
Thgorem 3.7 and [Bri08, Proposition 8.3.2]), in particular, flat as an R-module and the natural map
FiI'E ®g Fi M[1/p] — E @g M[1/p] is injective by Lemma 2.33, for each i, j € N; we denote the image
as Fil'E - FilY M[1/p] and note that Fil"(E @r M[1/p]) = 32,1, Fil'E @g FiV M[1/p] = >, Fil'E -
Fil’ M[1/p]. Now, since the isomorphism E @1y M[1/p] — E @4+ N(V) is given by the natural
R
multiplication map and the filtration on M|[1/p] is given as the tensor product filtration (see'Remark
3.8), therefore, we obtain that the natural map >, ;_, Fil'E - FiV M[1/p] — >, Fil'E - FiIPN(V) is
injective. But from (3.8), we have that Fil"(S ®g M[1/p]) — Fil"(S @ ,+ N(V)). Hence, it follows that
. . R
Fil"(E ©,+ N(V)) = ¥y, FI'E - FIN(V),
R

Next, let S be any ring out of A%, _ for * € {+,PD, [u], [u, v], (0, v]+} or By, for x € {PD, [u], [u, v]}
and set Ng := S ®,+ N(T'). Then, similar to Lemma 3.4, we claim the following:
R

Lemma 3.18. For each r € Z, we have Fil"Ng N 7Ng = nFil" "' Ng.

Proof. Note that the claim is clear for r < 0, so let r > 1. Let S’ = EI[%L;] and using the definition of the
filtration on Ng/[1/p] in (3.5), the S’-linear isomorphism in (3.7) and Lemma 2.37, note that

Fil"Ng [1/p] N 7Ng/[1/p] = a(Fil"(S" @r M([1/p])) Na(rS" @r M[1/p])
= a(Fil' (S’ @ M[1/p]) Nm(S' @5 M[1/p]))
= a(7Fil" (8" @r M[1/p])) = 7Fil" ' Ng/[1/p].
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In particular, we have Fil"Ng N\mNg = 7Fil" "' Ng/[1/p] 7w Ng = 7Fil" "' Ng. Now, using the definition
of the filtration on Ng in (3.5), Remark 3.14 and the equality above, we get Fil" NgN7Ng C 7Fil" "1 Ng/N
nNg = nFil""'Ng. The other inclusion, i.e. 7Fil""!Ng C Fil"Ng N 7Ny is obvious. This allows us to
conclude. |

Lemma 3.19. Let S = Agw for x € {+,PD,[u], [u,v], (0,v]+} or EE’W for x € {PD,[u], [u,v]}.

Then we have Fil"Ng[1/p] = > Fil'S - FiVN(V), where Fil'S - FiYN(V) denotes the image of
Fil'S ® A% FilVN(V) — Ng[1/p].

i+j=r

Proof. Note that the claim for E};’w was shown in Remark 3.17. For AE,wv the claim for x € {PD, [u], [u, v]}
follows from the proof of Lemma 3.22 (see Remark 3.23) and for AJ]SLW, the claim follows from Lemma
3.20. So it remains to show the claim for Agg’;]f Let S = Ag%;]i A= AEW, B = A%’]w, C = A[g”;],
and N[1/p] = N(V). Note that by definition, we have C = S + B and the ideal Fil’C' is topologically
generated by Fil'S + Fil'B, for all i € N (see Remark 2.8). Moreover, from Remark 3.23, we have
that Fil"Np[1/p] = 3=, ;= Fil'B-Fi! N[1/p] and Fil"N¢[1/p] = 3=, ,—, Fil'C-Fil! N[1/p]. So by setting
M =3, Fil'S-Fill N[1/p], we see that Fil"N¢[1/p] = 3=, ;—, Fil'C-Fi N[1/p] = M+Fil"Ng[1/p] =
Fil"Ng[1/p] + Fil"Np[1/p]. Now, consider the following diagram with exact rows:

0 M M + Fil"Ng[1/p] —— (Fil'Ng[1/p])/(M N Fil"Ng[1/p]) — 0

l | |

0 —— Fil"Ng[1/p] —— Fil"N¢[l/p] ———— (Fil"N¢[1/p])/(Fil"Ns[1/p]) —— 0,

where the left vertical arrow is injective (by an argument similar to the first part of Remark 3.17).
To get the claim, it is enough to show that the right vertical arrow is bijective. Note that we have
(Fil" No[1/p])/(Fil" Ns[1/p]) = (Fi" Ns[1/p|+Fil" Ny [1/p])/(Fil" Ns[1/p]) = (Fil" Ns[1/p])/(Fil" Ns[1/p]
Fil"Np[1/p]). It is clear that M NFil"Np[1/p] C Fil"Ng[1/p] N Fil"Ng[1/p], and we claim that the re-
verse inclusion also holds. Indeed, as N[1/p)] is a finite projective A}[1/pl-module and A =SNB C C,
therefore, we get that Na[l/p] = Ng[1/p] N Np[1/p] C N¢[1/p]. Then, it follows that Fil"Ng[1/p] N
Fil"Np[1/p] € Ng[1/p] N Np[1/p] = Nall/p], in particular, we see that Fil"Ng[1/p] N Fil"Ng[1/p] =
Fil"Ny[1/p] N Fil"Np[1/p] € M N Fil"Ng[1/p|, where the equality follows from Remark 3.14 and the
inclusion follows by using the description of Fil"N4[1/p] from Lemma 3.20. Hence, we obtain that the
left vertical arrow in the diagram above is bijective as well, i.e. Fil"Ng[1/p] = 37, ,,_, Fil'S - FiVN(V).
This concludes our proof. |

Set Fil'Ajyt(R) := Aps(R) N FillAcis(R) = € Aine(R) € Acis(R), for i € Z, and we claim the
following:

Lemma 3.20. For S = AEW and any r € Z, we have Fil"Ng[1/p] = (Fil" Ajps(R) ®z, V) N Ng[1/p] =
Yijr FILAL _ - FIVN(V).

Proof. The first equality is obvious from the definition of the filtration on Ng[1/p] in (3.5) and Remark
3.14. For the second equality, we will show a stronger claim: Fil"Ng =37, ,_, FiliAE’w FiVN(T). From
the first equality, note that we have Fil" Ng = (Fil" Ayt (R) ®z, V)N Ns = (Fil" Ajns(R) ®z, T) N Ns. Let
us set F"Ng =3, ;. FilZA}E’w -FilN(T), for each r € N, and note that the inclusion F"Ng C Fil"Ng
is obvious. To prove the reverse inclusion, we will simplify the claim a bit. Note that the natural map
AEW DAt FiI'N(T) — Ng is injective because the morphism A} — AE’W is flat. So it follows that
we have F'Ng = 33, Fil'Ap _ @5+ FIVN(T) = ¢F""'Ng + A @5+ FI'N(T). Now, to show
the inclusion Fil"Ng C F"Ng, we will proceed by induction on » € N. The case r = 0 is trivial, so
assume that 7 > 1 and the claim holds for all k£ < r — 1. Let us note that inside Aj,¢(R) ®z, T, we have
Fil"Ng N EFil"2Ng = (" Aint(R) ®z, T) N Ng N ("1 Aie(R) @z, T) NENg = EFil" ' Ng. Therefore, it
follows that the natural inclusion Fil" Ng C Fil""!Ng induces an injective map (Fil"Ng)/(¢Fil" "t Ng) —
(Fil""'Ng)/(¢Fil""2Ng), where we have,

(FiI""'Ng)/(¢Fil'"*Ng) = (A}, , ® At Fil' 'N(T)) /(A © At Fil""IN(T)) N (€Fil" 2 Ng)).
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In particular, given any element z in Fil" Ng, we can write & = £y + z, for some y € Fil" "' Ng = F"~!Ng
and z € AL, _®,+ Fil""'N(T). To obtain the claim, it is enough to show that z is an element of F" Ng.
’ R

Note that we have Fil"Ng = ({"Ajut(R) ®z, T) N Ng, so we see that z = 2 — {y = 2/, for some
7' € Api(R) ®z, T. Recall that we have Aﬁw = A}[mn], where m,, = ¢ ™(r), and it follows that
any element in a € AJJ%,w has a unique presentation as a = .%o a;(1 + m,)"?, with a; € AL and
e =p"l(p—1). Now, let us write z = > fing, for some f; € AE,W and n; € Fil" " 'N(T). Then
expressing each f; as above, i.e. in terms of the powers of 1 + m,,, and rearranging the sum for z
in terms of the powers of 1 + 7, we get that z = Y% (1 + m,,)"?, for some z € Fil""!N(T)
(obtained from elements n; above). Now, by using Remark 3.5, we can write each z; as &~ lw;, for
some w; € Aje(R) ®z, T. Plugging the values of z and z; into the equality z = 3¢ z;(1 + Wm)i/p and
noting that £ is a nonzerodivisor on Aj,¢(R) ®z, T, we get that {2/ = 3¢ w;(1+ T )P, Reducing the

latter equality modulo §Aju¢(R) ®z, T, we obtain the equality > ¢_ w; ;{f = 0 mod ¢ in C(R) ®z, T,
which is possible only if wg = w; = -+ = we mod {Ain(R) ®z, T. So we write {z' = §wo + Y5 (w; —
wo)(1 4 mm)HP, with w; — wy € EApng(R) ®z, T, for each 1 < i < e. In particular, we get that
2 =62 = Ewo+ N6 & Hwg — wo) (1 + )P = 20 + 351 (2 — 20)(1 + m,)"/P. Note that 2 is in
Fil""IN(T) and 2z — 29 = £~ H(w; — wp) is in (£" At (R) ®z, T) NFil' 'N(T) = Fil'N(T) (see Remark
3.5), for each 1 < i < e. Therefore, it follows that z belongs to §Filr_1NS+AE’w ®at Fil'N(T) = F"Ng.
This allows us to conclude. |

Next, let k& € Z and consider the p-adic representation V' (k) of Gr. Using (3.5) and Lemma 3.15, we
define a I'g-stable filtration on E%;] ®at N(V(k)) as follows:
Fil' (Efyd @ Az N(V(R)) = n bRl (Epl e Az NOV))(R). (3.9)

w

From the explicit description of the filtration in Remark 3.17 and by using Lemma 3.3, it follows that
we have Fil" (El[,g’v} @t N(V(E)) = Xiyjmr FiliE%’g -FiVN(V(k)). Furthermore, let S be any ring out
Kl R el

w

of A%, for x € {+,PD, [u], [u,v], (0,v]+}, or B} for % € {PD, [u], [u,v]}. Then we note that we have
a natural embedding S ® A% N(T(k)) — E%’U}

w

®at N(V(k)), and we equip the former with an induced
I'g-stable filtration from the latter, i.e. for each r € Z, set

Fil" (S @ N(T(K))) := (S @+ N(T(k))) NFil’ (ERY @p1 N(V(F))) C B @51 N(V(K)). (3.10)
Using (3.9) and Remark 3.14, it easily follows that,
Lemma 3.21. For each r € Z, we have Fil" (S ®at N(T(k))) = n~*Fil"t* (s ®at N(T))(k).

3.3.2. Filtered Poincaré Lemma. In the notation of §2.8.3, let us set A = AEW (resp. A%),
B = RX and E = EE@ (resp. E%), for * € {PD,[u],[u,v]}. Let wy := 1‘?5?0 and w; = ”g)((ii, for
1<i<d. Set Q! := @fﬂZwi and QF := AFQ!. Then, we have Q’fE/A = FE ®7 QF and from Remark 2.25

(iv), note that for r € Z, we have the following filtered de Rham complex of F relative to A,
Fil'Qy 4 = FI'E — Fil' 'E@z Q' — FIl Bz Q2 — -+

Let T be a positive finite g-height Z,-representation of Gr as above and assume that N(7) is finite
free over Af. Let us set Ny := A® AL N(T'), equipped with a filtration as in (3.5), and similarly,

we set Ng := E ®,+ N(T), equipped with a filtration as in (3.5). Note that the A-linear differential
R

operator on F induces a quasi-nilpotent integrable connection 0 : Ngp -+ NE®pg Q}E /A satisfying Griffiths
transversality with respect to the filtration (since the same is true after inverting p, see Remark 3.16).
In particular, for each r € Z, we have the following filtered de Rham complex,

Fil'Ng ® QY4 := Fil'Ng — Fil'"'Ng ©p Qpy — Fil' *Ng ®p Q% 4y — -
= Fil'Ng — Fil' 'Ng @7 Q' — Fil" 2Ng 07 Q% — -+ .

Using the equality Na = N2=0 and (3.5), we note that Fil"N4 = Fil"Ng N N2~ = (Fil" Ng)?=Y. Then,
we have the following filtered Poincaré Lemma:
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Lemma 3.22. The natural map FiI'Ny — Fil"Ng ® Q]'E/A i a quasi-isomorphism.

Proof. The proof is the same as the proof of Lemma 2.40, with some small changes. We have a natural
injection € : Fil"N4 — Fil"Ng, so we give a contracting (A-linear) homotopy. Define an A-linear map
h0 : Np — Ny as 2?21 a;jfj — Z?:l ajofj, where {fi,..., fn} is an Ak-basis of N(T) and a; is in
E with ajq its projection to the 0-th coordinate (see Remark 2.25 (iii)). Moreover, after inverting
p and using the description of the filtration on Ng[1/p] in Remark 3.17, we see that h° induces an
A[1/p]-linear map h° : Fil"Ng[1/p] — Fil"N4[1/p] (using Remark 3.17 note that, h°(Fil"Ng[1/p]) =
D itjer Fil'A-FiN(V) C Fil"N4[1/p]). In particular, we obtain an induced A-linear map h° : Fil"Ng —
NANFil"Ny[1/p] = Fil' N4, and it is clear that h' = id.

Next, for ¢ > 0, define an A-linear map h? : Ng @z Q¢ — Ng ®z Q47! given by the formula
hi (fjaj ;izo(Vi — 1)[]%]‘/;10)11 A=A Viqwiq) = fjaj ;izo(vi — 1)[ki+5ji1h/;2wi2 VACERWAN V};qwiq, if k‘j =0 and
0 otherwise. Moreover, after inverting p and using the description of filtration on Ng[1/p] in Remark
3.17, we get that h? induces an A[1/p]-linear map h? : Fil" "I Ng[1/p] @7 Q¢ — Fil' " Ng[1/p] @7 QL.
In particular, we obtain an induced A-linear map h9 : Fil""INg ®7 Q9 — Fil" 9T N @7, Q971 Tt is easy
to see eh? + hld = id and dh? + h9t1d = id. This allows us to conclude. |

Remark 3.23. From the proof of Lemma 3.22, using the map RO : Fil"Ng([1/p] — Fil" Na[1/p], it follows
that for any r € Z, we have Fil"Ny[1/p] = 3>, ;,_, Fil'A - FIVN(V), where Fil'A - FiIN(V') denotes the
image of Fil'A ® ,+ FIVN(V) - A®,+ N(V).

R R

3.4. Relative Fontaine-Laffaille modules. In this subsection we will consider the category of
relative Fontaine-Laffaille modules MF[g ) free(R, ®,0) defined in [Tsu20, §4] as a full subcategory of the

abelian category SJIS[%, N (R) introduced in [Fal89, §II]. Let s € N such that s < p — 2.

Definition 3.24. Define the category of free relative Fontaine-Laffaille modules of level [0, s], denoted
by MF|g g, free (1, @, 0), as follows:
An object with weights/level in the interval [0, s] is a quadruple (M, Fil®*M, 9, ®) such that,

(i) M is a free R-module of finite rank. It is equipped with a decreasing filtration {Fil*M}cz by
finite R-submodules, with Fil°’A/ = M and Fil**'M = 0, and such that grgﬂM is a finite free
R-module for all k € Z.

(ii) The connection d : M — M ®prQ%k is quasi-nilpotent and integrable and satisfies Griffiths transver-
sality with respect to the filtration, i.e. 8(FilkM) C Fil* "M @p Q}% for all k € Z.

(iii) Let (¢*(M),¢*(0)) denote the pullback of (M,0) by ¢ : R — R, and equip it with a decreasing
filtration Fillg(ap*(M)) = Yien(@/i)*(Fil* M), for all k € Z. We suppose that there is an
R-linear morphism @ : ¢p*(M) — M such that ® is compatible with connections, @(Filg(gp* (M))) C
p*M, for 0 < k < s, and Zzzop_kfl)(Fil];(cp*(M))) = M. We denote the composition M —

©*(M) 2 M by ¢.

A morphism between two objects of the category MF[g g fee(R, ®,0) is a continuous R-linear map
compatible with the homomorphism ® and the connection 0 on each side.

Remark 3.25. In Definition 3.24 (iii), note that ¢*(M) denotes the R-module R ®, g M on which the
Op-linear connection is given by the formula ¢*(9)(a ® ) = da ® z + a ® J(z), for any a in R and z in
M. Furthermore, compatibility of the R-linear morphism ® : ¢*(M) — M with connections means that
for any a in R and z in M, we must have do ®(a @ ) = ® 0 ©*(9)(a @ x).

cris(M) =
Hompg ril,,0(M, OA.is(R)), i.e. R-linear maps from M to OAs(R), compatible with the respective
Frobenii, filtrations and connections. Set Tes(M) := Homg, (T%;s(M),Z,), and note that it is a finite
free Zy-module of rank = rkpM, admitting a continuous action of Gg. By [Fal89] and [Tsu20], it is
known that the p-adic representation Viuis(M) := Q) ®z, Teris(M ) is crystalline with Hodge-Tate weights

in the interval [—s, 0].

