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Abstract. In local relative p-adic Hodge theory, we show that the Galois cohomology of a finite
height crystalline representation (up to a twist) is essentially computed via the (Fontaine-Messing)
syntomic complex with coefficients in the associated F -isocrystal. In global applications, for smooth
(p-adic formal) schemes, we establish a comparison between the syntomic complex with coefficients in a
locally free Fontaine-Laffaille module and the p-adic nearby cycles of the associated étale local system
on the generic fiber.

1. Introduction
Let p denote a fixed prime and κ a perfect field of characteristic p. Let K be a mixed characteristic
complete discrete valuation field with ring of integers OK and residue field κ and F = W (κ)[1/p] the
fraction field of ring of p-typical Witt vectors with coefficients in κ. Fontaine’s crystalline conjecture for
a proper and smooth OK-scheme relates the p-adic étale cohomology of its generic fiber to the crystalline
cohomology of its special fiber. In [FM87], Fontaine and Messing initiated a program for proving the
crystalline conjecture via syntomic methods. By subsequent works of [KM92, Kato-Messing], [Kat94,
Kato] and with the remarkable work of [Tsu99, Tsuji], the crystalline conjecture was shown to be true.
There have been several proofs and generalizations of the crystalline comparison theorem: [Tsu99; Fal89;
Fal02; Niz98; Bei12; Sch13; YY14; AI13; CN17; BMS18; DLLZ18; GR22].

1.1. p-adic nearby cycles. Let X be a smooth (p-adic formal) OK-scheme with generic fiber X
and special fiber Xκ. Let j : Xét → Xét and i : Xκ,ét → Xét denote natural morphisms of sites. For
r ≥ 0, let Sn(r)X denote the syntomic sheaf modulo pn on Xκ,ét (see §7 and §8 for the definition of the
syntomic complex). In [FM87], Fontaine and Messing constructed a period morphism from the syntomic
complex to the complex of p-adic nearby cycles,

αFM
r,n : Sn(r)X −→ i∗Rj∗Z/pn(r)′

X , (1.1)

where Zp(r)′ := 1
a(r)!pa(r)Zp(r), for r = (p − 1)a(r) + b(r) with 0 ≤ b(r) < p − 1. For X a smooth and

proper OK-scheme and 0 ≤ r ≤ p − 1, by truncating (1.1) in degree ≤ r, the map αFM
r,n is known to be

a quasi-isomorphism by [Kat87; Kat94, Kato], [Kur87, Kurihara] and [Tsu99, Tsuji]. In [Tsu96], Tsuji
generalised this result to proper and semistable schemes and non-trivial étale local systems arising from
(the pullback of) Fontaine-Laffaille modules over OF (see [FL82]). Moreover, in [CN17], Colmez and
Nizioł proved a similar result for semistable (p-adic formal) schemes (in constant coefficients case) and
without any restrictions on r. In particular, for a smooth (p-adic formal) scheme we have the following:

Theorem 1.1 ([CN17, Theorem 1.1]). For 0 ≤ k ≤ r, the natural map

αFM
r,n : Hk(Sn(r)X) −→ i∗Rkj∗Z/pn(r)′

X ,

is a pN -isomorphism, i.e. its kernel and cokernel are killed by pN , where N = N(e, p, r) ∈ N depends on
the absolute ramification index e of K, prime p and twist r but not on X or n.

Proof of Theorem 1.1 in [CN17] works by reducing the problem to the local setting, i.e. (p-adic
completion of) an étale algebra over OK [X±1

1 , . . . , X±1
d ], for some indeterminates X1, . . . , Xd. Locally,
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Colmez and Nizioł also show that it is enough to work with p-adic formal schemes and deduce the result
for schemes by invoking Elkik’s approximation theorem and a form of rigid GAGA (see [CN17, §5.1]).

For simplicity in the introduction, let R be the p-adic completion of OF [X±1
1 , . . . , X±1

d ] and S :=
OK⊗OF

R (see Assumption 2.1 for a more general setup). Let GS := πét
1 (S[1/p], η), for a fixed geometric

generic point of Sp (S[1/p]). Denote by Syn(S, r) the r-th Tate twist of the (log-) syntomic complex (see
[CN17, §3.3] for details).

Theorem 1.2 ([CN17, Theorem 1.6]). If K contains enough roots of unity, then the maps

αLaz
r : τ≤rSyn(S, r) −→ τ≤rRΓcont(GS ,Zp(r)),
αLaz
r,n : τ≤rSyn(S, r)n −→ τ≤rRΓcont(GS ,Z/pn(r)) −→ τ≤rRΓ

((
Sp S[1/p])ét,Z/pn(r)

)
,

are pNr-quasi-isomorphisms for a universal constant N , i.e. N does not depend on p, X, K, n or r.

One of our main goals in this article is to generalise Theorem 1.2 by studying syntomic complexes
with coefficients. Subsequently, by “gluing” the local results for relative Fontaine-Laffaille modules, we
will obtain a global generalisation of Theorem 1.1. Note that in the local setting, on the étale side, by
a K(π, 1)-Lemma (see [Sch13, Theorem 4.9]), we can reduce to the setting of Zp-representations of GR.
Then, due to the “crystalline” nature of our goal, we will consider GR-stable Zp-lattices inside “finite
height” crystalline representations of GR and certain natural invariants attached to such representations
as in [Abh21, §4].

1.2. Finite height representations. Fix p ≥ 3, m ∈ N≥2, K = F (ζpm) and ϖ = ζpm − 1
(see Remark 1.8 on the rationale behind our assumptions). Fix an algebraically closed field Fr(R)
containing F ⊃ F∞ = F (µp∞). Let R denote the union of finite R-subalgebras R′ ⊂ Fr(R) such that
R′[1/p] is étale over R[1/p]. Set R∞ := ∪n∈NR

[
µpn , X

1/pn

1 , . . . , X
1/pn

d

]
, GR := Gal

(
R[1/p]/R[1/p]

)
,

ΓR := Gal
(
R∞[1/p]/R[1/p]

)
, HR := Ker (GR → ΓR) and note that we have ΓR = Γ′

R ⋊ ΓF , where
Γ′
R := Gal

(
R∞[1/p]/F∞R[1/p]

) ∼−→ Zp(1)d and ΓF := Gal(F∞/F ) ∼−→ Z×
p .

Recall that [Fon90] showed a categorical equivalence between Zp-representations of GF and étale
(φ,ΓF )-modules over a certain period ring AF ; these results were generalised to the relative set-
ting in [And06], to establish a categorical equivalence between Zp-representations of GR and étale
(φ,ΓR)-modules over a certain period ring AR (see §2.4). Moreover, Fontaine’s work on crystalline
representations of GF , in [Fon82; Fon94a; Fon94b], was generalised to the relative case, in [Bri08], via
the construction of a fully faithful functor ODcris from the category of crystalline representations of GR
to the category of filtered (φ, ∂)-modules over R[1/p] (see §2.3).