To an object M in MF(g g ee(R, ¢, Fil), we functorially associate a Zj,-module as T



Syntomic complex and p-adic nearby cycles 29

Theorem 3.26 ([Abh21, Theorem 5.4]). For a free relative Fontaine-Laffaille module M over R of level
[0, 5], the associated p-adic representation Veyis(M) := Qp ®z, Teis(M) of Gg is a positive finite q-height
representation (in the sense of Definition 3.1).

Remark 3.27. (i) The results of [Abh21] are shown for s = p — 2. However, all the arguments can
be adapted almost verbatim (by replacing p — 2 everywhere by any 0 < s < p — 2).

(ii) Let M be a free relative Fontaine-Laffaille module over R of level [0, s] and let T' = T¢,i5(M) be its
associated Z,-representation of Gg. Then, from Theorem 3.26 we have a free relative Wach module
N(T) over A}, associated to T. Moreover, by combining [Abh21, Propositions 5.23 & 5.27] and the
proof of [Abh21, Theorem 5.4], we have a natural isomorphism OA%]?W® rRM = OA%%@ A+ N(T),
compatible with the respective Frobenii, filtrations, connections and the actions of I'g. )

(iii) From the proof of [Abh21, Theorem 5.4], one can observe that M/®(p*(M)) is p*-torsion and s
equals the maximum among the absolute value of Hodge-Tate weights of Viyis(M).

Remark 3.28. In Defintion 3.24, we considered finite free R-modules. For R/p™-module M /p™, the
associated Z/p"-representation of Gg is given as Teis(M/p") = Teris(M)/p™. Moreover, we associate
a Wach module to T'/p" = Teus(M)/p"™ as N(T'/p™) := N(T')/p" and we have a natural isomorphism
OAE,%, /p"® A /pr N(T/p") — (’)AE?E /P" @pypn M/p™ compatible with the respective Frobenii, filtra-
tions, connections and the actions of I'p (see [Abh21, §5.3]).

4. GALOIS COHOMOLOGY COMPLEXES

In this section, we will describe Koszul complexes computing the cohomology for the action of I'g and
Lie I'r on certain modules.

4.1. Relative Fontaine-Herr complex. From §2.4, recall that we have an equivalence between
Zy-representations of Gr and étale (o, I'g)-modules over Ag, so it is natural to expect that the con-
tinuous G r-cohomology groups of a Z,-representation 71" could be computed using its associated étale
(¢, T'r)-module D(T'). Below, we will consider the continuous cohomology (for the weak topology) of
étale (¢, 'r)-modules over Ar and A% (see §2.4).

Definition 4.1. Let D be an étale (¢, I'g)-module over Ag or A}L. In the derived category of abelian
groups, let RT¢ont(I'r, D) denote the complex of continuous cochains with values in D.

Theorem 4.2 ([Her98], [AI08, Theorem 3.3, Theorem 7.10.6]). Let T in Repy (Gr) and let D(T) and

DY (T) be the associated étale (p,T'g)-module over Ag and ATR, respectively. Then we have natural
quasi-isomorphisms

[chont(FRa D(T)) 1_—@> chont (FRa D(T))] = chont(GRa T)a
[RT cont (T, DT(T)) 22 RTcons(T'g, DY(T))] 2 RT cont (G, T).

Remark 4.3. Theorem 4.2 is also valid for S = R[w], where w = (,m» — 1, and we replace Gr by
Gs <GRr, T'pr by I's = I'; x 'k «T'g and consider complexes in terms of étale (p,I'g)-modules over
respective period rings A o and A}LWz - (defined in an obvious way).

4.2. Koszul complexes. Recall that K = F({ym) for m € N>;. Let S = R[w] for w = (m — 1.
From §2.4, recall that Soo[1/p] = Ro[1/p] is a Galois extension of S[1/p], with Galois group I's = I';; x
' <T'g. Also recall that we fixed topological generators {70, v1,...,74} of I's such that {~1,...,v4} are
topological generators of I'y := I'; and 4 is a lift (to I's) of a topological generator of I'. Furthermore,
X denotes the p-adic cyclotomic character and recall that ¢ = x(v9) = exp(p™).

In this subsection, we will recall the definition of Koszul complexes from [CN17, §4.2] computing
continuous I'g-cohomology of topological modules admitting a continuous action of I'g, in particular,
étale (¢, T's)-modules (see Remark 4.3). Let 7; = y; — 1, for 1 <14 < d, and set K(7;) : 0 — Z,[r;] ——
Zp[Ti] — 0, where the non-trivial map is multiplication by 7; and the right-hand term is placed in
degree 0.
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~

Definition 4.4. Define K(7,...,74) = K(T1)®ZPK(TQ)®ZP . --@ZPK(Td), to be the Koszul complex
associated to (71,...,74).

Remark 4.5. The degree ¢ term in the complex K (7q,...,74) (Definition 4.4) equals the exterior power

NLAL where A = Z,[71,...,74] — Zp[T'], the last term denotes the Iwasawa algebra of I'y. The
differential dé_l A Ad — Ai*lAd is given as dé_l (€iyig) = b1 (= )k+1€,1...ﬁ€~.-ian’ in the standard
basis {€j;...i,, 1 < i1 < --- < iy < d} of /\?4Ad. In the category of topological A-modules, the augmentation
map A — Z, makes K(r1,...,74) into a resolution of Z,. Explicitly, the Koszul complex K(71,...,7q)
is given as,
;o dy 1 / 5
0 oAl S A %y 0,
where we have Ale = EB[(/IA, for I; = {(i1,...,4q), 1 < i1 < --- < iy < d}, and the differentials are
as described above. Similarly, for ¢ = x(70), we can define the Koszul complex K(7{,...,7J), where
T = — 1.
Definition 4.6. Let A := Z,[I's] and define the complex
, dl_ dl , dl
K(A):=0 Ala — Ly Ae — 2 5 A 0,

where we have Ale = & IéA and the indexing sets [ (’1 were described in Remark 4.5. From [Mor08, Lemma

4.3], we have an isomorphism of complexes lim,, Z, [T/ (T )?" | ®z, K(71, . ..,7a) — K(A). Similarly,
one can obtain K°(A) from K(rf,...,75). Both K(A) and K¢(A) are resolutions of Z,[I'x] in the
category of topological left A-modules.

Example 4.7. For d = 2, the complex K (A) in Definition 4.6 is given as follows:

d} di
0 A———AdA ——— A 0,
where d} () = (—x7, z7) and d}(y, 2) = y11 + 27o.
Definition 4.8. Define a map 79 : K¢(A) — K(A) by setting in each degree 7§ = 70 — 1 and 7¢ :

(ail...iq) — (ail...iq(’)/() — 51'1...1‘(1)) fOI" 1<¢g<d, 1<i1 << iq < d and 51‘1...1'(1 = 5iq ---51'1, with
—1
Let M be a topological Z,-module admitting a continuous action of I's.

Definition 4.9. Define the two I'y-Koszul complezes with values in M by setting Kos(I'q, M) :=
Homa cont (K (A), M) and Kos®(I'y, M) := Homp cont (K(A), M). Moreover, define the I'g-Koszul complex
with values in M as Kos(T's, M) := [Kos(I"y, M) —— Kos®(T', M)].

Proposition 4.10 ([Laz65, Lazard], [CN17, §4.2]). There exists a natural quasi-isomorphism of com-
plezes Kos(I's, M) ~ Rl ¢cont(I's, M).

Definition 4.11. Let D be an étale (¢,I'g)-module over Ag - and set

Kos(I's, D) — > Kos(T', D)

KOS(@D,Fs,D) = \LTO lTU
1—
Kos®(I'g, D) —% Kos“ (I, D)
Note that from Proposition 4.10 and Definition 4.11 we have a natural quasi-isomorphism of com-

plexes Kos(p,T's, D) ~ [Rlcont(I's, D) e, Rl cont(T's, D)]. So we conclude the following:

Proposition 4.12. Let T be in Repy (Gs) and D (T) the associated étale (¢,1's)-module over Ag .
Then we have a natural quasi-isomorphism of complexes Kos(¢,T's, Do (T)) ~ Rl cont (G, T).
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4.3. Lie algebra cohomology. In this subsection we will fix constants u,v € R such that (p —
1)/p <u<wv/p<1<uw, for example, one can take v = (p —1)/pand v =p — 1.

4.3.1. Convergence of operators. From §2.7, recall that we have rings A%%,, A%}w and A%’g

equipped with a continuous action of I'g < I'g.
Lemma 4.13. Fori € {0,1,...,d} the operators V; :=logy; = > pen(—1)*((7i — 1)) /(k+1) converge
as a series of operators on A%]?w, A%]w and A%’;].

Proof. From Lemma 2.21, note that we have (y9 — 1)(pm,7r%m)kAng C (pm,ﬂglm)kHA%%, for all

k > 0. Using the fact that 79 — 1 acts as a twisted derivation, we see that, for any x in AE%,
the expression (yp — 1)*z belongs to (pm,ﬂ%m)kA%%. Therefore, to check that the series Vo(x) =
Sken(=DE((yo — 1)*(x))/(k + 1) converges in A%]?w, it is enough to show that for a fixed 0 < j < k,
the p-adic valuation of (|p™j/e]!)(p™*~7) /k) goes to 400 as k — o0, which follows from an elementary
computation. In particular, we have that Vo(z) converges in A]%%.

Now, let us consider ~; for i € {1,...,d}. Again, from Lemma 2.21, note that we have (y; —

1)(pm,7rgzm)kA%]?w C (pm,n%m)k+1A§Pw, for all k > 0. Using the fact that +; — 1 acts as a twisted
derivation, we conclude that for any z in AE%, the expression (y; — 1)*z belongs to (pm,ﬂ%m)kA%%.
Therefore, using an estimate similar the case of vo, we conclude that the series V;(z) = 3 pen(—1)*((vi —

1)k*1(x))/(k + 1) converges in AE{DW. The case of A%}w and A%”;} follow from similar arguments (use

Lemma 2.22 for A%’g). This allows us to conclude. |

Next, note that formally we can write,

bg(;rX)' =1+amX +aX?+a3X®+-- -,

X 9 3
oarrxy = L+ 01X 4+ 02X 4+ b3 X 4

where v,(ar) > —k/(p — 1), for all k¥ > 1, and therefore, v,(by) > —k/(p — 1), for all k > 1. Setting
X =~ —1,forie{0,1,...,d}, we make the following claim:

Lemma 4.14. For i € {0,1,...,d}, the operators V;/(vi — 1) = (log~i)/(vi — 1) and (v; — 1)/V; =
(vi —1)/(log~;) converge as series of operators on A%%, A%}w and A%’;].

Proof. We will only show that these series converge on A%%; the case of A%}w and A%’g

[u,v]

(using Lemma 2.22 for A’ 7). Note that we have vy(ag) > —k/(p — 1) and vy(bg) > —k/(p — 1), for all
k > 1, so it is enough to show the convergence of (v;—1)/(log ;). Now from Lemma 2.21, we have that for

k>1, (vi—1)(p™, W%m>kA}§% c (p™, ﬂ%’nm)kHAE%. Since v; — 1 acts as a twisted derivation, therefore

follow similarly

for any z in A%]?w, from the proof of Lemma 4.13, we have that (y; — 1)’% belongs to (p™, W%m)kAPR%.
Therefore, to check that the series 3 cn(—1)¥bx (7 — 1)*2 converges in A%BU, it is enough to show that
for a fixed 0 < j < k, the p-adic valuation of byp™*=7)(|p™j/e|!) goes to 400 as k — 400, which follows
from an elementary computation. So, we get that the series (7; — 1)/(log~;) converges on Afpz%. This
concludes our proof. |

4.3.2. Koszul Complexes for Lie I'g. For 0 < i < d, let V; denote the operators defined as
above. The Lie algebra Lie Iy of the p-adic Lie group I'y is a finite free Zy-module of rank d, i.e.
Lie Iy = Zp[Vi]i<i<q and the Lie algebra Lie I's of the p-adic Lie group I'g is a finite free Z,-module
of rank d + 1, i.e. Lie I's = Zp,[V;]o<i<q. Moreover, we have [V;,V;] = V,0V; —V;0V; =0, for
1 <4,j5 <d, and [Vo,V;] = VgoV; —V;0Vy =p"V,, for 1 < i < d. In particular, Lie I'y is
commutative as a Zjp-algebra, however, Lie I's is noncommutative. Let M be a topological Zj,-module
admitting a continuous action of Lie I'g.

Definition 4.15. Define the complex Kos(Lie Iy, M) := M — Mt — ... — M4, with differentials
dual to those in Remark 4.5 (with 7; replaced by V;).
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Consider a morphism of complexes V : Kos(Lie I'', M) — Kos(Lie I'', M) defined on the ¢g-th term
as Vo —gqp™: M — M.

Definition 4.16. Define the Lie I'g-Koszul complex with values in M as

Kos(Lie T'g, M) := [Kos(Lie Ty, M) —°— Kos(Lie I, M)].
Proposition 4.17 ([Laz65, Lazard], [CN17, §4.3]). There exist natural quasi-isomorphisms of complexes
RIcont (Lie I'g, M) ~ Kos(Lie I'y, M) and RI cont(Lie I's, M) ~ Kos(Lie I'g, M).

5. SYNTOMIC COMPLEXES AND FINITE HEIGHT REPRESENTATIONS

We will assume the setup of §2. Recall that we fixed some m € N>; and from §2.5, we have rings
RX for x € {,+,PD,[u], (0,v]+,[u,v]}. Unless otherwise stated, we will assume v = (p — 1)/p and
v = p — 1. Note that the p-adic completion of the module of differentials of R relative to Z is given as

Ok = &L R dlog X;. Also, for x € {+,PD, [u], [u,v]}, we have Q7. = RX lli)g?o @ (@l , RX dlogX;).

5.1. Formulation of the main result. In §5 and §6 we will work with the following class of
representations:

Assumption 5.1. Let T be a positive finite g-height Z,-representation of G'r of height s, and we set
V = T[1/p] (see Definition 3.1). Assume that the Wach module N(T') is free of rank = rkz T over Af,
and M C OD;s(V) is a free R-submodule of rank = rkz,T" such that M is stable under the induced
Frobenius, M[1/p] = OD¢:is(V) and the induced connection over M is p-adically quasi-nilpotent, inte-
grable and satisfies Griffiths transversality with respect to the induced filtration. Furthermore, assume
that p° M C ¢*(M) and there is a natural map (’)A%BU ®@r M — OAEB_J ®at N(T') compatible with
the respective Frobenii, filtrations, connections and actions of I'g, and such that it is a p’¥-isomorphism
with N =n(T,e) €N, fore=[K : F] =p™ 1(p—1).

Example 5.2. Following are some cases in which Assumption 5.1 is satisfied:

(i) Assuming that N(T) is a free Aj-module, from Proposition 3.10 and Remark 3.12 we have that
the R-module M := Mj (in the notation of the proposition) satisfies Assumption 5.1 with m =1
and n(T,e) = s.

(i) Let M = (OAFD ®,+ N(T))FR with an additional assumption that it is free over R of rank
’ R

= rkz,T. Then, the module M depends on T" and m € N>; (see Remark 3.13), and it satisfies
Assumption 5.1 with n(T,e) = s (see Remark 3.11, Remark 3.12 and Remark 3.13).

(iii) For our intended global applications to relative Fontaine-Laffaille modules, we note that for repre-
sentations arising from finite free relative Fontaine-Laffaille modules of level [0, s] with s < p — 2
as in §3.4, the conditions of Assumption 5.1 are automatically satisfied, with M being the relative
Fontaine-Laffaille module and n(T,e) = 0 (see Remark 3.27).

Let us first consider the case of S = R[w|. From §2.5 we have the divided power ring REP —»
S and we have a finite free REP-module MFP := RPP @ M equipped with a Frobenius-semilinear
endomorphism ¢ given by the diagonal action on each component of the tensor product, and a filtration
{Fil* MEP}, oy induced from the tensor product filtration on MEP[1/p] (see the discussion before Lemma
2.38). Moreover, the Op-linear integrable connection on M and the continuous Op-linear de Rham
differential operator on REP induce an Op-linear integrable connection 9 : MEP — MPP RED Q}?%D

defined by sending a ® = + a ® Opr(x) + xda. It is easy to see that the connection & on MEP satisfies
Griffiths transversality with respect to the filtration since the same is true for the connection on M and
the differential operator on RED. In particular, we have the following filtered de Rham complex:

Fil'® = Fil'MEP — Fil" ' MEP @gep Qpep — -+ - . (5.1)
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Fix a basis of Q}QPD as { fggo , %, ey d)%d} and we will equip QEPD with an action of Frobenius next.
Let je Nand [; = {0 <4 < --- <i; < d}. For1:(z1,...,zj)EIj,setwi:—ﬂfgg/\ 2/\ /\Xi.J’

J

. X,
if i1 =0, and w; := d))((_” A+ N, otherwise. Define the operators ¢ and v on o RPD by the following
5t z]

o( > miwi) = Y p(zw; and (D wiw;) = Y (w5)w; (5.2)

iEIj 16] IEI iE]]'

formulas:

Remark 5.3. Note that (5.2) is not the natural definition of Frobenius, since we have d(¢(z)) = pp(dz)
n (5.2). But in order to define 1 integrally, we need to divide the usual Frobenius on Q}{* by powers

of p. Recall that with the usual definition of Frobenius we have ¢0 = Oy over M C (’)ﬁcris(V) (see
§2.3). However, using (5.2) for Qk as well, we see that for any f € M, we now have 9y (p(f)) =

S 0i(e())wi = X pe(i(f))wi = pe(du(f))-

Definition 5.4. Let r € N and consider the complex Fil"%§ ,, as above. For n € N, let S, = S ® Z/p"
and M,, = M ® Z/p". Define the syntomic complex and the syntomic cohomology of S with coefficients
in M as
Syn(S, M,r) := [Fil'gg ,, 2225 9%, ],
Syn(S, M,r)y, := Syn(S, M,r) ® Z/p",

S, M,r) := H*(Syn(S, M,r));
Spy My, 1) := H*(Syn(S, M, r)y).

syn (

syn(
Our main local result is as follows:

Theorem 5.5. Consider the setting of Assumption 5.1 and let v € Z such that v > s+ 1. Then there
exists p" -quasi-isomorphisms

Laz FT<p—s— 1Syn(5 M T) = T<r—s— lRFcont(GSa ( ))7

[,az CT<pr—s5— 1Syn(S M T)n = T<r—s— ercont(GSuT/p ( ))

where N = N(T,e,r) € N depends on the representation T, e = [K : F] and the twist r.