Let q = φ(π)/π ∈ AR, where π is the usual element of Fontaine (see §2.2). In [Abh21], we studied
finite q-height representations of GR, a notion parallel to the arithmetic case, i.e. R = OF in [Wac96;
Wac97; Col99; Ber04] (see [Abh21, Remark 1.4]). A representation T ∈ RepZp, free(GR) is of finite
q-height if it admits a unique (φ,ΓR)-module over a certain subring A+

R ⊂ AR and satisfies certain
properties (see Definition 3.1); the aforementioned A+

R-module is called the Wach module associated to
T and denoted as N(T ). Moreover, we showed that finite q-height representations are closely related to
crystalline representations via a certain period ring OAPD

R,ϖ ⊂ OAcris(R), where the former is equipped
with structures induced from the latter (see [Abh21, §4.3]).

Theorem 1.3 ([Abh21, Theorem 4.24, Proposition 4.27]). Let T be a Zp-representation of GR and
assume that T is of positive finite q-height. Then V := T [1/p] is a positive crystalline representation
and we have an isomorphism of R[1/p]-modules ODcris(V ) ∼←−

(
OAPD

R,ϖ ⊗A+
R

N(T )
)ΓR [1/p] compatible

with the respective Frobenii, filtrations and connections.

1.3. Syntomic coefficients and (φ, Γ)-modules. In this subsection, we will assume the follow-
ing: Let T be a Zp-representation of GR of positive finite q-height s and set V := T [1/p] (see Definition
3.1). Assume that N(T ) is free of rank = rkZpT over A+

R and M ⊂ ODcris(V ) is a finite free R-submodule
of rank = rkZpT , such that M [1/p] ∼−→ ODcris(V ) and satisfies Assumption 5.1 (see Example 5.2 for
obtaining M from N(T )).
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Our objective is to compute the continuous GR-cohomology of T (r) using the syntomic complex for
R with coefficients in M ⊂ ODcris(V ). Set S = R[ϖ] and note that we have a divided power thickening
RPD
ϖ ↠ S (using an “arithmetic” varaibale X0, see §2.5) and the ring RPD

ϖ is equipped with a Frobenius
endomorphism φ; let Ω1

RPD
ϖ

denote the p-adic completion of the module of differentials of RPD
ϖ with

respect to Z. Set MPD
ϖ := RPD

ϖ ⊗RM equipped with the induced supplementary structures to obtain a
filtered de Rham complex (see §5.1),

FilrD•
S,M := FilrMPD

ϖ −→ Filr−1MPD
ϖ ⊗RPD

ϖ
Ω1
RPD

ϖ
−→ Filr−2MPD

ϖ ⊗RPD
ϖ

Ω2
RPD

ϖ
−→ · · · .

Definition 1.4. Define the syntomic complex of S with coefficients in M and its modulo pn-version as
Syn(S,M, r) :=

[
FilrD•

S,M
pr−p•φ−−−−−−→ D•

S,M

]
and Syn(S,M, r)n := Syn(S,M, r)⊗ Z/pn, for n ≥ 1.

Theorem 1.5 (see Theorem 5.5). Let T be a positive finite q-height Zp-representation of GR of height
s as above and r ∈ N such that r ≥ s+ 1. Then there exist pN -quasi-isomorphisms

αLaz
r : τ≤r−s−1Syn(S,M, r) ≃ τ≤r−s−1RΓcont(GS , T (r)),

αLaz
r,n : τ≤r−s−1Syn(S,M, r)n ≃ τ≤r−s−1RΓcont(GS , T/pn(r)),

where N = N(T, e, r) ∈ N depends on the representation T , e = [K : F ] and the twist r.

Similarly, we have a filtered de Rham complex with coefficients in M and one can also define the
syntomic complex of R with coefficients in M . Using Theorem 1.5 for ϖ = ζp2 − 1 and Galois descent
(see Lemma 6.21), we obtain the following:

Corollary 1.6 (see Corollary 5.9). Let T be a positive finite q-height Zp-representation of GR of height
s as above and r ∈ N such that r ≥ s+ 1. Then there exist pN -quasi-isomorphisms

αLaz
r : τ≤r−s−1Syn(R,M, r) ≃ τ≤r−s−1RΓcont(GR, T (r)),

αLaz
r,n : τ≤r−s−1Syn(R,M, r)n ≃ τ≤r−s−1RΓcont(GR, T/pn(r)),

where N = N(p, r, s) ∈ N depending on the prime p, twist r and height s of T .

The proof of Theorem 5.5 is broadly divided in two main steps. First, we modify the syntomic
complex with coefficients in M and relate it to a “differential” Koszul complex with coefficients in N(T )
(see Proposition 5.28). Next, we modify the Koszul complex from the first step to obtain a Koszul
complex computing the continuous GS-cohomology of T (r) (see Theorem 5.5 and Proposition 6.1). The
key idea behind relating these two steps is the comparison isomorphism in [Abh21, Theorem 4.24] and
a Poincaré Lemma (see §5.6). Our proof of Theorem 5.5 is inspired by [CN17], however our setting
demands several non-trivial generalisations of their ideas.

Remark 1.7. Setting T = Zp in Theorem 1.5 we obtain a statement similar to Theorem 1.1 (note that
we truncate in degree ≤ r− 1 as we are working with the syntomic complex instead of the log-syntomic
complex as in [CN17]).

Remark 1.8. In Theorem 1.5 we restrict to a finite cyclotomic K/F because we used the cyclotomic
Frobenius (X0 7→ (1 + X0)p − 1) in Definition 1.4, instead of the Kummer Frobenius (X0 7→ Xp

0 ) as
in [CN17]. For K/F finite, one should use Kummer Frobenius to define a log-syntomic complex (log-
structure with respect to X0). Then it should be possible to obtain Theorem 1.5 for all finite extensions
K/F (with truncation in degree ≤ r − s as in [CN17]). Furthermore, to obtain the statement over F
one could pass to the limit over all finite extensions K/F . Alternatively, one could directly work over
Cp = F̂ as in [Gil21] to avoid complications arising from Frobenius on X0. In the latter case, our proofs
can be adapted to obtain Theorem 1.5 for S = R⊗̂OF

OCp (with truncation in degrees ≤ r − s− 1).

Remark 1.9. The case p = 2 is different from p ≥ 3, as for p = 2, the constant N in Theorem 1.5 also
depends on the relative dimension of R/OF (see [CN17, Lemma 3.11]).

Using the fundamental exact sequence in p-adic Hodge theory (2.2), one can define a local Fontaine-
Messing period map for T as in Theorem 1.5 (see §6.7). Then we show the following:

Theorem 1.10 (see Theorem 6.19). The period map α̃FM
r,n,S is pN(T,e,r)-equal to αLaz

r,n from Theorem 1.5.
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1.4. Fontaine-Laffaille modules and p-adic nearby cycles. In this subsection, we will spe-
cialise Theorem 1.5 to the case of global relative Fontaine-Laffaille modules introduced by Faltings in
[Fal89, §II]. Let R denote the p-adic completion of an étale algebra over OF [X±1

1 , . . . , X±1
d ] with non-

empty geometrically integral special fiber (see §2.1 for details). Note that Theorem 1.5 and Corollary
1.6 are true in this setting as well. In [Abh21, §5], we considered the category MF[0,s], free(R,Φ, ∂) of free
relative Fontaine-Laffaille modules of level [0, s] (see Remark 3.27 (i)) as a full subcategory of MF∇

[0,s](R)
in [Fal89, §II]. To any M in MF[0,s], free(R,Φ, ∂) one can functorially attach a representation Tcris(M) in
RepZp, free(GR), which admits a Wach module N(T ) (see [Abh21, Theorem 5.4]) and satisfies Assumption
5.1 (see Example 5.2 (iii)).

Let X be a smooth (p-adic formal) scheme defined over OF and cover X by affine (p-adic formal)
schemes {Ui}i∈I , where for all i ∈ I, we have that Ui = SpecAi (resp. Ui = SpfAi) such that its p-adic
completion Âi is as above; we also fix compatible Frobenius lifts φi : Âi → Âi. Take MF[0,s], free(X,Φ, ∂)
to be the category of finite locally free filtered OX-modules M equipped with a quasi-nilpotent integrable
connection satisfying Griffiths transversality such that there exists a covering {Ui}i∈I of X as above with
MUi ∈ MF[0,s], free(Âi,Φ, ∂), for all i ∈ I (see §8.1). For M ∈ MF[0,s], free(X,Φ, ∂) we have an associated
étale Zp-local system L on the (rigid) generic fiber X of X (see [Fal89, Theorem 2.6*]). Our global result
is as follows:

Theorem 1.11 (see Theorem 8.8). Let X be a smooth (p-adic formal) scheme over OF and let M be
an object of MF[0,s], free(X,Φ, ∂) for 0 ≤ s ≤ p − 2. Let L denote the associated Zp-local system on the
(rigid) generic fiber X of X. Then for r ≥ s+ 1 and 0 ≤ k ≤ r− s− 1 the Fontaine-Messing period map

αFM
r,n,X : Hk(

Sn(M, r)X
)
−→ i∗Rkj∗L/pn(r)′

X ,

is a pN -isomorphism, where N = N(p, r, s) ∈ N depends on p, r and s but not on X or n.

The proof of Theorem 1.11 proceeds by reducing to the local setting, whence we may directly apply
Theorem 1.5.

Remark 1.12. In personal communications with Takeshi Tsuji, I learnt that in some unpublished work
he obtained similar results over F and large enough p. However, our respective approaches are different
and this article includes more general local results and the arithmetic case as well.

Remark 1.13. Note that from [BMS19, §10], we have a prismatic syntomic complex and it is known
to compute p-adic nearby cycles in the case of constant coefficients. Using the results of [MT20] on
coefficients in integral p-adic Hodge theory and prismatic cohomology, it should be possible to obtain
an integral version of our results (in the geometric case, i.e. over F ). Moreover, using the theory of
analytic prismatic F -crystals on the absolute prismatic site from [DLMS22; GR22], we should be able
to generalise those results to the arithmetic case as well. We will report on these ideas in future.

1.5. Outline of the paper. Sections 2-6 comprise the local part of the paper, while sections 7-8
consist of global applications. In §2.1 we describe our local setup, notations and some conventions. In
§2.2, §2.3 and §2.4 we quickly recall basics of period rings, crystalline representations and relative étale
(φ,Γ)-modules. Subsection 2.5 introduces “good” crystalline coordinates and we define certain rings of
analytic functions convergent on some annulus following [CN17, §2]; these rings are denoted as R⋆

ϖ, for
⋆ ∈ {+,PD, [u], [u, v], (0, v]+}, where we can take u = p/(p− 1) and v = p− 1. In §2.6, we equip these
rings with a Frobenius endomorphism and in §2.7, we consider their Frobenius-equivariant “cyclotomic”
embedding ιcycl into period rings and define A⋆

R,ϖ as the image of R⋆
ϖ under ιcycl. The latter enables us

to relate differential operators on the ring R[u,v]
ϖ to the infinitesimal action of ΓS := Gal(R∞[1/p]/S[1/p])

on its “cyclotomic” image, i.e. A[u,v]
R,ϖ . Finally, in §2.8, we introduce certain big period rings, in particular,

E⋆
R,ϖ and E⋆

R
, study a natural filtration on the scalar extension of M to these rings and prove a version

of the filtered Poincaré Lemma. The latter, together with the results of §3.3, are key ingredients in
relating syntomic complexes with coefficients in M to Koszul complexes with coefficients in N(T ). The
motivation for our approach comes from the computations of [CN17, §2.6].

In §3.1 and §3.2, we recall the notion of finite height representations and their relationship to crys-
talline representations from [Abh21], as well as, prove some useful technical lemmas. In §3.3, we study
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a filtration on scalar extensions of Wach modules and prove another filtered Poincaré Lemma. The local
theory of relative fontaine-Laffaille modules is recalled in §3.4. Section §4 recalls the definition of Koszul
complexes computing continuous ΓS-cohomology (see §4.2) and Lie ΓS-cohomology (see §4.3).

In §5, we formulate our main local result, Theorem 1.5, and carry out the local syntomic computa-
tions for its proof. The aim of §6 is to carry out the (φ,Γ)-module side computations for the proof of
Theorem 1.5. To explain the content of these two sections to the reader, we introduce the following com-
mutative diagram of complexes (see the discussion after Theorem 6.19 for a more complete picture and
explanations), where all isomorphisms are p-power quasi-isomorphisms, i.e. the kernel and the cokernel
of the induced map on cohomolgy are killed by a fixed bounded power of p.

K∂,φ(FrMPD
ϖ ) CG(K∂,φ(Fr∆PD)) CG(Kφ(Fr∆PD,∂)) CG(Kφ(FrTAcris))

K∂,φ(FrM [u,v]
ϖ ) CG(T (r))

K∂,φ,∂A
(Fr∆[u,v]

ϖ ) CG(Kφ(TAS(r)))

Kφ,∂A
(FrN [u,v]

ϖ ) CΓ(Kφ(DR∞(r)))

Kφ,Lie Γ(FrN [u,v]
ϖ ) CΓ(Kφ(Dϖ(r)))

Kφ,Lie Γ(N [u,v]
ϖ (r)) Kφ,Γ(N [u,v]

ϖ (r)) Kφ,Γ(N (0,v]+
ϖ (r)) Kφ,Γ(Dϖ(r)).

τ≤r≀

∼
PL

≀ PL

≀ FES

≀ AS

≀ PL

t•τ≤r ≀

≀

≀

≀ tr

∼
Laz

∼
can

∼

≀

In the diagram, we set M⋆
ϖ = R⋆

ϖ ⊗RM , N⋆
ϖ = A⋆

R,ϖ ⊗A+
R

N(T ), N⋆
ϖ(r) = A⋆

R,ϖ ⊗A+
R

N(T (r)), ∆PD =

EPD
R
⊗RM , ∆PD,∂ = (∆PD)∂=0, ∆[u,v]

ϖ = E
[u,v]
R,ϖ ⊗RM and TAcris = Acris(R)⊗Zp T . Moreover, using the

rings from the theory of (φ,Γ)-modules (see §2.4), we set TA[u,v] = A[u,v]
R
⊗Zp T , TAR(r) = AR⊗Zp T (r),

Dϖ(r) = AR,ϖ ⊗A+
R

N(T (r)) (see §2.7 for AR,ϖ), and DR∞(r) = AR∞ ⊗AR,ϖ Dϖ(r). Furthermore, we
have G = GS , Γ = ΓS with CG and CΓ denoting the complex of continuous cochains for G and Γ,
respectively. The letter “K” denotes the Koszul complex with subscripts: ∂ denotes the operators
((1 + X0) ∂