Remark 5.6. For M as in Example 5.2 (ii), note that in Theorem 5.5, the constant N can precisely be
given as N = 14r 4+ 9s + 2 (see §6.1).

Remark 5.7. Almost all statements and proofs in §5 and §6 are true for m > 1. However, for some
lemmas in §6.5 and §6.6 we need to assume that m > 2. So from now on, the reader may safely assume
that m > 2 in §5 and §6 and obtain Theorem 5.5 for m = 1, using the Galois descent of Lemma 6.21.

Using Theorem 5.5, we can obtain a similar statement over R. Recall that R is smooth over O and
for r € Z, we have the following filtered de Rham complex:

Fil'D}, o= Fil'M — Fil" 'M @z Qp — Fil' M @z Qp — -+ . (5.3)

Remark 5.8. One can also consider the formulation of filtered de Rham complex for R as in (5.1). In
that case one considers a surjection Rt — R via the map Xy — 0. By writing down the corresponding
de Rham complex one readily sees that it is quasi-isomorphic to @1’%7 M-

Using (5.3), similar to Definition 5.4, one can define the syntomic complex of R with coefficients in
M. Then using Theorem 5.5 for @ = (2 — 1 (in particular, Example 5.2 (ii) for m = 2), Corollary 6.20
and Galois descent in Lemma 6.21 for e = p(p — 1)), we obtain the following:

Corollary 5.9. Consider the setting of Assumption 5.1 and let r € Z such that r > s+ 1. Then there
exists p" -quasi-isomorphisms

TST,S,lSyn(R, M, 7’) = Tgr—sflRFcont(GRv T(T))v
T<r—s—1Syn(R, M, 1)y =~ T<p_s_ 1Rl cont(Gr, T/p" (1)),

where N = N(p,r,s) € N depending on the prime p, twist r and height s of T'.
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Remark 5.10. For M as in Example 5.2 (ii), note that in Corollary 5.9, the constant N can precisely
be given as N = 18+ 9s + 3p(p — 1) + 2 (see §6.1).

In Theorem 5.5 we only prove the p-adic case. The modulo p” case follows in a similar manner. The
complete proof is divided in two main steps: first, we will modify the syntomic complexes with coefficients
in M to relate it to a “differential” Koszul complex with coefficients in N(7) (see Proposition 5.28).
Next, we will modify the Koszul complex from the first step to obtain a Koszul complex computing the
continuous G g-cohomology of T'(r) (see Definition 5.5 and Proposition 6.1). The key to the connection
between these two steps will be provided by the comparison isomorphism in Theorem 3.7 and a filtered
Poincaré Lemma. In the rest of §5 we will show the first step. The second step will be worked out in §6.

5.2. Syntomic complexes with coefficients. For * € {[u], [u,v], [u,v/p]}, define a finite free
R*-module M* := RX ®r M. Via the diagonal action of Frobenius on each component, define
Frobenius-semilinear operators ¢ : Mg] — Mq[;] and ¢ : Mq[ﬂu’v} — ME"“/”]. Equip M; with a fil-
tration {Fil*M*},cn induced from the tensor product filtration on MX[1/p] (see the discussion before
Lemma 2.38). Furthermore, the Op-linear integrable connection on M and the continuous Op-linear
de Rham differential operator on RX induce an Op-linear integrable connection on M, which satisfies
Griffiths transversality with respect to the filtration since the same is true for the connection on M and
the differential operator on RX. In particular, we have the following filtered de Rham complex:

Fil' Dy = Fil'ME — Fil' " ME @ Qpy — Fi' 2ME @ Qe — - (5.4)
Moreover, for * € {[u], [u, v], [u,v/p]}, we define operators ¢ and ¥ on €/ 8 in (5.2). From (5.4), for
* € {[u], [u,v]}, denote by D3 ,,

81'%; M the target de Rham complex.

the source de Rham complex and for * € {[u], [u,v/p]}, denote by

Definition 5.11. Define Syn(MX,r) := [ Fil"%* PP, g

RX .M RX .M ]

5.3. Change of the disk of convergence. In this section, we will denote the syntomic complex
Syn(S, M, r) in Definition 5.4 as Syn(MZEP, r).

Proposition 5.12. For p%l < wu <1, the natural morphism between syntomic complexes Syn(]WgD7 r) —

Syn(Mz[;},r), induced by the inclusion MEP C Mq[xqf], is a p*"-isomorphism.
The proposition follows from the following lemma by setting k& = r.

Lemma 5.13. Let j,k € N. If - <u <1, the following map is a p**"-isomorphism
pk - pjsp : FllTMJDu] ® QJ /FIITMPD X Qj — M[u] ® QJ /MPD ® QRPD

Proof. The proof is motivated by [CN17, Lemma 3.2]. Note that we can decompose everything in the
basis of the w;’s, where i € I; = {0 <41 < --- <i; < d}. Then by the definition of Frobenius on w; we
are reduced to showing that p —plo : Fil' Mg [l JFil"MEP — Mg [} /MZED is a p**+"-isomorphism. Since
go(RM) C R[u/p} C RPP, for T < u < 1, therefore, we have MPP ¢ MQ] and ¢ (M. [u]) C MPP .

For pP-injectivity, recall that we have Fil" M, [u] Mz[;f} N Fil"MEP (see Lemma 2.38), so for any
z in Fi'MY it suffices to show that if (p* — plo)x € MEP then p*z € MEP. As we can write
pfr = (pF — pp)x + pp(x) and ol 7;“]) C MEP, therefore, we get that pF2 € MEPP. Next, let us
show the pk "_surjectivity. Let {fi,...,fn} be an R-basis of M and take z = Y1 a; ® f; [E] MY,
Let N =

L then from the deﬁmtlon of Rq[ﬂ} we can write a; = a;; + a;2, with a; € R o N and

u(p 1
ai € p~Nu/el Rt C p*kRPD, where we write RL}’N as in the notation of Lemma 2.11 (it consists of

power series in X involving terms X for s > N). Now let x; = S an @ fiand 20 = NP ap @ f;,
so that z = 21 + 2. By Lemma 2.11 and the fact that M is stable under @, it follows that (1 — p/=*yp)

is bijective on RL,] N @r M (note that the series of operators ZieNp k)igi converge as an inverse to
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1—p'~*pon RZ[;L]’N@JRM). In particular, we can write 2o = (1—p/ )z, for some z = Y0 ;@ f; € M.
Also, by Lemma 2.9 we can write b; = b;1 + bjo, with b;; € FilTR[wu} and by € p_L“‘J RE. By setting
2 = z, b ® fi € FiIlrMY and 2o = S by ® fi € p"MEP, we obtain that (1 — pi=Fp)zy =
p- (p —pJ w)zQ e p k- "M_ PD Usmg the preceding observation in the expression for x, we get that
r—(1—-p Pz =21 + (1 —p7 kp)zg € p™*MEDP 4 p=k=r PP < p=k=" PP Therefore, we obtain
that @ € p~ " MEP + p=F(pF pJQD)Fller[g], allowing us to conclude. |

5.4. Change of the annulus of convergence. We will consider the base change of the syntomic

complex from REP to jricl)

2r+4s

Proposition 5.14. For pu < v, there exists a p -quasi-isomorphism

Tgr_s_lSyn(Mz[z“},r) _T<7« s— 1Syn(M[“”] ),

2r+ds_jsomorphisms HE, ( 1[;] r) ~ HE ( [uv, r) for0 <k <r—s—1.

i.e. we have p syn syn

Proof. The claim follows by combining the results from Lemmas 5.15, 5.16 & 5.18. |

To prove the claim in Proposition 5.14, we will pass to the corresponding (quasi-isomorphic) ¢-complex.
Recall that we have ¢*(ODgis(V)) — ODgis(V). Let £ = {f1,..., fn} denote an R-basis of M.
Then f and ¢(f) form two different basis of OD¢yis(V) over R[1/p]. So, we can write f = ¢(f)X,
where X = (z;;) € Mat(h, R[1/p]). For our choice of M (see Assumption 5.1) and using Theorem
3.7 and Proposition 3.10, we have x;; € p~*R, where 1 < 7,57 < h and s is the height of V. Define
Y M = Rl[g] ®Qr M — p_SRi[gu] ®pr M by sending fyT — fi)(XyT), where we consider the operator 1)
on Rg] defined in §2.6. It is easy to show that this map is well defined, i.e. independent of choice of a
basis for M. Using the operator ¥ on Mq[ﬂ] as above and on Q' ) @s in (5.2), define the complex

w

Syn* (M, 7) := [Fir Ml @ 02, P e Q% ]

w

Lemma 5.15. The commutative diagram

FﬂT’MgL] ® Q;—ﬂ;] pr—p®p Mgl] ® Q;%[;]

T+S,,__0+S
FllT’MgL] ® Q;%g] P Y—p MgU] ® Q;%[wpu]’

defines a p**-quasi-isomorphism from Syn(MJ;},r) to Syn? (MJ;],T).

Proof. First, we will look at the cokernel complex which is the cokernel of the right vertical arrow.
By definition, we have that LZJ(MEL]) - p‘sMgu}, in particular, pSiy (M u]) - M[p ! Moreover, note
that the operator v : R[u — RE%“] is surjective and p*M C ¢*(M) (see Assumption 5.1). Therefore,
MEPY = R @ M @Z)(RM ®r @*(M)) C (M, ) Hence, ps¢(M[ }) is p®-isomorphic to MEP and
the cokernel complex is killed by p®.

Next, for the kernel complex, we proceed as follows: let M = @h 1Rfj, therefore MY ] _ @h lR f]
Recall that M/p* (M) is killed by p®, so we have a p -isomorphism @h 1R o(fj) — Mg | Note that

an element y = Z?:l yje(f;) is in (69;-‘:1 [ (fj)) O if and only if y; is in ( 1[71)1/’ 0. Indeed, ¥(y) =
if and only if Z?:l Y(y;)f; = 0, and since f; are linearly independent over R[1/p], therefore, we see

that ¥ (y) = 0 if and only if 9(y;) = 0, for all 1 < j < h. In particular, we obtain a p°-isomorphism
ul\p=0 ~ U 0 U\ h—
(MEN"™ = (@l RE ()"~ = @l (RE) =0(f)).

Using the deﬁmton of 1) on QF Rl in the chosen basis of (5.2), it easily follows that (M ®pg Qk )¢:0
(M[u])w =0 ®z QF. Recall that from Lemma 2.15 (ii), we have a decomposition (R[ })w =0 ;AoRi[ﬂ}a =
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@a;ﬁoRE}um where uq, = (1 + Xo)*X{ - XJ¢, where a = (ap,...,aq) is a (d + 1)-tuple with
a; € {0,...,p — 1} for each 0 < i < d. Moreover, we have 0;(uq) = @;uq, for each 0 < i < d. In
particular, 8¢(R[wu}7a) - R[wula. Now, using the decomposition of (RE;L])WO, we set M, = @?lew ap(f5)
and obtain that (Mg [u])¢:0 is p®-isomorphic to ©,£0Ms. From the Op-linear continuous de Rham differ-
ential operator on R[ ] and the Op-linear integrable connection on Ml[;'f }
integrable connection 0 : M, — M, ® Q! Rl = = M, ®z Q. Then the decomposition of ( [u])wzo shows

, we obtain an induced Op-linear

that the kernel complex in the claim is p® 1somorphlc to direct sum of the following complexes:
0— My — M, @ — M, @0% — -+, (5.5)

where a # 0. We will show that (5.5) is exact for each «; the idea of the proof is based on [CN17,
Lemma 3.4]. Since everything is p-adically complete and p-torsion free, we only need to show the
exactness of (5.5) modulo p. Note that for y = Z] 1y;0(f;) € My, we have 3(23 1yjcp(f])) =
Z;-‘Zl yiom(e(fj)) + o(f)0(y;), Where Om denotes the connection on M. Recall that from Remark 5

we have 0y = poue. So O(y) — > iuq ¢(fj)0(y;) € pMy. Moreover, by using Lemma 2.16 we have
0i(yj) — auyj € pRz[v]a So we get that the complex (5.5) has a very simple shape modulo p: if d =0 it

is just My —2+ M,; if d =1 it is the complex M, M M, & M, —ortao, M,; for general d it is the

total complex attached to a (d + 1)-dimensional cube with all vertices equal to M, and arrows in the
i-th direction equal to «;. As one of the «; is invertible by assumption, this implies that the cohomology
of the total complex is 0 and (5.5) is exact for each a.. This allows us to conclude. |

Following the defintion of ¢ over MY (see the discussion before Lemma 5.15), one can define an

operator 1 : RE;"”] Qr M — p—SRLS“’p“] ®r M as a left inverse to ¢ and set

Syn® (MLe4, ) .= [Fﬂr MET @0, " M*_)M[puv}@%wv]}

Lemma 5.16. For u < 1 < v the natural morphism of complezes Syn? (Mg],r) — Synw(Ml[A—’f’v],r) is a
p?" -quasi-isomorphism in degrees k < r — s — 1.

Proof. The map between the complexes is induced by the following diagram:

pr+s,l/)_p.+

il My @ 02, ME Qe

| o

FllrM[u v] ® O° prTey—pt M[pu v] ®0°

R[F“]

[“ v] R[pu v]
where the vertical arrows are natural maps induced by the inclusion Rq[f—ﬂ C R[wu’v]. Therefore, it suffices
to show that the mapping fiber

[P M) @ Q3 /R MY 03, | M @ Q0 /MEY @ 9 ),

is p?"-acyclic. By Lemma 5.17, we can ignore the filtration, and by working in the basis {w;, i € I}
of QF, it is enough to show that p"+sy — pFts : MT[;’U]/MJ;} — MJ;?“’“]/M[,;”“] is a p"-isomorphism
for K < r —s— 1. But note that MQ’U]/MQ] = ME“’“]/ME’“], therefore, we see that 1 — p'y) is an
endomorphism of this quotient, for i = r» — k. Moreover, for i > s + 1, we get that 1 — p’t) is invertible
on Mq[;’”] /Mi—ff] with the inverse given as 1 + p'~*(p*tp) + p>=%) (p°h)? + - - .. Therefore, it follows that
Pt — phts = pFHs(pr—he) — 1) is a pFT-isomorphism. Since k4 s < r — 1, we obtain that the complex
in the claim is p*"-acyclic. |

Lemma 5.17. The natural map FilTMgL’U]/FﬂTMz[Uu] — Mz[gu’v} /Mg] is a p"-isomorphism for u <1 < v.
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Proof. The map in the claim is injective by Lemma 2.38. For p"-surjectivity, let {fi,..., fn} be an

R-basisof M and let x =3 ;" 1 b;® f; € ng g rM. By [CN17, Lemma 3.5, we have a p"-isomorphism
Fil' RV /Firr R~ gl /R[", so we can write p'b; = by + bis, with by € Fil’ R and by € RY.
Since Ez 1bi1 ® f; € Fil” [u g , we get the desired conclusion. |

Lemma 5.18. The commutative diagram

FIITM[U v] ® QR[u ) P —p®p M[u v/p] ® Q°

Jz’d ipsw

FIITM[u v] ®0° prTeyp—p*T M[pu v] ® Q. pu )

uv/p

R[u v]
defines a p**-quasi-isomorphism from Syn(Mg“)] r) to Syn¥ (M, M r).

Proof. Proof of the claim follows in manner similar to the proof of Lemma 5.15 by replacing Mg] with

1[; ] and R[wu] with R[u vl One only needs to note that Lemma 2.15 (ii) and Lemma 2.16 are true for

the ring REU u,v] as well. We omit the proof. |

5.5. Differential Koszul Complex. Our next goal is to relate the syntomic complex Syn (M, M ”], )
in §5.4 to a complex with coefficients in the Wach module N(T") from Assumption 5.1 (see Proposition
5.28). Before stating the result, in this subsection, we will verify some results in order to define the latter
complex.

Let Q! [u g denote the p-adic completion of the module of differentials of A[ ] relative to Z. Via the

isomorphlsm leyel 1[1; o A%ﬁg, we choose a basis {wp, w1, ...,wq} of QA[“’”] obtained as the image
R,

dXo  dX dX . . . .
of {1 S ot CAR ‘i} under toye (see §2.5), in particular, we have the differential operators 0; over

A[u v , for 0 <4 < d. Moreover, from Definition 2.7, Al w} is endowed with a filtration and we have the
ﬁltered de Rham complex FIITQ. . The differential operators 0; are related to the infinitesimal action

T

of I'r by the relation V,; := log% = t@i, for 0 < i < d and where logy; = Y pen(—=1)* (v — D)1/ (k+1).
Let us set N (T) := A%’;} @+ N(T') equipped with a I'g-stable filtration as in (3.5). Recall
’ R

log(14+X)
<~ and

that for an indeterminate X we have formal expressions
Lemma 4.14).

X . .
TR eEDY (see the discussion before

Lemma 5.19. For i € {0,1,...,d} the operators V; = log~i, Vi/(vi —1) = (logv)/(vi — 1) and
(vi —1)/Vi = (vi —1)/(log~i) converge as series of operators on N (T'). The same is true for
A[I%’;} ®at N(T(r)), for any r € Z, and Filk N (T'(r)), for any k € Z.