∂X0
, . . . , Xd

∂
∂Xd

), the subscript Γ denotes the operators (γ0 − 1, . . . , γd − 1) for our choice of
topological generators of Γ, the subscript Lie Γ denotes the operators (∇0, . . . ,∇d), with ∇i = log γi
and the subscript ∂A denotes ((1 +X0) ∂

∂X0
, X1

∂
∂X1

, . . . , Xd
∂

∂Xd
) as operators on A[u,v]

R and E[u,v]
R via the

isomorphism ιcycl : R[u,v]
ϖ

∼−→ A[u,v]
R,ϖ . The letter “K” denotes a certain subcomplex of the Koszul complex

(see §6.2, §6.3, §6.4, §6.5).
Let us now describe the maps in the diagram. FES denotes a map coming from the fundamental

exact sequences in (2.2) and (2.5). AS denotes a map originating from the Artin-Schreier theory in
(2.4). PL denotes the maps coming from the filtered Poincaré Lemma of §2.8. In the first column,
the map from the first to the second row is induced by the inclusion RPD

ϖ ⊂ R
[u,v]
ϖ (the p-power quasi-

isomorphism is shown by using the operator ψ - left inverse of φ - and p-power acyclicity of the ψ = 0
eigencomplexes similar to [CN17, §3], see §5.3 and §5.4); the maps from the second to the third row
and from the fourth to the third row are applications of the filtered Poincaré Lemma (see §5.5 and §5.6,
in particular, Proposition 5.28); the map from the fourth to the fifth row is given by multplication by
suitable powers of t, exploiting the relation ∂i = (log γi)/t, and the map from the sixth to the fifth
row is multiplication by tr (see §6.2). In the fourth column, the map from the fourth to the third
row is the inflation map from ΓS to GS , using the inclusion AR∞ ⊂ AR (one could use almost étale
descent to obtain the quasi-isomorphism); the map from the fifth to the fourth row uses the inclusion
AR,ϖ ⊂ AR∞ (the quasi-isomorphism is obtained by decompletion techniques); the map from the sixth
to the fifth row is the comparison between the complex computing the continuous cohomology of ΓS
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and the Koszul complex as in §4.2. The top two maps from the first to the second column are induced
by the respective inclusions RPD

ϖ ⊂ EPD
S

and R
[u,v]
ϖ ⊂ E

[u,v]
S

. The bottom map Laz between the first
and the second column is the Lazard isomorphism discussed in §6.3. The bottom map from the third to
the second column is induced canonically from the inclusion A(0,v]+

R,ϖ ⊂ A[u,v]
R,ϖ (see §6.4). From the third

to the fourth column, the top horizontal map is induced similar to (6.11) and the bottom horizontal
map is induced by the inclusion A(0,v]+

R,ϖ ⊂ AR,ϖ (the p-power quasi-isomorphism is proven by using the
operator ψ - left inverse of φ - and p-power acyclicity of the ψ = 0 eigencomplexes, a standard technique
in the theory of (φ,Γ)-modules, see §6.5 and §6.6).

Composition of the left vertical, bottom horizontal and right vertical arrows produces the p-power
quasi-isomorphism αLaz

r of Theorem 1.5; composition of the top horizontal arrows gives the p-adic version
of the map α̃FM

r,n,S of Theorem 1.10. The proof of Theorem 1.5 follows from the discussion above and the
proof of Theorem 1.10 is the content of §6.7.

In §7 we describe our global setup and define the syntomic complex with coefficients globally. In
§8.1 and §8.2, we describe global relative Fontaine-Laffaille modules and construct the global Fontaine-
Messing period map as in [Tsu96, §5] and [Tsu99, §3.1]. Finally, in §8.3 we state and prove Theorem
1.11, by first reducing the problem to the local setting via cohomological descent [Tsu96; Tsu99], then
to the computation of Galois cohomology by a K(π, 1)-Lemma [Sch13], whence the claim follows from
Corollary 1.6.
Notation. Let f : C1 → C2 be a morphism of complexes. The mapping cone of f is the complex Cone(f)
whose degree n part is given as Cn+1

1
⊕
Cn2 and the differential is given by d(c1, c2) = (−d(c1), d(c2) −

f(c1)). Furthermore, we denote the mapping fiber of f by
[
C1

f−−→ C2
]

:= Cone(f)[−1]. We also set
C1

f //

��

C2

��
C3

g // C4

 :=
[[
C1

f−−→ C2
]
−→

[
C3

g−→ C4
]]
.

In other words, this amounts to taking the total complex of the associated double complex.
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2. Relative p-adic Hodge theory
In this section we will recall some constructions and results in local relative p-adic Hodge theory from
[And06; Bri08; AB08] and describe some properties of the objects to be considered in sections §3 – §6.

2.1. Setup and notations. Let p ≥ 3 be a fixed prime, κ a perfect field of characteristic p, set
OF := W (κ) the ring of p-typical Witt vectors with coefficients in κ and set F := OF [1/p]. Let F be a
fixed algebraic closure of F so that its residue field, denoted as κ, is an algebraic closure of κ and set
GF = Gal(F/F ).
Convention. We will work under the convention that 0 ∈ N, the set of natural numbers.

Let Z = (Z1, . . . , Zs) denote a set of indeterminates and for k = (k1, . . . , ks) ∈ Ns a multi-index, we
will write Zk := Zk1

1 · · ·Zks
s . For a topological algebra Λ we write Λ{Z} :=

{ ∑
k∈Ns akZ

k, where ak ∈
Λ and ak → 0 as |k| =

∑
ki → +∞

}
.
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Assumption 2.1. Fix d ∈ N andX = (X1, X2, . . . , Xd) a set of indeterminates. Let R be the p-adic com-
pletion of an étale algebra over OF {X,X−1} with non-empty geometrically integral special fiber. In par-
ticular, R = OF {X,X−1}{Z1, . . . , Zs}/ (Q1, . . . , Qs), where Qi(Z1, . . . , Zs) ∈ OF {X,X−1}[Z1, . . . , Zs]
for 1 ≤ i ≤ s, are multivariate polynomials such that det

(∂Qi
∂Zj

)
1≤i,j≤s is invertible in R.

Fix an algebraic closure Fr (R) of Fr (R) containing F . Let R denote the union of finite R-subalgebras
S ⊂ Fr(R), such that S[1/p] is étale over R[1/p]. Let η denote a geometric point of the generic fiber
Sp (R[1/p]) (corresponding to Fr(R)) and let GR := πét

1
(
Sp (R[1/p]), η

)
denote the étale fundamental

group. By [Gro63, Exposé V, §8], we can write this étale fundamental group as a Galois group (of the frac-
tion field of R[1/p] over the fraction field of R[1/p]), i.e. GR := πét

1
(
Sp (R[1/p]), η

)
= Gal

(
R[1/p]/R[1/p]).

For n ∈ N, let Fn := F (µpn). Fix some m ∈ N≥1 and set K := Fm, with ring of integers OK . The
element ϖ = ζpm − 1 in OK is a uniformiser of K and its minimal polynomial Pϖ(X) :=

(
(1 +X)pm −

1
)
/
(
(1 + X)pm−1 − 1

)
is an Eisenstein polynomial in OF [X] of degree e := [K : F ] = pm−1(p − 1).

Moreover, S = R[ϖ] = OK ⊗OF
R is totally ramified over the prime (p) ⊂ R. Similar to above, we have

Galois groups GK ◁ GF and GS ◁ GR respectively, such that GR/GS = GF /GK = Gal(K/F ). Note that
R and R[ϖ] are small algebras in the sense of Faltings ([Fal88, §II 1(a)]).

For k ∈ N, let Ωk
R denote the p-adic completion of the module of k-differentials of R relative to Z.

Then, we have Ω1
R = ⊕di=1R d logXi and Ωk

R = ∧k
R Ω1

R. More explicitly, for 1 ≤ i ≤ d, let us set ∂i :=
Xi

d
dXi

as an operator on R. Then for any f in R, its differential can be written as df =
∑d
i=1 ∂i(f) d logXi

in Ω1
R. Furthermore, R/pR ∼−→ S/ϖS and for any n ∈ N, R/pnR is a smooth Z/pnZ-algebra. Finally,

we fix a lift φ : R→ R of the absolute Frobenius x 7→ xp over R/pR such that φ(Xi) = Xp
i for 1 ≤ i ≤ d.

Note that to carry out some computations in later sections, we will need to extend our base field (hence
the base ring) by adjoining a p-power root of unity (see K and S = R[ϖ] above). As a consequence,
we will also require period rings defined for such rings. However, we will only recall the results by
fixing our base as R, because the period rings that we consider will only depend on R and we have
S = R ⊂ Fr(R) = Fr(S) (see [And06; Bri08; AB08] for general constructions).
Convention. Let A be a ring and I ⊊ A an ideal. An A-module M is I-adically complete if and only if
M

∼−→ limnM/InM .
Notation. Let A be a Zp-algebra. A morphism f : M → N of two A-modules is said to be a
pn-isomorphism, for some n ∈ N, if the kernel and cokernel of f are killed by pn.

2.2. Period rings. Let Cp denote the p-adic completion of F . Recall that R is the union of finite
R-subalgebras S ⊂ Fr(R) = Fr(R[ϖ]), such that S[1/p] is étale over R[1/p]. Let C+(R) denote the p-adic
completion of R and C(R) = C+(R)[1/p]. We define the tilt C+(R) as C+(R)♭ := limx 7→xp C+(R)/p =
limx 7→xp R/p and equip it with the inverse limit topology (where we equip R/p with the discrete topology)
and let C(R)♭ := C+(R)♭[1/p♭], for p♭ := (p, p1/p, p1/p2

, . . .) ∈ C+(R)♭, and equipped with the coarsest
ring topology such that C+(R)♭ is an open subring. These rings admit a continuous action of GR.

Let us fix ε := (1, ζp, ζp2 , . . .) in C♭p and X♭
i :=

(
Xi, X

1/p
i , X

1/p2

i , . . .
)

in C(R)♭, for 1 ≤ i ≤ d. Set
Ainf(R) := W (C+(R)♭), the ring of p-typical Witt vectors with coefficients in C+(R)♭. The absolute
Frobenius on C+(R)♭ lifts to an endomorphism φ : Ainf(R) → Ainf(R) and the GR-action extends to
a continuous (for the weak topology, see [AI08, §2.10]) action on Ainf(R). For x ∈ C+(R)♭, let [x] =
(x, 0, 0, . . .) in Ainf(R) denote its Teichmüller representative. So we have [ε] in Ainf(R) with φ([ε]) = [ε]p
and g[ε] = [ε]χ(g), for g in GR and χ : GR → Z×

p the p-adic cyclotomic character. Furthermore, let
π := [ε]− 1, π1 := φ−1(π) = [ε1/p]− 1, and ξ := π/π1. Clearly, we have g(π) = (1 +π)χ(g)− 1 for g ∈ GR
and φ(π) = (1 + π)p − 1.

We will use the de Rham period rings B+
dR(R) and BdR(R) defined in [Bri08, Chapitre 5] and [Abh21,

§2.1]. These are F -algebras equipped with a natural action of GR and a GR-stable filtration. We have
that t := log[ε] = log(1 + π) =

∑
k∈N(−1)k πk+1

k+1 converges in B+
dR(R) and any g in GR acts on t by

the formula g(t) = χ(g)t. Moreover, we will use fat period rings OB+
dR(R) and OBdR(R) defined in

[Bri08, Chapitre 5] and [Abh21, §2.1]. These are R[1/p]-algebras equipped with a natural action of GR,
a GR-stable filtration and a GR-equivariant connection satisfying Griffiths transversality with respect
to the filtration. Furthermore, we have

(
OB+

dR(R)
)∂=0 = B+

dR(R),
(
OBdR(R)

)∂=0 = BdR(R) and(
OBdR(R)

)GR = R[1/p].
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We will also use the crystalline period rings Acris(R), B+
cris(R) and Bcris(R), from [Bri08, Chapitre 6]

and [Abh21, §2.2], as subrings of BdR(R). The ring Acris(R) is an OF -algebra and B+
cris(R) and Bcris(R)

are F -algebras. These rings are equipped with a natural action of GR, a GR-stable filtration (induced
from the filtration on BdR(R)) and a GR-equivariant Frobenius endomorphism φ. Note that t converges
in Acris(R) and φ(t) = pt. Moreover, we will use fat period rings OAcris(R), OB+

cris(R) and OBcris(R)
defined in [Bri08, Chapitre 6] and [Abh21, §2.2] as subrings of OBdR(R). The ring OAcris(R) is an
R-algebra and OB+

cris(R) and OBcris(R) are R[1/p]-algebras. These rings are equipped with a natural
action ofGR, a GR-stable induced filtration (from OBdR(R)), a GR-equivariant Frobenius endomorphism
φ and a GR-equivariant induced connection (from OBdR(R)), satisfying Griffiths transversality with
respect to the filtration and commuting with φ. Finally, by taking the horizontal sections for the
connection we have

(
OAcris(R)

)∂=0 = Acris(R),
(
OB+

cris(R)
)∂=0 = B+

cris(R),
(
OBcris(R)

)∂=0 = Bcris(R),
and by taking GR-invariants we have

(
OAcris(R)

)GR = R and
(
OB+

cris(R)
)GR =

(
OBcris(R)

)GR =
R[1/p].