Proof. We will only show the claim for the operator V,;, the claim for the convergence of operators
Vi/(vi — 1) and (v; — 1)/V, follows in a manner similar to Lemma 4.14. For 0 < ¢ < d, we have

that v; — 1 acts as a twisted derivation, i.e. for any a € A%’g and z € N(T), we have (y; — 1)(az) =
(vi—1)a-z+~;(a)(v; —1)z. Note that the action of I'g is trivial on N(T )/7TN( ). So using Lemma 2.22

and the preceding discussion we have (y; —1)(p™, wglm)sz[;’U]( T)C (p™,wk, )kHNgf’U] (T). Now, similar
to the proof of Lemma 4.13, for k& > 0, it follows that we have (y; — 1)’“]\7&‘ l (T) C (p™, anm)kNgL’U] (7).
The same estimation of the p-adic valuation of the coefficients as in the proof Lemma 4.13 helps us in
. . [u,v]

concluding that log~y; converges as a series of operators on Ng ' (T).

Next, from Lemma 3.21 recall that Filk N1 (T'(r)) = A TF R N ) (T')(r). As t/7 is a unit in
A[}gg (see Lemma 2.18) and the action of I'g is trivial on ¢7" ® €®", where €®" denotes a Zy-basis of
Z,(r), therefore, it is enough to show that V; converges on Fil*Ng [ v]( T), for all £ € N. Now, recall

that from Remark 3.16 we have a I'p-equivariant isomorphism of E[ ] -modules « : FilT(E%’U] ®

;o
M[1/p]) = Fllk(EI[g a @+ N(V)) (see (3.8)). Moreover, note that VZ- converges on EM since it

, T = Ryw>
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converges on A%’;} (see Lemma 4.13) and I'p acts trivially on Rg“}}. So, by using that the filtration
on E][g;] ®pr M[1/p] is given as the tensor product filtration (see 2.34), the action of I'g is trivial on
M][1/p] and the ideal Fil/ E%;] is closed in E[u ° for all j € N (see Remark 2.25 (ii)), it follows that
V, converges on Filr(EEg”v} ®gr M[1/p]), and since « is I'g-equivariant, therefore, V; also converges

on Filk(E[u g AL N(V)). Combining the two discussions above, it follows that V;(Fil* Ngs [u,v] (T)) C
Filk(E[u u DAt + N(V)) N NQ’“]( T) = F‘lkN[u’v]( T) (see Remark 3.14). A similar argument shows that
the operators V;/(v; — 1) and (v; —1)/V; also converge on Fil* N [u,0] (T'). This allows us to conclude. W

Lemma 5.20. For the filtered modules and operators V; defined above, for 0 < i < d, we have
Vi (FiF N2 (T)) ¢ nFilF N2 (T) = ek NE(T).
Proof. Note that the action of I'p is trivial on NUU]( T)/m N v]( T). So using Lemma 5.19, we infer
that VZ'(Fllsz[g v]( T)) C Filk N U]( T)N TN v]( T) = nFil*~ LN U}( T), where the last equality follows
from Lemma 3.18. As t/7 is a unit in El[g;} (see Lemma 2.18), we can also write V; (Filka[;’U} (T)) C
tFilk N (7). n
For 0 < i < d, it is easy to see that we have V; = log~y; = limn%Jroo('yfn —1)/p"™, from which one can
easily show that V; satisfies a Leibniz rule (see the proof [MT20, Theorem 4.2] for a similar argument).
Now using Lemma 5.19 we define differential operators 9; over N (T) as 0; := V;/t = (logy;)/t.
In the basis {wo,...,wq} of Q s We set & = (9o, ...,0q) and obtain a connection 9 : N (T) —

N (T) ® QlA[u,'u] by sending ax — ad(z) + =z ® da.
R,w

Lemma 5.21. The connection 9 on NQ’U] (T') is integrable, satisfies a Leibniz rule and Griffiths transver-
sality with respect to the filtration, i.e. 8i(Filsz[Uu’v} (T)) C FilkF—1 ) (T), for 0 <i<d.

Proof. From §4.3.2 recall that [V;,V;] =0 for 1 <i,j < d and [V, V;] = p™V;, for 1 <i < d. So it
follows that over N (T') we have a composition of operators t2(9; 0 0; — d; 0 9;) = t0;(t0;) — t0;(t0;) =
VioV; =V;0V; =0, for1 <i,57 <d Next, for 1 < ¢ < d, we have Voo V; —V; 0V =
g o (t0;) — t0; o (t0y) = tp™d; + 20y 0 O; — 120; 0 Iy = p"'V; + t2(8p 0 O; — 0; 0 Op). In particular,
0p00; —0;00y = 0. Since 000 = (0;00;);;, for 0 <i < j <d, and Nl;“’] (T) is t-torsion free, we conclude
that the connection 9 is integrable. Moreover, it is clear that J satisfies a Leibniz rule and it satisfies
Griffiths transversailty because we have 0; (FilkNgf’v] (1)) = t71v; (Filsz[ﬂu i ) C Filk—L N2 (T,
using Lemma 5.20. [ |

Let S = A%’;], then from Lemma 5.21, we have the filtered de Rham complex FilTNz[;’v} (T) ® QY.

In the chosen basis {wi,...,wq} of Q}g, an element of QY = /\‘1939 can be expressed as > ; xjwj in a
unique manner, where z; € S and w; = wi; A--- Awg, for i = (iy,...,4) € I; = {0 < iy < - <

ig < d}. In this case, the map involving differential operators becomes (9;) : (Filk_qu[;f ! (T))Iq —
(FilF~ 1 Nl (T)) o for 0 < i < d.
Definition 5.22. Define the 0-Koszul complex for Filk N (T) as

Kos (9, Fil* N (7)) « Fitt Ne2 (1) @, (@b L Nl () s ..
Remark 5.23. (i) By definition, it follows that we have a natural isomorphism between complexes

FilF NI (T) @ 00 = Kos(@A,FllkN[“ l(Ty).

[u’u

(ii) Let I, = {(i1,...,14q), such that 1 <i; <--- <iy < d} and &' = (01,...,0q). Set

Kos(8y, Filk N(7)) - Fitk Nl (1) 92, (pak— L NJuel () —

and note that Kos(94, Fil* N2*(T)) = [Kos(&/,, Fil* N2*(T)) 2 Kos (9, Filk N2 (T))].

(iii) Computations carried out in this section are true over the ring AEQ VPl as well.
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5.6. Poincaré Lemma. From Definition 2.24, Remark 2.25 and Lemma 2.26, recall that, for * €

{PD, [u], [u,v]}, we have rings E;{(,w equipped with a filtration, Frobenius ¢ sending EE,P EE]?Z,

Ej[g]w Ej [u] and Ej [u’v] — Ej [u’v/ 7l and an action of G which commutes with the Frobenius. Moreover,
from Remark 2.27, we have a subrlng OA - C OACHS( ) equipped with induced structures and we have
a natural embedding OA - C ERw compatlble with the respective Frobenii, filtrations, A —_-linear

connections and actions of F R
From Assumption 5.1, we have a natural map OAEY @p M — OAFP @p N(T), which is a

p"T€)_jsomorphism compatible with the respective Frobenn, filtrations, connectlons and the actions
of T'x. Recall that M = R @5 M and NI v]( T)= A%g ®+ N(T') and after extension of scalars
? R

we have a map E [u v] ® pluv] Mo [u.v] E% ;] ® A[“ o] Ngo [u, ”]( T), which is a p™(7*¢)-isomorphism compatible

with the respective Frobenn, connections and the actions of I'r. Moreover, in the p™7*¢)-isomorphism
above, the left hand term is equipped with a filtration as described in the discussion before Lemma 2.38
and the right hand term is equipped with a filtration as in (3.5), which is compatible with the filtration
on the left hand term by definition.

Let Ry = AlY), Ry := R and Ry == Ely. Set Xo1 = mm, Xoz = Xo and set X, = [X]]

. . dXo dX;
and X;0 := X;, for 1 < ¢ < d. For j = 1,2, set Q} = Zl+X06],j eagl:l ZTJJ and Qf = Qi @ Q1.

For j = 1,2,3, let Q’? = AFQ;. Therefore, we see that Qk =R;® Qk Recall that from (5.4) we
have the filtered de Rham complex Fil" M, [u I Q3. Set AQ = EI[% ;] ® Rluw
filtration as described in the discussion before Lemma 2.38. Using the Op- Tinear de Rham differential

operator Og, : FIITE% g — Fil"™™ 1E][g ;] ®7, Q3 and the Op-linear integrable connection Og, : FllTMJﬂu o

1 Mg [u.v] equipped with a

Fil’”_lMg’v] ®z Q3, we obtain an Op-linear integrable connection on Ay as ORrs : Ay — Ay ®z Q%) by
sending ax — adg,(x) + Or,(a)z. Moreover, the connection dr, on Ag satisfies Griffiths transversality
with respect to the filtration, i.e. dg, : Fil"Ag — Fil' 'Ay®y Q%), since the same is true for the differential
operator on E%g and the connection on Mgf Y]

Fil" Ay ® Q3.

. In particular, we have the filtered de Rham complex

]

Lemma 5.24. The natural map FilTMQ’U

Proof. In the notation of §2.8.3, note that we have A = Ry, B = Rs and F = Rs. Moreover, by
definition, it is clear that Fil’ﬂMi—ff ol (Fil’"Ag)aRlzo. Therefore, by using Lemma 2.40, we obtain the
claim. -

]

Similar to above and using the discussion of §5.5, it is easy to see that for R} = A%”;
a filtered de Rham complex Fil' N&"U(T) @ Qf. Let A, = Ept @ Al NY(T) equipped with the

filtration described in (3.5). Then similar to the case of Ay, we have a filtered de Rham complex
Fil"A; ® Q3 and similar to Lemma 5.24 we obtain the following:

® Q5 — Fil"Ay ® Q3 is a quasi-isomorphism.
we have

Lemma 5.25. The natural map Fil" N (T)® QY — Fil"A; ® Q3 is a quasi-isomorphism.

Proof. In the notation of §3.3.2, note that we have A = Ry, B = Re and F = R3. Using the equality
N (T) = A=Y and (3.5), we note that Fil" N (T) = Fil"'A1NAP=0 = (Fierq[ﬂu’v] (T))?=Y. Therefore,
by using Lemma 3.22, we obtain the claim. |

Remark 5.26. Statements analogous to Lemma 5.24 and Lemma 5.25 for R[wu’v/ Pl and A%’;/ Pl (instead

of R[wu’v] and A%”;]) respectively, are also true.

Definition 5.27. Let N.“ ’v}( T') as above equipped with a Frobenius-semilinear morphism ¢ : Ng [0} (T) —
N‘L[vu,v/p]( T). Using Definition 5.22 and Remark 5.23 set

Kos (8, Fil' N2 (1)) —2 772 Kos(@,, N&/P (1))
Kos (¢, 04, Fil"N, [“”]( T)) = lao J/ao

p"—p

Kos (9, Fil' ' NI“)(T)) Kos (8, NEv/A(T)
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Proposition 5.28. There exists a natural p*T¢) quasi-isomorphism between complezes Syn(Mz[g’U],r)
and Kos(p, 04, Fil" N2 (T)), where n(T,e) € N as in Assumption 5.1.

Proof. Note that using Lemma 5.24 with Ry = Rw'l, Ry = B, Ay = Bl @ . ME and
Al = E[u’v/p} ®R[u v/p] i—ff’v/p}, we have natural quasi-isomorphisms of complexes Syn(M[u -l ,T)

{Fil’" il g a9 —— vorty M Q'} [FiITA1 ® Q3 bl 2N 1® Qg} Next, using Lemma 5.24 with
Ry = A%;], R3 = E[u ] Ay = E[u v] ® [u U] N[u U}( ) and AL = El[g’;/p] ®A[u7v/p] Nz[g,v/l’}’ together with
’ R,w

Remark 5.23, note that we have natural qua81—1som0rphisms of complexes Kos(p, 4, Fil’”NgJ ] (T)) ~
[Fir NE(T) © 03 PP, pir NP g Q3] ~ [Fil'd, ® 03 Rl S NN 3], Finally, using
the p”(T’e)—isomorphism El[g;} ® Rl Mg ] = El[f{g ® A[Ig,;] Jzu ] (T') from Assumption 5.1, we have
p" (T _isomorphisms Fil"A; ~ Fil"Ay and A/ ~ AY. Hence, from the discussion above, we obtain a

2n(T,e)

natural p -quasi-isomorphism of complexes Syn(MQ ’v},r) ~ Kos (¢, da, Fil” N (T)). [ |

6. SYNTOMIC COMPLEXES AND (¢, I')-MODULES

In this section, we will work under the setup of Assumption 5.1 and carry out the second step of
[u,v] v]

the proof of Theorem 5.5. Recall that we have a finite free A%ﬁ—module N \(T) = A%’w @+
N(T') equipped with a I'g-stable filtration as in (3.5) and from Definition 5.27, we have the comple;
Kos (¢, 04, Fil" N (T)). Let S = R[w] and from the theory of étale (p,I's)-modules in §2.4, we have
Do (T(r)) = Apw ®a, D(T(r)), and from Defintion 4.11 we have the complex Kos(p,I's, Do (T(r))).
In this section, our goal is to show the following;:

Proposition 6.1. There exist natural p” -quasi-isomorphisms of complexes
<, Kos(p, O, Fil' NIN(T)) ~ 7o, Kos (¢, T's, Do (T (1)),

where N = N(r,s) € N depending only on the height s of the representation T and twist r.

6.1. Proof of Theorem 5.5. Note that by combining Proposition 5.12 and Proposition 5.14,

4r+4s_quasi-isomorphism of complexes 7<,_s—1Syn(MEP ) ~ 7<,_s_1Syn( L U], r).

we have a natural p
Next, from Proposition 5.28, we have a natural p?*(7-¢)-quasi-isomorphism of complexes Syn(MJ; U], r) ~

10r+35+2_quasi-isomorphism

Kos(p, 04, Fil” N (T')). Furthermore, by Proposition 6.1, we have a natural p
of complexes Tngos(go,ﬁA,Fil’"Ng’v] (T)) ~ 7<,Kos(p,T's, D(T(r))), where 7< denotes the canonical
truncation (for the explicit constant, see the proof of Proposition 6.1 the end of §6.6). Finally, by Propo-
sition 4.10 and Theorem 4.2, we have a natural quasi-isomorphism of complexes Kos(p, I's, D (T'(r))) ~
RTcont(Gs,T'(r)). Combining all these statements gives us the desired conclusion with N = 2n(T,e) +

14r + 75 + 2. [ |

In the rest of this section, we will prove Proposition 6.1.

6.2. From differential forms to the infinitesimal action of I'g. Note that Lemma 5.19

describes the action of Lie I's on Fil” N2 (T). Then for the Lie subgroup I''s C I's (see §2.4 for

notations), using Definition 4.15 we have the complex Kos(Lie I ,Fil”Ng a (T)) and we consider its
subcomplex, i.e. a complex made of submodules in each degree stable under the differentials of the
complex, as follows:

(Vi) (tFﬂrlei[;,v} (T))Ii — ...

— (PRI NI )

K (Lie T, Fil" NI(T)) .= Fil" N&2(T)
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Using the same differentials, we can define a complex K(Lie I’ ,tFil’"_lNgL l (T)) as a subcomplex of
Kos(Lie I ,FilTNz[g ] (T)). Now consider a morphism of complexes V( : K(Lie I, ,Fil”NgL l (T)) —
K (Lie T, TN (T)), given as V = log o in degree 0 and as Vo—kp™ : (thilr_kNgW] (T(r)))l’/C —
(tkHFilT_k_lNlE—ff’v] (T(r)))l”C on the k-th term of the definition above, for 1 < k < d. The morphism

of complexes is well defined because we have VoV, — V;Vy = p™V,, for 1 < i < d (see §4.3.2
and the discussion after Definition 4.15). Write the total complex of the diagram thus obtained as

K (Lie I‘S,FiergL’v} (T)), which is a subcomplex of Kos(Lie I’S,Fieri[g’v} (T)) by definition. Similarly,
we can define complexes /C(Lie I, , N/ (T)) and K(Lie I, (NP (T)) and a map V( from the
former to the latter complex.

Recall that from Definition 5.27 we have the Koszul complex Kos(y, 9, FilTNzEf,L l (T')). Note that we
have V; = t0;, for all0 < i < d (see §5.5). So we consider a morphism of complexes Kos (9, Fil" N (1)) —
K (Lie I, ,FilTNi[;‘f ] (T)), given by the identity map in degree 0 and multiplication by #* on the k-th term
of the definition above, i.e. (Fﬂr—ka[;’U] (T(r)))l’/C Xt (thﬂr_sz[;’v} (T(r)))l’l“, for 1 <k <d. It is clear
that the map thus defined is bijective, i.e. we obtain an isomorphism of complexes. Similarly, multi-
plying by powers of ¢t as above, we obtain an isomorphism of complexes Kos (&, Filr_lNg‘ ol (T)) =
KC(Lie T AT N (T')). Furthermore, one can do a similar construction for NLv/Pl (T') to obtain
isomorphism of complexes Kos(d/,, N/ (T)) = K(Lie I'. , N/ (T)) and Kos(d, NP (T)) =
IC(Lie I ,tNgf’U/ P }(T)). As each term of these complexes admit a Frobenius-semilinear morphism
@ : Fil"7 N (T) — ¢ NLwv/Pl (T'), we obtain the following morphism of complexes (see Definition
5.27 for the source complex):

K (Lie Ty, Fil' N2 (1)) —2 =2 K (Lie T, N&/P(1))
Kos(p, da, Fil" NIWI(T)) — lvo ivO

K (Lie Ty, tFil" NI (1)) 222, K (Lie I, tNLY/P)(T))

From the discussion above, it follows that,

Lemma 6.2. The morphism of complexes described above is an isomorphism.