2.2.1. Fundamental exact sequence. From the Artin-Schrier theory in [AI08, §8.1.1], we have an
exact sequence

0 −→ Zp −→ Ainf(R) 1−φ−−−→ Ainf(R) −→ 0. (2.1)

Let r ∈ N and write r = (p − 1)a(r) + b(r), with 0 ≤ b(r) < p − 1, and set Zp(r)′ = 1
pa(r)Zp(r). From

[Tsu99, Theorem A3.26] and [CN17, Lemma 2.23], we have a pr-exact sequence called the fundamental
exact sequence in p-adic Hodge theory:

0 −→ Zp(r)′ −→ FilrAcris(R) pr−φ−−−−→ Acris(R) −→ 0. (2.2)

2.3. p-adic Galois representations. For the ring B = OBdR(R) and OBcris(R), we will con-
sider B-admissible p-adic representations in the sense of [Bri08, Chapitre 8] and [Abh21, §2.3]. Note
that OBdR(R) is a GR-regular R[1/p]-algebra. Let V be a p-adic representation of GR and we set
ODdR(V ) :=

(
OBdR(R) ⊗Qp V

)GR . We say that V is de Rham if it is OBdR(R)-admissible. The
R[1/p]-module ODdR(V ) is equipped with a decreasing, separated and exhaustive filtration and an in-
tegrable connection satisfying Griffiths transversality with respect to the filtration (all induced from
the corresponding structures on OBdR(R) ⊗Qp V ). Furthermore, ODdR(V ) is projective over R[1/p]
and of rank ≤ dim(V ). If V is de Rham, then for all r ∈ Z, the R[1/p]-modules FilrODdR(V ) and
grrODdR(V ) are projective of finite type and the collection of integers ri, for 1 ≤ i ≤ dimQp(V ), such
that gr−riODdR(V ) ̸= 0 are called the Hodge-Tate weights of V (see [Bri08, §8.3]). Moreover, we say
that V is positive if and only if ri ≤ 0, for all 1 ≤ i ≤ dimQp(V ).

Next, we note that OBcris(R) is also a GR-regular R[1/p]-algebra. Let V be a p-adic represen-
tation of GR and we set ODcris(V ) :=

(
OBcris(R) ⊗Qp V

)GR . We say that V is crystalline if it is
OBcris(R)-admissible. The R[1/p]-module ODcris(V ) is equipped with a Frobenius-semilinear opera-
tor φ induced from the Frobenius on OBcris(R) ⊗Qp V , where we consider the GR-equivariant Frobe-
nius on OBcris(R). Moreover, ODcris(V ) is an R[1/p]-submodule of ODdR(V ), and we equip the for-
mer with, induced from the latter, filtration and connection satisfying Griffiths transversality with
respect to the filtration. Additionally, we have ∂φ = φ∂ over ODcris(V ). The module ODcris(V )
is finite projective over R[1/p] of rank ≤ dim(V ). If V is crystalline, then the R[1/p]-linear ho-
momorphism 1 ⊗ φ : R[1/p] ⊗R[1/p],φ ODcris(V ) → ODcris(V ) is an isomorphism and ODcris(V ) is
called a filtered (φ, ∂)-module. Finally, the inclusion OBcris(R) ⊂ OBdR(R) induces an inclusion
ODcris(V ) ⊂ ODdR(V ) (see [Bri08, §8.2 and §8.3]).

2.4. (φ, Γ)-modules. In this subsection, we will briefly recall some results from the theory of relative
étale (φ,Γ)-modules (see [And06; AB08; AI08] for details).

2.4.1. The Galois group ΓR. Let Fn = F (µpn), for n ∈ N, and F∞ = ∪nFn. We take Rn to be
the integral closure of R ⊗OF [X±1] OFn

[
Xp−n

1 , . . . Xp−n

d

]
inside R[1/p] and set R∞ := ∪n≥mRn, noting

that F∞ ⊂ R∞[1/p]. From §2.2 recall that C(R) = C+(R)[1/p] and C(R)♭ denotes its tilt. The ring
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C(R)♭ is perfect of characteristic p and we set AR := W (C(R)♭), the ring of p-typical Witt vectors with
coefficients in C(R)♭, and endow it with the weak topology (see [AI08, §2.10]). The absolute Frobenius
over C(R)♭ lifts to an endomorphism φ : AR → AR, which we again call the Frobenius. The continuous
action of GR on C(R)♭ extends to a continuous action on AR commuting with Frobenius. The inclusion
F ⊂ R[1/p] induces inclusions C♭p ⊂ C(R)♭ and AF ⊂ AR and the inclusion OF ⊂ R induces inclusions
O♭Cp

⊂ C+(R)♭ and Ainf(OF ) ⊂ Ainf(R).
The ring R∞[1/p] is Galois over R[1/p] with Galois group ΓR := Gal

(
R∞[1/p]/R[1/p]

)
. Let ΓF =

Gal(F∞/F ) and Γ′
R = Gal

(
R∞[1/p]/F∞R[1/p]

)
, we have an exact sequence

1 −→ Γ′
R −→ ΓR −→ ΓF −→ 1, (2.3)

where Γ′
R = Gal

(
R∞[1/p]/F∞R[1/p]

) ∼−→ Zp(1)d and χ : ΓF = Gal(F∞/F ) ∼−→ Z×
p (see [Bri08, p.

9] and [And06, §2.4]). The group ΓF can be viewed as a subgroup of ΓR, i.e. we can take a section
of the projection map in (2.3) such that for γ ∈ ΓF and g ∈ Γ′

R, we have γgγ−1 = gχ(γ). So we
can choose topological generators {γ, γ1, . . . , γd} of ΓR, such that γ0 = γe, with χ(γ0) = exp(pm), is
a topological generator of ΓK = Gal(K∞/K), where K∞ = F∞ and e = [K : F ]. It follows that
{γ1, . . . , γd} are topological generators of Γ′

R and γ is a topological generator of ΓF . In particular, we
have χ : ΓK = Gal(F∞/K) ∼−→ 1 +pmZp. The action of these generators on the elements of C(R)♭, fixed
in §2.2, is given as γ(ε) = εχ(γ) and γi(ε) = ε, for 1 ≤ i ≤ d; γi(X♭

i ) = εX♭
i and γi(X♭

j) = X♭
j , for i ̸= j

and 1 ≤ j ≤ d.

2.4.2. Étale (φ,ΓR)-modules. In [And06], Andreatta introduced the theory of étale (φ,ΓR)-modules
for p-adic representations of GR (see [Abh21, §3.1] for a quick recollection). From loc. cit., let us recall
that we have characteristic p period rings E+ ⊂ E ⊂ C(R)♭. Let π denote the reduction modulo p of
π in Ainf(OF∞). Then the characteristic p period rings above are π-adically complete and equipped
with a continuous GR-action. Furthermore, we have rings E+

R ⊂ ER ⊂ R̂♭∞[1/p♭], complete for the
π-adic topology and equipped with a continuous GR-action. Moreover, we have

(
C+(R)

)HR = R̂∞,(
C+(R)♭

)HR = R̂♭∞,
(
C(R)♭

)HR = R̂♭∞[1/p♭], (E+)HR = E+
R and EHR = ER.

In mixed characteristic, we have period rings A+ ⊂ A ⊂W (C(R)♭) equipped with an induced weak
topology, an induced Frobenius endomorphism φ and a continuous GR-action. Furthermore, we have
A+
R = AR ⊂ W

(
R̂♭∞[1/p♭]

)
, complete for the induced weak topology and equipped with an induced

Frobenius and a continuous ΓR-action. Additionally, from [AI08], we have that AHR = AR, (A+)HR =
A+
R and A/pA = E, and from [Abh21, Remark 3.7] we have A+/pA+ = E+.

Let D be a finitely generated AR-module equipped with a continuous (for the weak topology) and
semilinear action of ΓR and a Frobenius-semilinear and ΓR-equivariant endomorphism φ.