Recall that s is the height of T" and we fixed some r > s+ 1. Set N (T'(r)) == Agg’g @+ N(T(r)),

’ R
equipped with the natural action of I'p and a I'p-stable filtration as in (3.10). Then, from Lemma
5.19, recall that the operators V; are well defined over Filk N (T'(r)), for 0 < ¢ < d. Using these

operators, we consider a subcomplex of the Koszul complex Kos(Lie I, ,FilONg ! (T'(r))) (Definition
4.15), as follows:

K (Lie T, FIP N (T (r))) := FiIO N (7 (r)) Y2 RN (7))t —
o (FFIENEN (T () —

Similarly, we can define a complex K (Lie F’S,tFilleg ! (T(r))) as a subcomplex of the Koszul com-
plex Kos(Lie I  Filo N (T(r))). Moreover, similar to the discussion before Lemma 6.2, we can
define a morphism of complexes Vq : IC(Lie I', ,FilONz[g’v](T(r))) — K(Lie I ,tFil_lNz[;f’v](T(r))).
The associated total complex, written as K(Lie I'g, Fil’”NgL l (T)), is a subcomplex of the Koszul com-
plex Kos(Lie I'g, Fil° 1[; l (T'(r))). Furthermore, in a similar manner, we can define the complexes
KC(Lie I', Luv/p) (T'(r))) and K(Lie I, (NP (T'(r))) and a morphism V from the former to the
latter complex.

Next, from Lemma 3.21, recall that Filk N (T(r)) = T iR N (T')(r), for each k € Z. Let
€~" denote a Zy-basis of Z,(—r), then we see that (t" ® e*T)FilkNJ;’U] (T(r)) = (t/7r)’”Fil’“+kN7[§’”] (T) =

Fil"t* N (T'), where the last equality follows since ¢/7 is a unit in A%y’g (see Lemma 2.18). Now,
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consider a morphism of complexes C(Lie I  Filo N (T'(r))) — K(Lie I ,Fil" N1 (T)) given as mul-

II’c X(t"®e™")
— 5

tiplication by t" ® € " in each degree, in particular, it is given as (thilkaq[ﬂu’v] (T(r)))
(thﬂT*kNi—ff’”] (T))I’,“ on the k-th term of the definition above, for 1 < k < d. Note that the map thus de-
fined is bijective on each term by the preceding discussion. Similarly, we have (t" ® E_T)Nq[ﬂu’v/p} (T'(r)) =
(t/n)TNg"”/p] (T) = NLv/?) (T'), which yields an isomorphism of complexes K (Lie I, , Nwo/?) (T(r))) =
IC(Lie I', tNg’v/p}(T(r))). Putting these together, we obtain that,

Lemma 6.3. The morphism of complezes below, given as multiplication by t" @ e~ "

isomorphism:

on each term, is an

p"(1—¢)

K (Lie T, Fil' N2*(T(r))) K (Lie Ty, NEY/P(T(r)))

\LVO ivo H

p"(1=¢p)

K (Lie Ty, tFil ! N2 (T (7)) K (Lie T, tNEP (T (r)))

K (Lie T, Fil' NE (1)) —2—2— K (Lie T, NE/P(T))

B N

K (Lie Ty, tFil' "I NE (1)) 222 K (Lie Ty, tNL-V/PH(1))

In order to change from “Lie I'g-Koszul complexes” to “I"g-Koszul complexes”, we modify the source
complex in Lemma 6.3 to define IC(¢p, Lie I'g, N (T(r))), as follows:

K (Lie Iy, FICNE(T(r))) ——% = K (Lie Ty, NL““/P/(1(r))

| B

K (Lie Ty, tFil !N (T (1)) =2 K (Lie Ty, tNSYPY(1(1)))

By definition, the complex (¢, Lie I'g, NL”;"”} (T(r))) is p*r-isomorphic to the source complex in Lemma
6.3. Combining this with Lemma 6.2 and Lemma 6.3, we get that,

Proposition 6.4. There exists a natural p*" -quasi-isomorphism of complexes

Kos(ip, 84, Fil' NI“N(T)) ~ K (¢, Lie T's, N&“H(T(r))).

6.3. From the infinitesimal action of I's to the continuous action of I'g. In this
subsection, we will study Koszul complexes involving operators v; — 1 over N (T'(r)). Note that
we have (y; — DFIFNZN(T(r) ¢ FI*NEY T ) 0 aNE (T () = 2Pl NN (T(r)), where the
last equality follows from Lemma 3.18 and Lemma 3.21. Define a subcomplex of the Koszul complex
Kos (T, Fild Nl (T(r))) (see Definition 4.9), as follows:
K (s, FIONE1(T (7)) = FIPNE (1(r)) 2L (R N1 ()t —
— (R2FI2NE (T () —

Similarly, we can define a complex KC¢(I', ﬂFil_lNg -l (T'(r))) as a subcomplex of the Koszul complex
KOSC(F%,FﬂONgW] (T'(r))) (see Definition 4.9), where ¢ = x(70) = exp(p™). Consider a morphism of
complexes ) : K(Fg,FiIONgA’v} (T(r))) — /CC(F%,WFH_INJ;’U] (T'(r))), which is given as 9 — 1 in de-
gree 0 and as 7§ : (kail—’le;"”] (T(r)))l’“ — (ﬂkHFil_k_lNg’v} (T(T)))Ik, on the k-th term of the
definition above, for 1 < k < d (see Definition 4.8 and Definition 4.9). Denote the total complex
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of the diagram thus obtained as KC(T's, Fil" Lu] (T'(r))), which is a subcomplex of the Koszul com-
plex Kos(T'g, Filo N (T'(r))). In a similar manner, we can define complexes K(I', N/ (T'(r))) and
ICe(T, WNQ’”/”] (T'(r))) and a map 7 from the former to the latter complex.

Recall that ¢/ is a unit in A%’g (see Lemma 2.18), therefore, we see that thFil kN ) (T'(r))
R Fil =k N (T(r)), for all k € Z. Now, define a morphism of complexes S : IC(F{Q,FHONJ;L’U} (T(r))) —
KC(Lie T ,FilONQ ] (T'(r))), which is the identity in degree 0 and given as

By, (R N (T () b — (FFilF N (1 ()

(ail--'ik) — (vlk T VilTizl o .Tizl(ail"'ik))v

on the k-th term of the definition above, for 1 < k < d. Similarly, define a morphism of complexes
B° : Ko(Dlg, (R NEN (T (r))) — K¢ (Lie T, tFil- N2V (T(r))) which is given as 8§ = Vory ! in degree
0 and as

I/

k

B - (tFHRIR T Nl (T(r)))fé —s (tFFIE NI (1))

(@jywiy) — (Vi -+ ViIVoTo_lTicl’_l e Tick’_l(ail...ik)),

on the k-th term of the definition above, for 1 < k < d. Similarly, one can define the maps f
and (B¢ for the A%’;/p}—module Niﬂ“’”/p}, giving morphisms of complexes 3 : K( ’S,Nl;"“/”] (T(r))) —
K (Lie Ty, NE“Y/P{(T(r))) and B¢ : K¢(T, NPT (1)) = K(Lie Ty, tNL/P (T (r))).

For each j € N, we have that PRl N (T'(r)) C N (T'(r)) and the induced Frobenius gives
gp(thilijz[;f’v] (T'(r))) = @(tj*’”Fil“jNgL’U] (T)(r)) C £ N/ (T'(r)), where we have used Lemma 3.21
and the fact that ¢/7 is a unit in A%y’g (see Lemma 2.18). Using the Frobenius morphism and the
morphism of complexes described above, we obtain an induced morphism of complexes

K (T, FIONE (T (1)) =2 K (T, NPT (1))
lm l P59, K (, Lie T's, N“(T(r))

KCE (T AR NL (T (1)) S22 K6 (T, ENLYP (D (1))

We denote the complex on the left as (¢, s, N (T(r))) and write the map as
L = (8,5 : K(p,T's, N&NT(r))) — K(p,Lie T's, N&U(T(r))),
Proposition 6.5. The morphism of complexes £ described above is an isomorphism.

Proof. The proof follows in essentially the same manner as [CN17, Lemma 4.6]. One needs to use
Lemma 2.22, Lemma 4.14 and Corollary 5.19 instead of [CN17, Lemma 2.34] in the proof. We omit the
details. |

6.4. Change of the annulus of convergence : Part 1. In this subsection, we will pass from

the analytic ring A%’;ﬂ to the overconvergent ring Agg’;]Jr and also twist our module by Z,(r). Let us set

Ng)’vH(T(r)) = AE%UH ®at N(T'(r)) equipped with the natural action of I'g and a I'g-stable filtration

w

as in (3.10). Define a subcomplex of the Koszul complex Kos (I, Fil" g)’vH(T(r))) (see Definition 4.9),
as follows:

K (T, FIO NV (T(r))) := FICNOUH (T () s (rFil LNOoH (T(r))) T —

— (PRI 2N (T () e

Similarly, we can define a complex K¢(I, ,7TFil_lN1(ﬂ0 ’UH(T(T))) as a subcomplex of the Koszul com-

plex Kos® (T, ,FilONfﬂ0 ’UH(T(T))) (see Definition 4.9). Now, consider a morphism of complexes 79 :
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IC(F%,FHONQWH(T(T))) — Ke(I% ,WFil_lNg’UH(T(T))) which is given as 79 — 1 in degree 0 and as
7 (71"“Fil_’“Ng)’v]+(T(T)))Ié — (WkFil_k_lNg)’vH(T(r)))lé, on the k-th term of the definition above,
for 1 < k < d (see Definition 4.8 and Definition 4.9). Write the total complex of the diagram thus
obtained as KC(Tg, FﬂONg)’UH(T(r))), a subcomplex of the Koszul complex Kos(T'g, FilONg)’vH(T(r))).
In a similar manner, we can define the complexes K(I', Ng’v/pH(T(r))) and K¢(I', WNQ’”/”H(T(T)))
and a map 79 from the former to the latter complex.

For each j € N, we have that WjFil_jNg)’UH(T(T)) C Ng)’vH(T(r)) and the induced Frobenius gives
gp(ijﬂ*jNg)’vH(T(r))) = gp(wj_TFil“jNg)’vH(T)(r)) C ijg)’”/”H(T(r)), where the equality follows
from Lemma 3.21. So we define the complex,

K (T, FIONSY (7 (r))) — =2 K0T, NOVPH (7 (1))
K (¢, T's, NOUH(T(r)) = mi im

Ko (D, Fi - N (1)) =2 Ko (D, a NP (1))

Proposition 6.6. The natural morphism of complezes KC(p,T'g, Ng,)’vH(T(r))) — K(p,Ts, N (T(r))),

induced by the inclusion Ng)’UH(T(T)) c N (T(r)), is a p*"-quasi-isomorphism.

Proof. The map in the claim is injective on each term, so we need to show that the cokernel complex is
killed by p®". In the cokernel complex, for k € N, we have maps

1 — ¢ : 7" FilF N (T (1)) f2 P FLF N O (T (1)) — 78 NV PH T () faP NOVPE (T (r)),  (6.1)

and it is enough to show that these are p*’-bijective. Let us set NQ’UH(T) = Agg’ng ®AE N(T),
NQ’UH(T)(T) = g)’UH(T) ®z, Zp(r) and N (T)(r) = L] (T') ®z,, Zy(r), equipped with the filtra-
tion as in (3.5) (upto twisting the filtered pieces by Zy(r) in the latter cases). Moreover, for any k € N, by
Lemma 3.21 we have that 7*Fil * NS (7(r)) = ok Fir =+ N (T (r) and #*Fil-* N1 (r)) =
T (T')(r). So, for n =r — k, we can rewrite (6.1) as,

1 — ¢ : 7 "Fil"NSN(T) fo "Rl NOVF(T) — 7" Nv/P (T fe N0/l (), (6.2)

Note that the twist has disappeared since ¢ acts trivially on it. For n < 0, the claim follows from Lemma
6.7. For n > 0, we first claim that the following natural map is p™-bijective:

T "NE(TY T NOVH (T — 2RI Nl (T /o R N O (T, (6.3)

Indeed, recall that £ = 7/7; and from (3.5) and Lemma 3.19, it is clear that {”Ni(pO’UH(T) C Fil"NfﬂDWH(T),
in particular, we have Ng)’UH(T) c N (T)nN 5‘”Fil”Ng)’”]+(T) = (A%ﬂ N 5‘”A$§7’g+) ®at N(T) =
N ’UH(T), where the first equality follows because N(T') is free over A, and the second equality follows
because {”A%’;] N Ag’;}—i— C Fil”Ag”g+ = E"Ag%g—’_ (see Definition 2.7 and Remark 2.8). In particular,
we see that WI”NQ’U] (T)n W*”Fﬂ”Ng’UH(T) = 7r1_"N1(ﬂo’U]+(T), i.e. (6.3) is injective. Next, to show the
p"-surjectivity of (6.3), write A%”g = A%}w—i—Ag”;}jL and set N1/ (T) := A[Ig}w @ p+ N(T) and NE(T) :=
AJ}SL,w ® AL N(T'), equipped with the induced filtration as in (3.5). Then, to obtgin the p"-surjectivity
of (6.3), it is enough to show that the natural map wf"Ni[x?} (T) + 7 "Fil"NLI(T) — 7Rl N (T) is
p-surjective, or equivalently, that the natural map f”Nq[ﬂu] (T)+Fil"NZL(T) — Fil”Nq[ﬂu] (T') is p™-surjective.
To show the latter claim, let {e1,...,ep} be an Af-basis of N(T), and take z € Fil" N (T') and
write x = Z?ZI a;e;, with a; € A%}w. Note that from Lemma 2.9 we can write a; = a;1 + a;2, with
a1 € Fﬂ"ABg}w C p‘"ﬁ"A%}w (see Remark 2.8) and a;y € p~ Lru] AE@. So we see that 1 = Zzh:1 ai1€;
is in p " NYN(T) and 25 = Sy ame; = 2 — 1 is in p~ " NE(T) nFI"NY (1) ¢ NY(T)[1/p]. Now,
as we have u = (p — 1)/p < 1, therefore, it follows that p"zy is in NZ(T) N Fil"N2\(T) = Fil" N (T)
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(see Lemma 3.18), i.e. p"x = p"x1 + p™xg is in §"N1[§] (T) + Fil"NZ(T). In particular, we get that (6.3)
is p™-bijective, and therefore, (6.2) is p"-isomorphic to

1— @ "NB(T) /a7 P NOUH (Y — g NLwv/Pl() fr=n NOw/PI+ (),
Recall that we have v = p — 1, so by Lemma 2.20 (iii) it follows that 7 divides p in A(0 VP and m
divides p in Ag’ng, therefore, (6.2) is p?"-isomorphic to the following map:
L= s NEI(T) INQUH(T) — NI/ (r) [N/ (T),

Now, from Lemma 6.7, the map above is bijective (note that Frobenius has no effect on twist). Therefore,
we conclude that (6.1) is p3-bijective. As n = r — k < r, it follows that the cokernel complex of the
map in the claim of the lemma is killed by p?". This allows us to conclude. |

Lemma 6.7. For each k € N, the following natural map is bijective
L= ANI(T) frENDE (T) =5 a NG /(T) ek NGO (T),

Proof. For k = 0, using a basis of N(7'), one first shows that the natural map N (T )/NZE—?’UH(T) —
NP (T)/Ng)’v/pH(T) is bijective, in particular, 1 — ¢ is an endomorphism of N (T)/Nz(vo’vH(T).
Then, following the strategy of [CN17, Lemma 4.8] one shows that on the preceding quotient, 1 + ¢ +

©? 4+ .- converges as an inverse to 1 — ¢. We omit the details. For k > 0, note that ¢ preserves the
quotient kNl (T)/WkNg)’UH(T). So, from the case k = 0, it follows that 1 + ¢ + ©? + --- converges
on the preceding quotient as well. |

6.5. Change of the annulus of convergence : Part 2. In this subsection, we will change the

ring of coefficients from A(O UH AES,’;/W

that m > 2).

by replacing ¢ with its left inverse ¢ (under the asssumption

6.5.1. From (p,['s)-complexes to (¢,I's)-complexes. From Proposition 2.4, recall that we have
the left inverse 1 of the Frobenius endomorphism on A, satisfying ¥)(A) C A. This induces an operator

P A(O’U/ID]Jr — A(O’UH7 which commutes with the action of I'g, in particular, we have T/J(Agg,’ng) C
R(O'U/p}Jr %A(O:U/p]JF

R,w

Agg Equivalently, one can also define the operator 1 by first identifying tcyc :
and then considering the left inverse of the cyclotomic Frobenius over R(O o/Pl+ (see §2.6 and §2.7).
Next, from Lemma 3.6 recall that the operator ¢ extends to N(T'(r)) and we have ¢»(IN(T'(r))) C
N(T'(r)). By extending scalars to A(0 UI* and from the discussion above we see that (N, NGO UH( T(r))) C
1/}(]\71;0 v/pH( T(r))) C c NOF (T'(r)). Moreover, using the description of the filtration on N, 0UH(T)

from Lemma 3.19, it follows that for 0 < k < r, we have ¢(Fil"™~ ’fNéf.””( T)) C ¢"~ kNOw/plE (7).
Upon multiplying the terms of the preceding inclusion by ¢(7*~") and twisting by Z,(r), we get that

gp(wk_TFﬂT*kNg)’UH(T)(r)) C ﬁk_rNg]’U/pH(T)(r). In particular, by using Lemma 3.21, we note that
ﬂkFil_kNg)’UH(T(r)) C w(ﬂkNg)’U/pH(T(r))) and since Fil_kNg)’v]+(T(r)) C Ng)’v/pH(T(r)), therefore,
it follows that (¢ — 1)(7*Fil *NOUT (7(r))) € (@ NOVPH (1)),

Set. K(I's, Ny) = (K (T, NP5 (T(r)))) and KT, Ny) = (KT, NP7 (T(r)))). From
§6.4, recall that we defined maps 79 : /C(F’S,FION(O UH(T(T))) — KT, 7Fil™ 10+ (T'(r))) and
70 Y(K( ’S,Nq(ﬂo’v/pH(T(r)))) — (KT, N, N U/pH(T(r)))). As ¢ commutes with the action of I'g,
therefore, from the latter map, we obtain an induced morphism 7y : (I, Ny) — K¢(I's, Ny). Now,
using the discussion above, note that we have a well-defined map between source complexes of the maps

70 above, given as 1) — 1 : (T, Fil° NV, © vH(T(r))) — K(I'g, Ny ), and similarly for the target complexes
of 79. Therefore, similar to the complex K (¢, I's, N0 (T(r))) in §6.4, we define the following complex:

K (T, FONSH (T () 2= K (T, Ny)
IC(Q/),FS,NQ,UH(T(T))) = Toi lm
Ko (T, wFilE NSO (1)) 225 Ke(Ty, )
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Proposition 6.8. The morphism 1<, K(p, g, . UH(T(T))) — 1<, K(¢,Tg, OUH(T(T))), induced
by the identity in the first column and v in the second column is a p"2-quasi-isomorphism.