Definition 2.2. The AR-module D is said to be étale if the linearisation of Frobenius, i.e. the natural
map 1⊗ φ : AR ⊗AR,φ D → D, is an isomorphism.

Denote by (φ,ΓR)-Modét
AR

the category of étale (φ,ΓR)-modules over AR with morphisms be-
tween objects being continuous and (φ,ΓR)-equivariant morphisms of AR-modules. Furthermore, de-
note by RepZp

(GR) the category of finitely generated Zp-modules equipped with a linear and con-
tinuous GR-action and morphisms between objects being continuous and GR-equivariant morphisms
of Zp-modules. Let T denote a Zp-representation of GR, then D(T ) := (A ⊗Zp T )HR is an étale
(φ,ΓR)-module over AR. Furthermore, if T is finite free over Zp, then D(T ) is finite projective over AR,
of rank = rkZpT (see [And06, Theorem 7.11]). Finally, the functor D : RepZp

(GR) → (φ,ΓR)-Modét
AR

,
induces an equivalence of categories (see [And06, Theorem 7.11]).

2.4.3. Overconvergent étale (φ,ΓR)-modules. In [CC98], Cherbonnier and Colmez showed that
all Zp-representations of GF are overconvergent. Generalising this to the relative case, in [AB08], An-
dreatta and Brinon showed that all Zp-representations of GR are overconvergent. We will quickly recall
the constructions useful for us.

Denote the natural valuation on O♭Cp
by υ♭ and extend it to a map υ♭ : C+(R)♭ → R ∪ {+∞} by

setting υ♭(x) = p
p−1 max{n ∈ Q, x ∈ π−nC+(R)♭}. Let v > 0 and let α ∈ O♭Cp

such that υ♭(α) = 1/v.
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Set

A(0,v]
R

:=
{ ∑
k∈N

pk[xk] ∈ AR, vυ
♭(xk) + k → +∞ when k → +∞

}
,

A(0,v]+
R

:=
{ ∑
k∈N

pk[xk] ∈ A(0,v]
R

with vυ♭(xk) + k ≥ 0
}

= p-adic completion of Ainf(R)
[
p/[α]

]
.

Note that we have A(0,v]
R

= A(0,v]+
R

[1/[p♭]]. The GR-action on Ainf(R) extends to these rings and
it commutes with the induced Frobenius φ, where φ

(
A(0,v]+
R

)
= A(0,v/p]+

R
and φ

(
A(0,v]
R

)
= A(0,v/p]

R
.

Moreover, we have that A(0,v]+
R

⊂ B+
dR(R) and A(0,v]

R
⊂ BdR(R) for v ≥ 1 (see [CN17, §2.4.2]). We use

these embeddings to induce filtrations on A(0,v]+
R

and A(0,v]
R

.

Definition 2.3. Define the ring of overconvergent coefficients as A†
R

:= ∪v∈Q>0A(0,v]
R

. Moreover, inside
AR, we set A(0,v]

R := AR ∩A(0,v]
R

and A(0,v] := A ∩A(0,v]
R

. Define A†
R := AR ∩A†

R
= ∪v∈Q>0A(0,v]

R and
A† := A ∩A†

R
= ∪v∈Q>0A(0,v].

The rings defined above are equipped with a topology described in [AB08, §4]. We have an embedding
A†
R
⊂ AR compatible with the weak topology on AR. Furthermore, A†

R
is stable under the induced

Frobenius φ and the GR-action which commutes with φ (see [And06, Proposition 7.2]). Finally, all rings
appearing above are equipped with a (φ,GR)-action (induced from AR) and from [AI08, Lemma 2.11]
we have that

(
A(0,v])HR = A(0,v]

R , (A†)HR = A†
R and A†

R/pA
†
R = ER.

Define (φ,ΓR)-Modét
A†

R

to be the category of étale (φ,ΓR)-modules over A†
R, similar to Definition

2.2. Let T ∈ RepZp
(GR), then D†(T ) := (A† ⊗Zp T )HR is an étale (φ,ΓR)-module over A†

R. Moreover,
if T is finite free over Zp, then D†(T ) is finite projective over A†

R of rank = rkZpT . The functor
D† : RepZp

(GR) → (φ,ΓR)-Modét
A†

R

induces an equivalence of categories (see [AB08, Théorème 4.35]).

Moreover, extension of scalars along A†
R → AR gives an isomorphism of étale (φ,ΓR)-modules over AR

as AR ⊗A†
R

D†(T ) ∼−→ D(T ).
Finally, we introduce the analytic rings to be used in §5. Let 0 < u ≤ v and α, β ∈ O♭Cp

, such
that υ♭(α) = 1/v and υ♭(β) = 1/u. Set A[u]

R
:= p-adic completion of Ainf(R)

[
[β]/p] and A[u,v]

R
:=

p-adic completion of Ainf(R)
[
p/[α], [β]/p

]
. The GR-action on Ainf(R) extends to these rings and com-

mutes with the extension of Frobenius to these rings, denoted again by φ. For the homomorphism φ,
we have that φ

(
A[u]
R

)
= A[u/p]

R
and φ

(
A[u,v]
R

)
= A[u/p,v/p]

R
. Moreover, we have inclusions A[u]

R
⊂ B+

dR(R)
for u ≤ 1 and A[u,v]

R
⊂ B+

dR(R) for u ≤ 1 ≤ v (see [CN17, §2.4.2]). We use these embeddings to induce
filtrations on A[u]

R
and A[u,v]

R
.

2.4.4. Fundamental exact sequences. The Artin-Schreier exact sequence in (2.1) can be upgraded
to the following exact sequences (see [AI08, §8.1] and [CN17, Lemma 2.23]):

0 −→ Zp −→ AR

1−φ−−−→ AR −→ 0,

0 −→ Zp −→ A(0,v]+
R

1−φ−−−→ A(0,v/p]+
R

−→ 0, for v > 0.
(2.4)

Furthermore, for 0 < u ≤ 1 ≤ v, the exact sequence in (2.2) can be upgraded to a p4r-exact sequence
(see [CN17, Lemma 2.23]):

0 −→ Zp(r) −→ FilrA[u,v]
R

pr−φ−−−−→ A[u,v/p]
R

−→ 0. (2.5)

2.4.5. The operator ψ. Let us define a left inverse ψ of the Frobenius operator φ on the ring A.
From [AB08, Corollaire 4.10] note that the A-module φ−1(A) is free with a basis given as uα/p =
(1 + π)α0/p[X♭

1]α1/p · · · [X♭
d]αd/p, where α = (α0, . . . , αd) is a (d+ 1)-tuple with αi ∈ {0, 1, . . . , p− 1} for
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each 0 ≤ i ≤ d (note that to get this statement from loc.cit., one should replace φ−1(A) by A there and
take p-th root of the basis elements). Define an operator (a left inverse of φ), denoted as ψ : A → A
and given by the formula x 7→ 1

pd+1 ◦ Trφ−1(A)/A ◦ φ−1(x).

Proposition 2.4 ([AB08, §4.8]). Let x ∈ A and write φ−1(x) =
∑
α xαuα/p, then we have ψ(x) = x0.

Moreover, for the operator ψ we have ψ ◦ φ = id. Furthermore, ψ commutes with the action of GR,
ψ(A+) ⊂ A+ and ψ(A†) ⊂ A†.