Proof. By definition, note that the map is surjective on each term, so we need to show that the kernel
"+2_acyclic. As the map in the claim is identity on the first column, therefore, the kernel
complex can be written as

complex is p

P [T, (NOU/PH (7)) =) 22 JCe (T, (N O/P (T (1)) P=0)].

Clearly the terms of the complex above are gp(A( UH) modules. Recall that p/7 € go(A(O UH) (since 73
divides p in ASM_} , see Lemma 2.20 (ii) for v = p — 1), so we obtain that (7 kN Ov/plE (T(r)))¥=0 is

p"*-isomorphic to (Nq(ﬂ0 w/p ]+(T)(r))¢:0, for k < r. In particular, the complex above is p"-quasi-isomorphic
to the following complex:

7o [Kos(Ig, (NQV/PH(T) () P70) 2 Kos® (T, (NOV/PH(T) (1)) P=0)]. (6.4)

We will show that the complex in (6.4) is p?-acyclic, but to prove our claim we will need a simpler
description of the gp(A(O UH) module (Ng)’v/pH(T))w:O.

Let {e1,..., e} denote an Af-basis of N(T). As the attached (¢,I's)-module D (T) = Ap . @A,
D(T) over AR@ is étale, so we see that {¢(e1),...¢(en)} is an A o-basis of Dy (T"). Now, let us note

that z = Z;'L:l zjp(ej) is in Dy (T)¥=0 if and only if z; € (AR@)w:O7 for each 1 < j < h. Indeed,
¥(z) = 0 if and only if 2?21 Y(zj)e; = 0, and since e; are linearly independent over Ap o, therefore,
we see that ¢(z) = 0 if and only if ¥(z;) = 0, for all 1 < j < h. Next, using Lemma 2.15 (ii), note
that we have a decomposition Aﬁjﬂo = DaroP(ARo)[X°]Y, where [X°]% = (1 4 m,,)*0[X7]00 - - - [X))
and o = (g, ..., aq) is a (d + 1)-tuple with a; € {0,...,p — 1}. Therefore, we see that D (T)¥=" =
(Z?:l AR@(p(ej))w:O = Ba0 Z;‘:l (AR ©e;)[X°]* = Barop(Dw(T))[X°]%. Note that inside Dy (T)
we have (NQ’””’”(T))”:O = Do (T)*= N NS)’”/””(T). So using the decomposition above, we set
N[X®]® := p(Do(T))[X°]* N Néo’v/pH(T), for @ # 0, where the intersection is taken inside Dy (T)¥=".
Note that we have (Ag’;]Jr) C p(Ar=) N Agg”;/p]f Therefore, it follows that N := N[X"]*[X"]~
is a p(A AY v]+) module contained in NV/PF (T'), stable under the action of I's and independent of
. Indeed, for the last part note that for o # o/, we have S0 | (z:e;)[X"]* € N[X"]* if and only
if S0 o(xe)[X")Y € N[X’]. In conclusion, we get that (NQ’”””(T)WZO = @aroN[X’]® =
D09 (Ne © 7JH)[X b] where the last equality follows from the following:

Lemma 6.9. For v =p—1, let x € D (T) such that ¢(x) € NOvPE (T), then x € N(MH(T). In
particular, we have N = (p(N(O UH(T)).
Proof. Let NA(T) = Afy, @, N(T) and note that Do (T)/p = (NZ(T)/p)[1/mn] and NOUH Ty =

Y onenP” e/ NZ(T) (since N(T) is finite free over A}). Then the proof of [CN17, Lemma 2.14] can
easily be adapted to obtain the claim. We omit the details. |

Remark 6.10. From Lemma 6.9, we have N = go(N(O UH( T)). Then for any i € {0, ..., d}, using Lemma
2.22 (i), note that (v; — 1)A§g7;} Agg and from Definition 3.1 note that (v; — 1)N(7") € #N(T).
As ¢ commutes with the action of I'g, therefore, we conclude that (y; — 1)N C ¢(m)N.

From the discussion above, it follows that the complex in (6.4) is isomorphic to the complex

rer @) | Kos(I, N(r[X']?) - Kos (T, N [X°) |. (65
a#0

Lemma 6.11. The complex described in (6.5) is p?-acyclic.



Syntomic complex and p-adic nearby cycles 47

Proof. Our proof is motivated by the proof of [CN17, Lemma 4.10]. One can treat the terms of (6.5) cor-
responding to each « separately. The case of ay, # 0, for some k # 0, follows similar to the proof of [CN17,
Lemma 4.10], where one shows that both the complexes Kos (s, N(r)[X"]*) and Kos¢(T'y, N (r)[X"]%)

are p-acyclic, by using the facts that (yx —1)N C ¢(m)N (see Remark 6.10) and 7 divides p in cp(A(O UH)

(since 7 divides p in Agg,’gt see Lemma 2.20 (ii) for v = p — 1). We omit the details.

Now, let aj = 0, for all k # 0, and ag # 0. To prove that the complex in (6.5) is p-acyclic, we will
show that 7y : Kos — Kos® is injective and the cokernel complex is killed by p. This amounts to showing
the same statement for the following map:

Y0 = 8y -+ 83y« NIX]*(r) — N[X*)%(r), &, = 52 (6.6)

o -1

Let n = p™™(c — 1)ag € Z), F = ¢"(1 +m)"y0 — 04y -+~ 0;, and €®" a Zy-basis of Z,(r). Then we
note that (yg — 8, -+ O}q)(x[X"] ® €®") = F(x) - [X’]* ® €¥7, for any x € N. Moreover, we have that
¢" — 1 is divisible by p™, (14 m)" = 1+ nm mod n? and &;, — 1 € (yi; — 1)Zp[vi, — 1]. Therefore, we
can write 7 1F in the form 7 'F = n + 7 'F’ with F' € (p™, 7%, 70 — 1,...,74 — 1)Zp[m,T's]. Now,
let f =p/me go(A(O UH) and note that 77 1p™x = 7™ 1 f™r is in 71 N. Moreover, we have that
(v; — 1)N C p(m)N, for 0 < j < d (see Remark 6.10) and ¢(r)/7? € gp(A(O UH) (since 71 divides p in
(0,0 ]+> (

Ag’;}t see Lemma 2.20 (ii) for v = p — 1). Furthermore, 72, divides 7 and p in o(AR see Lemma

2.20 (ii) for v = p — 1). So we get that 7~ 1F’(z) € 7" N (since we assumed m > 2). n particular, we
see that 77 1F' = 0 on 7% N/m%* N, for all a € N and b = p™. Hence, 7' F induces multiplication by
n on ¢ N/7%PN | for all @ € N, which implies that it is an isomorphism on N. From the preceding
discussion, we conclude that the map in (6.6) is injective and its image is contained in 7N[X°]*(r). But,

as 7 divides p in cp(Agg’UH), therefore, we get that the cokernel of (6.6) is killed by p, as claimed. W

N

Using Lemma 6.11, we conclude that the natural morphism of complexes, in the claim of Proposition
6.8, is a p"t2-quasi-isomorphism. |

6.5.2. Changing the overconvergence radius. Recall that m > 2 and let £ = p™~!. Then
from Proposition 2.17 (i), we have inclusions (. _ZA(OU ) C p(m AR Ov/p} ) C ﬂ,jlpm_QAgg”;]Jr C
_éAg’;/pH In other words, W_eA(O’vH is stable under 1. Set DYV (T(r)) = A(O’U}Jr ®at D (T(r))

and note that it is stable under the action of I's. Next, from Lemma 2.15 we have that ¢ (A Ig ;/ b H) =

Ag;} , and for v = p — 1, using Lemma 2.20 (iii), we have that = p€7r is a unit in A(O VIPE 86 from
Proposition 2.17, it follows that ¢ (7 _’"Agg’;/pH) _TAggg , and therefore, ¢ (7 _TD(O v/pH( T(r)) C
WI_TDQ’UH(T(T)). Moreover, as we have ¥(IN(T)) € D' (T), so from the discussion above we see
that @ZJ(N(O’v/pH( T(r))) C ¢(m "D Ov/pl+ (T(r))) C 7T7TD(0 UH_(T(T‘)). Furthermore, for £ € N and
k < r, it follows that we have kN U/pH(T(r)) c 7D Ov/pH(T(r)) and ¥ (7* Ng (O /pl+ (T(r))) C
7rk rD(OvH(T( ) C k- rD(Ov/P} (T(r)).

By replacing v by v/p in §6.4, we define a complex K(I'y, N, NP+ (T'(r))) as follows:

NOUI (I (r) LT (NS T ) — @ NO ) —

Similarly, we define a complex /CC(I‘fg,Ng)’v/pH(T(r))) and a map 79 from the former to the latter
complex. Note that from the discussion above and the inclusion Ng)’v/pH(T(r)) C W_TDQ’U/’)H(T(T)),
we have that (¢ — 1)(7rkN1(30’v/p]+(T(r))) C w*ng)’v/pH(T(r)). So we define the following complex:

K (T, N&PH(T(r)) Kos (I, m " DL/PH(T(r)))
K (¢, T, NOVPH(T(1))) = Toi im

K (D, aNE P (T(r))) £ Kos® (s, m=" DS /P (T (1))
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Lemma 6.12. The morphism of complexes 7<,K(¢,Ts, (Ol+ (T(r)) = 7<-K(¢, g, Ng)’v/pH(T(r))),
induced by the inclusions Ng)’UH(T(r)) c NQOv/PF (T'(r)) and (N e pH(T(r))) C Tr*TDg)’U/pH(T(r)),
is a p" T2 -quasi-isomorphism.

Proof. As the map in the claim is injective on each term, we need to show that the cokernel complex is
killed by p"+2%. For k € N and k < r, in the cokernel complex, we have maps

¢ —1: 7F " NOVPIE (7Y bR R NOVIE(T) o 7 DOV (7 fp (R NOw/PIE (), (6.7)

and to prove the claim it is enough to show that (6.7) is p"*2%-bijective (the twist (r) has disappeared
because 1) acts trivially on it). First, we will show the p"**-surjectivity. Recall that we have D™ (T") C

N(T) c D*(T) (see [Abh21, Corollary 4.11]), and by extending scalars to A(0 o/PIt and dividing out by
7", we see that WS*TDSZO’U/pH(T) C W*TNz(ﬂO’U/pH( T). So, it follows that 7 ’"D(O U/p (T) /7= rNO U/pH( T)
is killed by 7%**, and since 7 divides p in A(0 v/pl+ (see Lemma 2.20 for v = p — 1), therefore, we get
that the preceding quotient is killed by p**°. Note that the quotient W_TD(O U/pH( )/Wk_TNg)’U/pH(T)

surjects onto the cokernel of (6.7). Hence, for k < r, we see that the cokernel of (6.7) is killed by p"+*
(this also shows that the truncation in degree < r is necessary in order to bound the power of p).

Next, to show the ps—injectivity of (6.7), let x € Ng)’”/p”( T) such that there is a y € N U/pH( T)
satisfying (¢ — 1)(7*7"2) = (7% "y), or equivalently, we have that x = £ *)(z — y) belongs to
£ Fp( Ny Ov/pl+ (T)). Note that 1 (V, OU/pH( T)) C Y(Dg Ow/pl+ (7)) C Dq(ﬂo’vH, so we see that ¢(z) €
Dg /P ]+. Moreover, from the discusson above, we know that the natural inclusion Nz(ﬂ0 w/p H(T) C
DZ(S’“/””(T) is p*-surjective. Therefore, it follows that p(p°z) = p®p(x) is in NQ’”/M*(T), in particular,
we see that ¥ (p(p°z)) = Y(p°q"F(x—y)), i.e. p(p°z)—¢" *p*(z—y) is in (N(O’v/p]Jr(T))w:O. From the de-
scription of (Ng (Ow/pl+ (T))¥=0 before Lemma 6.9, we can write ¢(p°z) = p*q"~ k(m—y)—i-za?go o(za)[ X",
for some x, € Ng,) it (T). In particular, we see that ¢(pz) is in N v/pH( T) and from Lemma 6.9 we
get that p°z is in N© ”H(T) Furthermore, as we have that (V. N 1)/IDH(T)) C Dfﬂo’vH(T), therefore, we
see that p*x is in NSO (1) 0 ¢ =* DO (1) € NOIH (1) 0 (Fir FAS @5 v) c Fir NS (),
where the last inclusion follows from the definition of the filtration on N ©, UH( T) in (3.5). In particular,

we have shown that p*m* "z belongs to 7F"Fil*~"Ng © UH(T), and hence, (6.7) is p°-injective. This
allows us to conclude. u

From the discussion before Lemma 6.12, recall that we have inclusions ¢(7T_7"D7(ﬂ0’v/ b H(T(r))) C
wfrDz(g’UH(T(r)) C W_TDg’v/pH(T(r)). So using the constuctions in §4, we define the complex:

KOS(FZS” ﬂ_—ngJ,U/p]JF(T(T))) ¢;1> KOS( s —TD(O v/pl+ ( (,r.)))
Kos (¢, ['s, DOV/PIH(T(r))) := Tol lm

Kos® (I, 7" DCO/PH (1 (r))) Y= Kose (I, 7" DOV/PH (1))

Lemma 6.13. The morphism of complexes 7<, K (¢, I's Ng)’v/pH( T(r))) — 7‘<rKos(w,I‘5,D(0 U/pH(T(r))),
induced by the inclusion N/ (T'(r)) C 7= DO/ (T(r)), is a p"*5-quasi-isomorphism.

(0 v/p}

Proof. Note that for the map of truncated complexes, the cokernel complex consists of A, -modules,

given as DY v/p]+( T(r ))/WkNwO v/plE (T'(r)), for k < r. Recall that we have 7T8D+(T) Cc N(T) c
D*(T) (see [Abh21, Corollary 4.11]), and by extending scalars to Aggy’;/ P ]+, dividing out by #«" and

twisting by Z,(r), we see that 7°~ r p{Ov/rlt (T'(r)) C N(O’v/pH( T(r)). So, it follows that the quotient

7r_TD1(g’U/pH(T(r))/w”“Nw0 U/pH( T(r)) is killed by 7%+, and since 7 divides p in A(O v/pl+ (see Lemma

k+s

20 for v = p — 1), therefore, we get that the preceding quotient is killed by p As k < r, hence, we

conclude that the cokernel complex is p”T5-acyclic. |
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6.6. Change of the disk of convergence. In this subsection, we will relate complexes in previous
subsections to the Koszul complex computing continuous G g-cohomology of T'(r). Recall that in §2.4.5,
we defined an operator ¥ : Do (T(r)) — Do (T(r)) as a left inverse of . Using this operator, we define
the following complex:

Kos(T, Dex(T(r))) ——> Kos(T's, Deo(T(1))

Kos(1 Ts, Da(T(1) = | &
Kos®(I'y, Do (T (r))) ~—= Kos®(I'y, Do (T(r)))

Lemma 6.14. The natural morphism of complezes Kos(¢, ', Dg’v/pH(T(r))) — Kos(¢,T's, D (T'(1))),
induced by the inclusion w—TDQ’”/”H(T(r)) C Do (T(1)), is a quasi-isomorphism.

Proof. The map in the claim is injective on each term, so we examine the cokernel complex. Write
Do (T(r)) = Dg’v/pH(T(r))[l/ﬂm]/\, where * denotes the p-adic completion. By Lemma 2.15, we have
that w(Agg,’;/pH) = Ag:;h C Ag’;/pH, and for £ = p™~! note that by Lemma 2.20 (iii), we have that
7 Pem is a unit in Ag%;/p]-ﬂ-. So, for k > 1, we get that w(ﬂ;lpkf’"Agg:;/pH) C ﬂglpk_leTAg,’;/pH (see
Proposition 2.17). Moreover, recall that we have w(DSS’”/”]*(T(T))) C Dg’v/pH(T(r)). Coupling this

with the observation above, we get that w(ﬂ;pk”Dg’v/pH(T(r))) C w;f’“‘WDQ’”/pH(T(r)). Therefore,
it follows that the natural map

W De(T(r)) /7" DY (T(r)) — Do(T(r)) /x~ " DEHPH(T(r)),
is (pointwise) topologically nilpotent and 1 — 1) is bijective over this quotient. So, we obtain that the
following complexes are acyclic:

[Kos(I's, Do (T(r) /7~ DEH/PH(T(r))) = Kos (s, Do (T(r)) /7" DS/ (1 ()],

w

[Kos® (I, Do (T(r)) /n~" DO/ (T (1)) L2155 Kos® (I, Do (T(r)) /7" DOV/P (T (1)))].

w

Hence, we conclude that the cokernel complex of the map in the claim is acyclic. |

Recall that we have the complex Kos(¢, I's, D (T'(r))) from Definition 4.11 and we make the following
claim:

Proposition 6.15. The natural morphism of complexes Kos(¢,I's, D (T'(1))) — Kos(¢,I's, D (T'(1))),
induced by the identity on the first column and v on the second column, is a quasi-isomorphism.
Proof. Notice that the map 1 is surjective on D (T'(r)), so the cokernel complex is 0. To obtain
the acylicity of the kernel complex, we need to show that the complex [Kos(I', Dy (T(r))¥=0) 2
Kos(T', D (T(1))¥=%)] is acyclic. To show our claim, we will analyze the module D (T(r))¥=". Let
{e1,...,en} denote an AE—basis N(T) and set f; = e; ® €®", for each 1 < i < h and where €®" is a
Zy-basis of Zy(r). Since we have that Ap ®at N(T)(r) = D(T)(r) = D(T(r)), therefore, it follows
that {f1,..., fn} is an Ag-basis of D(T(r)). Furthermore, as D (T(r)) = Apw ®a, D(T(r)) is an
étale (p,I'r)-module over Apr o, so we see that {¢(f1),...,o(fn)} is an A o-basis of D5 (T'(r)). In
this basis, we have that z = Z?Zl zjo(f;) is in Dg(T(r))¥=0 if and only if z; is in Alffwo, for each
1 < j < h. Indeed, ¥(z) = 0 if and only if E?zl Y(zjo(f)) = E?zl ¥ (z;)f; = 0, and since f; are linearly
independent over Ap o, therefore, we see that ¢(z) = 0 if and only if ¥(2;) =0, for all 1 < j < h.
Next, from Proposition 2.17, we have a decomposition A}é?g = Bap(AR»)[X"]%, where [X°]* =
(1+7p) 0 [X3)%0 .- - [X7]% and o = (g, - . ., o) is a (d+1)-tuple with oy € {0,...,p—1}. Therefore, we
get that (Do(T(r)Y=" = (X1, AR,wfj)wZO = @azo 211 ¢(ARwfj)[X"]*. Note that the last term
identifies with @a.0 211 ¢(Dw(T))(r)[X°]%. So, we obtain that the kernel complex of the map in the
claim is isomorphic to the following complex:

D | Kos(Th, p(D= () () X]7) — Ko (T, (Do (T)) (X)) | (63
a#0
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Lemma 6.16. The complezx described in (6.8) is acyclic.

Proof. The proof follows in a manner similar to Lemma 6.11, where one notes that it is enough to
show the claim modulo p, and for the latter, one uses the fact that D (T)/p = (NZ(T)/p)[1/7pm], for
NI(T) = AE,w DAt N(T'). We omit the details to avoid repetition. [

Using Lemma 6.16, we conclude that the natural morphism of complexes, in the claim of Proposition
6.15, is a quasi-isomorphism. |

Proof of Proposition 6.1. Recall that s is the height of the representation 7" and r is the twist (see As-
sumption 5.1). Note that from Proposition 6.4, we have a natural p*"-quasi-isomorphism of complexes
Kos (e, 8A,Fierg’v](T)) ~ K(y,Lie I's, g’v](T(r))). Then, in Proposition 6.5, we replace the in-
finitesimal action of I'g with the continuous action of I'g and obtain a natural isomorphism of complexes
K (¢, Lie g, NI (T(r))) =~ IC(go,FS,Nl[g’U] (T(r))). Furthermore, in Proposition 6.6, we switch from
analytic coefficients rings to overconvergent coefficient rings to obtain a natural p3"-quasi-isomorphism
of complexes K(p, g, N (T(r))) ~ IC(cp,FS,Ng]’UH(T(T))). Next, in Proposition 6.8 and Lemma
6.12 and Lemma 6.13, we change the overconvergence radius to obtain a p3+35t2_quasi-isomorphism
of complexes 7<,KC(¢, s, NéO’UH(T(r))) ~ 7<,Kos(¢, T'g, Dg)’v/pH(T(r))), where 7< denotes the canon-
ical truncation. Finally, in Lemma 6.14 and Proposition 6.15 we change the disk of convergence to
obtain natural quasi-isomorphisms of complexes Kos (), g, Dg’v/pH(T(r))) ~ Kos(¢,I's, D (T (1)) ~
Kos(¢,I's, D (T(r))). Combining these statements, we get the claim of Proposition 6.1 with N =
10r 4 3s + 2. |

6.7. Comparison with the Fontaine-Messing period map. The aim of this subsection is
to show that the comparison map from Syn(S, M,r) to Rl cont(Gs, (T'(r))), in Theorem 5.5, coincides
with the Fontaine-Messing period map. We will follow the strategy of Colmez-Niziol (see [CN17, §4.7]).
Recall that we have S = R[w], S = R C Fr R and S, = Rs C FrR. Note that by Definition 2.24, we
have rings Eg = E%, for * € {PD, [u], [u,v]}, equipped with a Frobenius, a filtration and an action of
Gg < GR.

Let us recall that T is a positive finite ¢g-height Z,-representation of Gr as in Assumption 5.1 and
V =T[1/p]. Note that by tensoring the fundamental exact sequence in (2.2) with 7', we get the following

p"-exact sequence,
0 — T(r) — Fil" Awris(5) @2, T L5 Aeis(S) @z, T — 0. (6.9)

Next, from Assumption 5.1 we have a finite free R-module M C ODgs(V) such that M[1/p] =
ODgis(V'). Moreover, we have a natural injective map OA%DW Qr M — OA%?Z ® 2+ N(T'), compat-
bl k) R

ible with the respective Frobenii, filtrations, A%]?w—linear connections and actions of I'g. Additionally,
by definition, we have a natural inclusion AT ® A+ N(T) C AT ®z, T', compatible with the respective
R

Frobenii and actions of Gr. Extending scalars to OAis(S) in both the maps and composing them, we
obtain the top horizontal arrow in the following diagram:

OACI‘iS(g) ®R M — OAcrjs (?) ®Zp T

J l (6.10)
OBcriS(g) ®R ODcris(V) — OBcriS(g) ®Qp Va

where the vertical arrows are natural inclusions and the lower horizontal arrow is a natural isomor-
phism (since V' is crystalline), compatible with the respective Frobenii, filtrations, actions of G and
Beris(S)-linear connections satisfying Griffiths transversality with respect to the filtrations (see [Bri0s,
Proposition 8.4.3]). The diagram commutes by definition (see [Abh21, §4.5] for a similar diagram), and
it follows that the top horizontal arrow is injective. Now, recall that the filtration on the bottom left
object is given by the tensor product filtration (see Remark 2.34) and the filtration on the bottom right

object is induced by the natural filtration on OB,;s(S). As the filtration on the objects in the top
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row are induced from the filtration on the objects in the bottom row of their respective columns (see
the discussion before Lemma 2.38 for the top left corner), therefore, it follows that the filtration on
OAis(S) ®r M matches with the indued filtration from OA s(S) ®z, T.

Now, we consider the following commutative diagram:

\_

Sh

Acris(g)n ®Op,n R+

W/’“\ﬂ

where the subscript n denotes the reduction modulo p™, the bottom horizontal arrow is induced by
Xo — w and the top horizontal arrow is the extension of the #-map by the bottom horizontal arrow.
Using the rings discussed above, we will define the local Fontaine-Messing period map. Set Qppp =
S,n

Egp?l Qp+ Qpt APD = EgD ®@pr M and AP = APP/p? equipped with the induced filtration,

Frobenius, Gg-action and A s (?)n—linear integrable connection 0 satisfying Griffiths transversailty with
respect to the filtration. In particular, for r € Z, we have the following filtered de Rham complex,

Fil'gg ,,  FIIAY = Fr AP @p Qp, = FII2AP@p, 05, — -

RE ., RE .

Let us note that by extending the diagram (6.10) along the natural inclusion OA(S) C EgD (see
Remark 2.27), we obtain an EgD—linear injective map EgD Qr M — EgD ®z, T compatible with the

respective Frobenii, filtrations, Ais(S)-linear connections and actions of Gg. Then, for each r € Z, by
reducing the induced map on the r-th filtered part, modulo p™, and taking horizontal sections for the
A is(S),-linear connections, we obtain a natural map,

(Fil'A,P)7=0 = (Fil"(B5) @p M))?=" — (FI' B @7, T)°7" = Fil" Acis(S)n @2, T- (6.11)
In particular, from the discussion above and the filtered Poincaré Lemma 3.22; we get a natural map,
Fil'DS /0 < (Fil"APPY?=0 s Fil" A i (S), @2, T. (6.12)

Notation. For a Gg-module D, let C(Gg, D) denote the complex of continuous cochains of Gg with
values in D.

Definition 6.17. Define the syntomic complex with coefficients in M as,

Syn(S, M,r), = [Fi'ay % g . (6.13)
Define the Fontaine-Messing period map,
&E%S : Syn(S, M, 1), — C(Gg,T/p"(r)), (6.14)

as the composition

Syn(S, M, r), = [FiI'DE 31 Py, DEarn) — C(Gs, [FI'DE 5 P g ) —

S,Mn

— O(Gs, [Fil' Aeyis(S)n ® T L5 Ais(S) @ T]) < C(G, T/p"(r)),

where the second right arrow is induced by (6.12) and the only left arrow is a p"-quasi-isomorphism as
noted in (6.9).
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Remark 6.18. The definition of the Fontaine-Messing period map in (6.14) can also be given for R:
we use the ring OAis(R) instead of EgD and set APP = OAs(R) ®r M. Then the map in (6.12)

gets replaced by Filr@li% Mo = Fil"Aeis(R), @ T (where the filtered de Rham complex is obtained

similar to modulo p" version of the complex Fil"?p, ), in (5.3)). The definition of Syn(R, M, ), follows
naturally and since the fundamental exact sequence is G g-equivariant, we obtain the Fontaine-Messing
period map,

5‘5,17\14,1% :Syn(R, M, ), — C(Gg,T/p™(r)).

Theorem 6.19. The map a S in (6.14) is pNTe) _equal to aﬁ‘” from Theorem 5.5.

Proof. The p-power equality of the two maps follows from the diagram below (where we only show the
p-adic version to simplify notations). The objects and morphisms are described after the diagram. Note
that we have Ky ,(F"MEP) = Syn(S, M,r) and the map dF M is obtained by composing the arrows in
the top row (note that C(T'(r)) is p"-isomorphic to Cq (T (r ) )) Furthermore, the map a~?* is obtained
by composing the maps in the outer left vertical, bottom horizontal and right vertical boundary. The
isomorphisms in the diagram indicate a p-power quasi-isomorphism between complexes. Finally, a simple
diagram chase gives us the claim. |

Ko, o(F"MLP) —— Ca(Koo(FTAPP)) & O (

K, (FTAPP9)) — Co(K

w(FTTAcriS))

U T<r J J {|FES
Ko, (F MY — Ca(Ko o (FrAl)) BL (K, (Fr Al d)) Ce(T(r))
| PL / l FES 1| As
Kp .0, (Fr AL Ca(Kp(FrTAMY))  Ca(Kp(TAg(r)))
| PL i
K0, (F"NE) Cr(Kp(Dr.. (1))
TSTZ t® l
Ko ie r(FNET) 2 0, p(F7NE) Cr(Ky (D (r)))
LtT tﬁ 1

Ko 1o r(NE () o (NE (1)) i Ko (N (1)) —— K r(Da (1))

Laz

In the diagram, we take APP = EPD ®pr M, APPO = (APDYO=0 T4 o = Ais(S) ®z, T, Alwol —
g“)] ®r M, A0 = (Aluv])o=0 TA[U v — A[g @y z, T, Al E[u N or M (see Definition 2.24),
TAg(r) = Az ®z, T(r), Dg(r) = Dy(T(r)), NX(r) = NX(T(r)) and DRN( ) = As,, ®Agp., D (r).
Moreover, G = Gg, I' = I'g with Cz and Cr denoting the complex of continuous cochains for G and
I', respectively. The letter “K” denotes the Koszul complex with subscripts: 0 denotes the operators
(14 Xo)aiXo, e ,Xdaixd), the subscript I" denotes the operators (yo — 1,...,74 — 1) for our choice of
topological generators of I', the subscript Lie I‘ denotes the operators (Vy,...,Vy), with V; = log~;

and the subscript 04 denotes ((1+ XO)BX0 X152 ax - Xd 82 ) as operators on A[u’v] and E[u’v} via the

isomorphism ¢¢y : R[u R A[u7v} The letter “K” denotes a certain subcomplex of the Koszul complex

(see §6.2, §6.3, §6.4, §6.5).

Next, let us describe the maps between the rows. FES denotes a map coming from the fundamental
exact sequences in (2.2) and (2.5). AS denotes a map originating from the Artin-Schreier theory in (2.4).
PL denotes maps coming from the filtered Poincaré Lemma of §2.8. In the first column, going from the

[u,v]

first row to the second row is induced by the inclusion REP € Ri’”. The leftmost slanted vertical map

from the third to the second row is induced by the inclusion E% ;] C Egu *l " From the second to the
third row, the map in the third column is induced similar to (6. 11) The leftmost vertical map from
the second to the third row is the content of Lemma 5.24 and the leftmost vertical map from the fourth



Syntomic complex and p-adic nearby cycles 53

to the third row is the content of Lemma 5.25; the composition being the content of Proposition 5.28.
The rightmost vertical map from the fourth to the third row is the inflation map from I's to Gg, using
the inclusion Ag,, C Ag (one could use almost étale descent to obtain the quasi-isomorphism) and the
rightmost vertical map from the fifth to the fourth row uses the inclusion Ar o C Ag_ (the quasi-
isomorphism is obtained by decompletion techniques). The leftmost vertical arrow from the fourth to
the fifth row is given by multplication by suitable powers of ¢ as in Lemma 6.2 and the rightmost vertical
arrow from the sixth to the fifth row is the comparison between the complex computing the continuous
cohomology of I'g and the Koszul complex as in §4.2. The inclusions AEW C Ai(S) C A[gu’”] and
A (S)® AL N(T) C Aie(9) ®z, T induce the slanted vertical arrow from the fifth to the third row.
Finally, let us describe the maps between the columns. The top two maps from the first to the second
column are induced by the respective inclusions RE,D C EgD and Rz[;”}] - E" The bottom two maps
Laz between the first and the second column are Lazard isomorphisms discussed in §6.2. The bottom
map from the third to the second column is induced canonically from the inclusion A(O vt - A% ;],
From the third to the fourth column, the top horizontal map is induced similar to (6.11) and the bottom

horizontal map is induced by the inclusion A( ]+ C AR (see §6.5 and §6.6).

Corollary 6.20. The morphism of complexes af%R in Remark 6.18 is a pN @) _quasi-isomorphism.

Proof. Let m =2, i.e. K = F((,2» —1) and e = p(p — 1). Then, over S = Ox ®¢,. R we know that the
local Fontaine-Messing period map af }\f g is pN-isomorphic to the Lazard map aﬁaz from Theorem 6.19.
Moreover, the Lazard map oz['az is a p™V-quasi-isomorphism by Theorem 5.5. As we fixed m, therefore, it
follows that N = 2n(T,e) + 147 + 75 + 2 only depends on p, r and s (see §6.1 for the explicit constant).
Next, to descend to R, we note that the Fontaine-Messing period map is G = Gal(F'({,2)/F')-equivariant,
i.e. the following diagram commutes:

~EFM
arnR

SyD(R, M’T) _— C(GR,T/p ( )/)

! I

RI(G, Syn(S, M, r),) —"% RI(G,C(Gs, T/p"(r)")),

where the right vertical map is a quasi-isomorphism. So, from the Galois descent argument in Lemma
6.21 (for e = p(p — 1)), it follows that the left vertical arrow is a p*"+3P(°~1)_quasi-isomorphism. Hence,
we obtain that the morphism of complexes aFM R In Remark 6.18 is a p™V(®"9)_quasi-isomorphism, for
N(p,r,s) =2N +4r +3p(p — 1). [ |

6.8. Galois descent. Let e = [K : F] = p™ 1(p—1), G = Gal(K/F) and S = Og ®¢, R. For
notational convenience, we will use crystalline and syntomic complexes as in §7.2. We view the R-module
M in Assumption 5.1 as an object in CR(R/Op, Fil, ¢), i.e. a filtered crystal equipped with Frobenius
(see Remark 7.3 and Definition 7.4).

Ar+4-3e

Lemma 6.21. The following natural map is a p -quasi-tsomorphism

Rlgyn (R, M, 1) — RI'(G,RTsyn (S, M, 1)).
Proof. The claim can be shown by closely following the proof of [CN17, Lemma 5.9]. We omit the
details. |

7. CRYSTALS AND SYNTOMIC COHOMOLOGY

7.1. Filtered Frobenius crystals. Let x be a perfect field of characteristic p, set Op = W (k)
and F' = FrOp. Furthermore, let K be a finite extension of F' such that K N F"" = F and let Og denote
its ring of integers.

Notation. In §7 and 8 we will use letters X,9), 3, etc. to denote schemes as well as p-adic formal schemes.
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Let X be a (p-adic formal) scheme over Ok with X its (rigid) generic fiber and X,; its special fiber. Set
¥ = SpecOp (resp. ¥ = SpfOr) and for n € N, let X, = X®z, Z/p" and ¥, = Spec (O /p™). Consider
the big (étale) crystalline site CRIS(X,,/%,,) with the PD-ideal (p(Or/p™), []) and the category of crystals
of Oy, /., -modules (see [Ber74, §I11.4.2], [BBMS82, §1.1.18, §1.1.19], [Bau92, Corollary 1.15, Proposition
1.17]). Set CR(X,/%,) to be the full subcategory of finite locally free crystals. The homomorphisms
Xn = Xpg1 and ¥, — Y41 induce a pullback functor iy .. ¢ : CR(X;41/%041) = CR(X,,/%,). Simi-
larly, define the crystalline site CRIS(X1/%,) and the category of finite locally free crystals CR(X;/%,,).
Note that the natural pullback functor ¢} : CR(X,,/%,) — CR(X1/%,) induces an equivalence of cate-
gories by [Ber74, Chapitre IV, Théorém 1.4.1].

Definition 7.1. A finite locally free crystal on CRIS(X/Y) is the data F = (F,)p>1, where F,, is an
object of CR(%,,/%,) and we have isomorphisms 4, ,, .1 (Fn11) — Fn. A morphism between two crystals
F and G on CRIS(X/Y) is a collection of morphisms F,, — G,, for each n > 1, compatible with the
pullback isomorphisms. Denote the category of such objects by CR(X/X). A finite locally free crystal
on CRIS(X;/%) is defined similarly and the pullback functor i* : CR(X/¥) — CR(X;/X) induces an
equivalence of categories.

Consider the category of filtered crystals on CRIS(X/X) in the sense of [Tsu20, Definition 16] (for
relation between this category and Ogus’ book [Ogu94], see [Tsu20, Remark 19]). Take CR(%,,/%,, Fil)
to be the full subcategory of finite locally free filtered crystals on CRIS(X,,/%,). We have the natural
pullback functor 4y, ,, 1 1 CR(Xn+1/%n+1, Fil) — CR(X,, /5y, Fil).

Definition 7.2. A finite locally free filtered crystal on CRIS(X/Y) is the data (F,,),>1 in CR(X/X, Fil)
such that the isomorphisms 4}, ., 1 (Fnt1) — Fp are compatible with filtration. A morphism between
two filtered crystals is defined in an obvious way and we denote this category by CR(X/X, Fil).

Remark 7.3. Let R = p-adic completion of an étale algebra over Op[X;™, ..., X3!] and let MIC(R) be
the category of finite projective R-modules equipped with an integrable connection and let MIC oy (R) C
MIC(R) denote the full subcategory of modules whose connection is p-adically quasi-nilpotent. Let X =
Spf R, then from [Ber74, Chapitre IV, Théorém 1.6.5] and [MT20, Lemma 1.9] we obtain an equivalence
of categories CR(X/Y) —+ MICcony(R). This equivalence restricts to an equivalence CR(X/%, Fil) —
MICony (R, Fil).

Finally, we will consider crystals equipped with a Frobenius structure. The Frobenius endomorphism
of O and the absolute Frobenius on X; induce Frobenius pullbacks F¥ : CR(X1/%,) — CR(X1/%,)
and Fy : CR(X1/¥) — CR(X1/X). Recall that we have the natural pullback functor i* : CR(X/X) —
CR(X1/%).

Definition 7.4. A Frobenius structure on a finite locally free crystal 7 on CRIS(X/X) is a morphism ¢ r :
Fy i*F — i*F such that it becomes an isomorphism in the isogeny category CR(X/¥)g. A morphism
between two crystals with Frobenius structure is taken to be a morphism in CR(X/X) compatible with
respective Frobenius structures. Denote the category of finite locally free crystals (resp. filtered crystals)
equipped with a Frobenius structure as CR(X/X, ¢) (resp. CR(X/X, Fil, )).

7.2. Syntomic complex. Let X be a smooth (p-adic formal) scheme over Ok, let ¥ = SpecOp
(resp. ¥ = SpfOp) and let F be an object of CR(X/%,Fil, ), i.e. a finite locally free filtered crystal
on CRIS(X/X) equipped with a Frobenius structure. In this subsection we will define the syntomic
cohomology of X with coefficients in F.

Let ug, /5, : (%5/%0)eris = Xn.60 denote the projection from the crystalline topos to the étale topos.
In the following, we regard sheaves on X, ¢ as sheaves on X, ¢. For » > 0, we have filtered crystalline
cohomology complexes of F:

Rl ois (X, Fil"F),, := R (X4, Ruxn/gn*Filr}"n), RT s (X, Fil" F) := holim,, RT ¢;s(X, Fil" F),,.
Definition 7.5. Define mod p™ and completed syntomic complex with coefficients as,
REyn (X, .7 i= [Rleris (X, Fil' F)y L% RTeyi(X, F)al,
RIgyn (X, F,7) := holim,, Rl'syn (X, F,7)n.

The mapping fibers are taken in the derived oco-category of abelian groups.
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Remark 7.6. In the derived category DT (X ¢, Z/p"), we have quasi-isomorphisms R gy (X, F,7), ~
REwyu(X, F,r)©% Z/p" and RTayn(X, F,r)s = [Rl s (X, F)y L5, RE 40 (2, F) @R exis (X, F/FIl F), ).

Definition 7.7. Define %, ¢ x to be étale sheafification of ({ — X) +— RIis(Y, F), and Fil"%, ¢ x
to be étale sheafification of (4 — X) — RIqis(U, Fil"F),,, for &4 — X any étale map. Similarly, define
Fnet(F,1)x to be the étale sheafification of (4 — X) — RIgyn (U, F,7)p.

Lemma 7,8. ]—n th@ Settzng abo,ve7 we ha'Ue yn,ét(f7 7’):{ = [Fﬂ”gmét’x pT7$0> gn’ét,}t} and RFS)IH(%) f) T)TL =
RF(%H,éﬂ yn,ét (Jra T)x)

Remark 7.9. The syntomic cohomology with coefficients can also be described using hypercoverings
from [AGVT71, §V.7], for example, see [Tsu96, §2.6] and [Tsu99, §2.1].

Notation. In the rest of this article we will denote mod p™ (resp. completed) syntomic complex with
coefficients in F as &, (F,7)x (resp. L (F,7)x).

8. p-ADIC NEARBY CYCLES

In this section, we give some global applications of the computations done in previous sections.

8.1. Fontaine-Laffaille modules. Let R denote the p-adic completion of an étale algebra over
OF[Xlﬂ, e ,le], for some d € N, satisfying Assumption 2.1, and let s € N such that s < p—2. In
§3.4 we defined the category MF (g g fee(R, ®,0) of free relative Fontaine-Laffaille modules of level [0, s].

Let us now globalise the definition above. Let X be a smooth (p-adic formal) scheme defined over Op.
Consider a covering {; };c; of X with 4; = Spec A; (resp. Ll; = Spf A;) such that the p-adic completions
ﬁi satisfy Assumption 2.1, for each i € I. We fix lifts of Frobenius modulo p as ¢; : /T, — fL

Remark 8.1. In §3.4 we fixed a lifting ¢ of the absolute Frobenius on R/p. However, for another lift
¢ the categories MF[g g free (R, ®,0) and MFg g gec(R, @', 0) are naturally equivalent ([Fal89, Theorem
2.3] and [Tsu20, Remark 33]). In particular, there is a well-defined isomorphism o, o : p*M — ¢™*M
compatible with connections.

Definition 8.2. Define MF | g fee(X, ®,0) to be the category of finite locally free filtered Ox-modules
M equipped with a p-adically quasi-nilpotent integrable connection satisfying Griffiths transverality
with respect to filtration, and such that there exists a covering {l;};,c; of X as above with My, €

MF[()’stree(x?{\i, ®,0) for all i € I and on U;; the two structures glue well under ay, ;-

Remark 8.3. Let ¥ = SpecOp (resp. ¥ = SpfOr), then the category MF[g g free(X, ®,0) is a full
subcategory of CR(X/X, Fil, ¢) described in Definition 7.4.

Remark 8.4. To any object of MFg g free(X, ®,0), in [FFal89, Theorem 2.6*], Faltings associated a

compatible system of étale sheaves on Sp(A;[1/p]). These can be expressed in terms of certain finite
étale coverings of X. Extending these by normalization to Spec (ﬁz), the resulting coverings glue to give
a finite covering of the formal Op-scheme X’ associated to X. For X a formal scheme, note that X = X',
and this gives us an étale sheaf on the rigid generic fiber X of X, or if X is a scheme this covering
is algebraic and we obtain an étale sheaf on X = X ®p, F. Denote by L the étale Zy-local system
associated to M on the generic fiber X.

8.2. Fontaine-Messing period map. Let ¥ = SpecOp (resp. ¥ = SpfOp) and K a finite
extension of F such that K N FY™ =F. Take 0 <s<p—2andr>s—+1.

8.2.1. The case of schemes. Let X be a smooth scheme over Op with ¢ : X4 — X¢ and j :
Xg — Xg the natural morphism of sites. Take M € MF[g g free(X, ®,0) and let L denote the associated
Zp-local system on the generic fiber X. From [Abh21, §5.3], the Ox-module M corresponds to a finite
locally free filtered crystal in CR(X/X, Fil, ¢) equipped with a Frobenius structure and (by abuse of
notations) we denote this crystal again by M.
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To describe the Fontaine-Messing period map one can almost verbatim adapt the methods from
[Tsu96, §5] and [Tsu99, §3.1]. One first constructs a local version of the map and then uses hypercoverings
to globalise. Below we will describe the technical inputs needed for the construction of Fontaine-Messing
map; for actual construction the reader should refer to loc. cit. We focus on the local setup first, i.e. let
X be an affine smooth scheme over Op. Let 9 = X ®0,. Ok and choose an embedding ) — 3 such that
3 is an affine smooth scheme over Op. Then ) can be Covered by affine étale 9)-schemes 4l = Spec A
with A = O ®o, B and B an étale algebra over Op [X yee oy X il] such that its p-adic completion B
satisfies Assumption 2.1. Let Y (resp. U) denote the generic ﬁber of Y (resp. U), i.e. Y =P ®o, K
(resp. U = U ®o, K).

Remark 8.5. Take A as above and let A" denote the p-adic henselization of A and set G4n =
Gal(AR[1/p]/A"[1/p]), where AP denotes the union of finite A*-subalgebras S C Fr AP such that S[1/p]
is étale over A"[1/p]. Then by Elkik’s approximation theorem [Elk73, Corollary p. 579], we have a
natural isomorphism of Galois groups G 4n =~ G ;. Therefore, any discrete G ;-module can be regardeed

as a locally constant sheaf on the étale site of the generic fiber U = * ®og K, where " = Spec AP,

Remark 8.6. Note that we have henselian versions of the fundamental exact sequences in (2.2) and (6.9),
where one replaces A by A" and G 4 with G4n. In particular, similar to (6.13) one obtains a syntomic

complex Syn(ﬁ, My, 1), of discrete G 4n-modules which we denote as #,(M,r)y. Note that from
Remark 8.5 the complex of G 4r-modules &,,(M, )y can be regarded as a complex of locally constant
sheaves on U2 and we obtain a morphism I'(4,3.%, (M, 7)g) — T(U", & ,(M,7)y) and a natural map

RI(G 3, Texis(Mu) /p" (1) — RTat (U™, L/p" (1)) (8.1)

Using Remark 8.5 and Remark 8.6 together with the Poincaré Lemma 3.22; the fundamental exact
sequence (see (2.2), (6.9) and (6.12)) and (8.1), note that from the construction in [Tsu96, §5] and [Tsu99,
§3.1], one otains a natural morphism in D" (e, Z/p"):

Fn(M,r)y — "RiL/p"(r)y (8.2)

Next, let X be a proper and smooth scheme over O, set 2 = X ®o, Ok and let Y denote its
generic fiber. To globalise the construction above, one considers an étale hypercovering 4°* of X and
chooses a morphism of simplicial schemes 7® : 4* — 3°, such that for each s € N, the morphism #°
is an immersion of schemes, 3° is smooth over Op and there exist compatible liftings of Frobenius
F3e := {F50 : 37, — 37 }. Then using the local description above and the theory of hypercoverings, from
the construction in [Tsu96, §5] and [Tsu99, §3.1], we obtain a natural map in D (e, Z/p"Z):

rn@ : Fn (M T)Q_J — 1 R]*L/p ( )

8.2.2. The case of formal schemes. The definition of the Fontaine-Messing period map for p-adic
formal schemes follows in manner similar to that of schemes, with certain key differences which we
point out below. Let X be a smooth p-adic formal scheme over Or and set ) = X ®o, Ok. In this
case, an affine étale formal scheme over Q) can be covered by affine formal schemes 34 = SpfS, with
S = Ok ®0, R and R as in Assumption 2.1. For such local models, we consider the p-adically completed
version of Fontaine-Messing period map described in (8.2). Finally, to obtain the global version, one
proceeds in exactly the same manner as in the case of schemes (with a hypercovering (4°, 3°, F5e), where
each H° is of the form described above).

Remark 8.7. Note that in the cyclotomic case, i.e. K = F((pm), for m € N, the map described
n (8.2) coincides with composition of the map df’%S described in §6.7 with the quasi-isomorphism
C(Ggs,T/p™(r)) = RI¢(U,L/p"(r)") obtained by applying K (r, 1)-Lemma for p-coefficients (see [Sch13,
Theorem 4.9] and [CN17, §5.4.1]).

8.3. A global result. The aim of this subsection is to prove the following result:



Syntomic complex and p-adic nearby cycles 57

Theorem 8.8. Let X be a smooth (p-adic formal) scheme over Op and let M be an object of the category
MF (g 4, free (X, @, 0), i.e. a relative Fontaine-Laffaille module of level [0, s] for 0 < s < p—2. Let L denote
the associated Zy-local system on the generic fiber X of X. Then, forr > s+ 1 and 0 <k <r—s—1,
the Fontaine-Messing period map,

W+ HE(Fn(M, 7)) — @ REGL/p" (1), (8.3)
is a p" -isomorphism, where N = N(p,r,s) € N depends on p, r and s but not on X or n.

Proof for schemes. By the definition of the Fontaine-Messing period map in §8.2, we see that it is enough
to show the p-power quasi-isomorphism locally (provided the power of p does not depend on the local
model). Let A be an Op-algebra such that its p-adic completion A satisfies Assumption 2.1, 4 =
Spec A and M := My. Note that we have RI'sy, (Y, My, 1), = Syn(ﬁ, M,r), and Rlgyn (YU, Mg, r) =
Syn(ﬁ, M,r). The Fontaine-Messing period map,

s Rl syn (8, My, 1) — RDee (U™, L/p"™(r) ),
is the same as the composition of the henselian version of the map &f}\f with the natural map in
(8.1), C(Gan,T/p"(r)") = RT&(U", L/p"(r)};4) (see Remarks 6.18 and 8.7 for the p-adically completed

version). Note that henselian version of the map df}\f is obtained by replacing A by A" and G 4 with
G an. We set Syn(A, M, r) := Rl gyn (U, Mg, 7). Let k <7 —s—1 and our claim is that the map,

&FM
rmea + HM(Syn(A, M,r)n) = H*(G a0, T/p"(r)) — H* (UL, L/p" (1)),

is an isomorphism (up to some power of p). To show the claim, we will pass to the p-adic completion of

A. Let AU := Sp(A [%]) and consider the following commutative diagram:

~FM

H*(Syn(A, M, 7)) —=5 H*(G a4, T/p" (1)) —— H* UL, L/p™(r);n)

H I I
dFl\/I N

H*(Syn(A, M, r),) —=25 HY(G 4, T/p™(r)') —— H*(Uex, L/p"(r)l,).

The middle vertical arrow is an isomorphism because the two Galois groups are equal by Elkik’s ap-
proximation theorem [Elk73, Corollary p. 579] (see Remark 8.5). The right vertical arrow is an isomor-
phism due to Gabber [Gab94, Theorem 1]. The bottom left horizontal arrow is a p~-isomorphism, for
N = N(p,r,s) € N, as shown in the case of formal schemes below (for R = ﬁ), in particular, the top
left horizontal arrow is also a p™V-isomorphism. The bottom right horizontal arrow is an isomorphism by
a K(m,1)-Lemma due to Scholze [Sch13, Theorem 4.9], and therefore, the top right horizontal arrow is
also an isomorphism. Hence, it follows that the composition of the top two horizontal arrows, i.e. af’% A
is a pN-isomorphism. |

Proof for formal schemes. By the definition of the Fontaine-Messing period map in §8.2, we see that it
is enough to show the p-power quasi-isomorphism locally (provided the power of p does not depend on
the local model). Let R be an Op-algebra satisfying Assumption 2.1, #{ = Spf R and M := M. We
have that the Fontaine-Messing period map

e - HY(Syn(R, M, 1)) — H*(Gr,T/p"(r)") = H*(Uet, L/p"(r)1y),

is the same as the composition of the map d}i% r (see Remark 6.18 and Remark 8.7) with the natural
isomorphism H*(Gr,T/p"(r)") = H*(Ug,L/p™(r)};) (see the K (7, 1)-Lemma of [Sch13, Theorem 4.9]).

Finally, to show the isomorphism in degrees 0 < k < r—s—1, we use Corollary 6.20 with Example 5.2
(iii) for Fontaine-Laffaille modules. To compute N = N(p,r, s) € N, we combine the constants obtained
in the proof of Theorem 5.5, Corollary 6.20 (i.e. Lemma 6.21 for e = p(p — 1)) and Example 5.2 (iii) to
obtain that N = 32r + 14s + 3p(p — 1) + 4. In particular, N does not depend on n or the local model

$(. This allows us to conclude. |
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