2.5. Crystalline coordinates. In this subsection, we will introduce good “crystalline” coordinates
(see [Abh21, §3.2]). Let r+

ϖ = OF JX0K and rϖ = OF JX0K{X−1
0 }. Sending X0 to ϖ = ζpm − 1 induces a

surjective ring homomorphism r+
ϖ ↠ OK , whose kernel is generated by a degree e = [K : F ] = pm−1(p−

1) Eisenstein polynomial Pϖ = Pϖ(X0). Let R+
ϖ,□ denote the completion of OF [X0, X,X

−1] for the
(p,X0)-adic topology. Sending X0 to ϖ induces a surjective ring homomorphism R+

ϖ,□ ↠ OK{X,X−1},
whose kernel is again generated by Pϖ. Recall that R is étale over OF {X,X−1} and we have multivariate
polynomials Qi(Z1, . . . , Zs) ∈ OF {X,X−1}[Z1, . . . , Zs], for 1 ≤ i ≤ s, such that det

(∂Qi
∂Zj

)
is invertible in

R. Set R+
ϖ to be the quotient of the (p,X0)-adic completion of R+

ϖ,□[Z1, . . . , Zs] by the ideal (Q1, . . . , Qs).
Again, we have that det

(∂Qi
∂Zj

)
is invertible in R+

ϖ (since R ↪→ R+
ϖ). Hence, R+

ϖ is étale over R+
ϖ,□ and

smooth over OF . Sending X0 to ϖ induces a surjective ring homomorphism R+
ϖ ↠ R[ϖ], whose kernel

is again generated by Pϖ. Since Pϖ ≡ Xe
0 mod p, we have that R+

ϖ[P kϖ/k!]k∈N = R+
ϖ[Xk

0 /[k/e]!]k∈N.
Set RPD

ϖ := p-adic completion of R+
ϖ[P kϖ/k!]k∈N.

Recall that Ω1
R denotes the p-adic completion of the module of differentials of R relative to Z and

we have Ω1
R = ⊕di=1R d logXi and Ωk

R = ∧kRΩ1
R. Moreover, since R+

ϖ is étale over R+
ϖ,□, therefore, for

S = R+
ϖ,□ or R+

ϖ, we have that Ω1
S = S dX0

1+X0
⊕

(
⊕di=1 S d logXi

)
.

Definition 2.5. For 0 < u ≤ v, define R(0,v]+
ϖ to be the p-adic completion of R+

ϖ[p⌈vk/e⌉/Xk
0 ]k∈N and

set R(0,v]
ϖ := R

(0,v]+
ϖ [1/X0]. Furthermore, define R[u]

ϖ to be the p-adic completion of R+
ϖ[Xk

0 /p
⌊uk/e⌋]k∈N,

define R
[u,v]
ϖ to be the p-adic completion of R+

ϖ[Xk
0 /p

⌊uk/e⌋, p⌈vk/e⌉/Xk
0 ]k∈N and set Rϖ as the p-adic

completion of R+
ϖ[1/X0]. We will write R⋆

ϖ for ⋆ ∈ { ,+,PD, [u], (0, v]+, [u, v]} and for the arithmetic
case, i.e. R = OF , we will write r⋆ϖ instead. Going from R+

ϖ to R⋆
ϖ only involves the arithmetic variable

X0, so we have R⋆
ϖ = r⋆ϖ⊗̂r+

ϖ
R+
ϖ, where ⊗̂ denotes the p-adic completion of the usual tensor product.

Remark 2.6. Unless otherwise stated, we will assume (p − 1)/p ≤ u ≤ v/p < 1 < v < p, for example,
we can take u = (p− 1)/p and v = p− 1.

Definition 2.7. Define a filtration on the rings in Definition 2.5 as follows:

(i) Let S = R
(0,v]+
ϖ (v < 1), R(0,v]

ϖ (v < 1), R[u,v]
ϖ (1 ̸∈ [u, v]) or Rϖ. As Pϖ is invertible in S[1/p], we

put the trivial filtration on S.

(ii) Let S be the placeholder for all the remaining rings in Definition 2.5, in particular, we have
that Pϖ is not invertible in S[1/p]. Then there is a natural embedding S → R[ϖ, 1/p]JPϖK =
R[ϖ, 1/p]JX0 − ϖK, obtained by completing S[1/p] for the Pϖ-adic topology and where we note
that Pϖ and X0 −ϖ generate the same ideal in R[ϖ, 1/p]JPϖK. We use this embedding to endow
S with a natural filtration FilkS := S ∩ P kϖR[ϖ, 1/p]JPϖK, for all k ∈ Z.

Remark 2.8. Let us describe the filtration on the rings of Definition 2.7 (ii), more concretely. Note
that FilkS = S, for k ≤ 0. For any k ∈ N, the ideal FilkRPD

ϖ ⊂ RPD
ϖ is topologically generated by

the elements Pnϖ/n!, for n ≥ k, i.e. FilkRPD
ϖ is the closure of the ideal generated by such elements.

Similarly, the ideal FilkR[u]
ϖ ⊂ R[u]

ϖ is topologically generated by the elements Pnϖ/p⌊nu⌋, for n ≥ k. Using
this description, an easy computation shows that FilkR[u]

ϖ ⊂ (Pϖ/p)kR[u]
ϖ . On the other hand, we have

that FilkR(0,v]+
ϖ = P kϖR

(0,v]+
ϖ . By definition, note that R[u,v]

ϖ = R
[u]
ϖ + R

(0,v]+
ϖ , so we get that the ideal

FilkR[u,v]
ϖ ⊂ R[u,v]

ϖ is topologically generated by FilkR[u]
ϖ + FilkR(0,v]+

ϖ .

The following claim easily follows from Remark 2.8:

Lemma 2.9 ([CN17, Lemma 2.6]). For any k ∈ N and f ∈ R
[u]
ϖ , we can write f = f1 + f2 with

f1 ∈ FilkR[u]
ϖ and f2 ∈ 1

p⌊ku⌋R
+
ϖ.
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2.6. Cyclotomic Frobenius. In this subsection, we will define a (cyclotomic) Frobenius endomor-
phism and its left inverse on the rings studied in the previous section (see [Abh21, §3.3]).

Definition 2.10. Over R+
ϖ,□ define the (cyclotomic) Frobenius as a lift of the absolute Frobenius modulo

p, denoted as φ : R+
ϖ,□ → R+

ϖ,□ and sending X0 7→ (1+X0)p−1 and Xi 7→ Xp
i , for 1 ≤ i ≤ d. Clearly, we

have that φ(x)−xp is in pR+
ϖ,□ for any x in R+

ϖ,□. Using [CN17, Proposition 2.1], the Frobenius extends
to an endomorphism φ : R+

ϖ → R+
ϖ. Finally, by continuity, the Frobenius admits unique extensions

RPD
ϖ → RPD

ϖ , R[u]
ϖ → R

[u]
ϖ , R(0,v]+

ϖ → R
(0,v/p]+
ϖ , R[u,v]

ϖ → R
[u,v/p]
ϖ and Rϖ → Rϖ.

Recall that r[u]
ϖ =

{ ∑
k∈N akp

−⌊ ku
e

⌋Xk
0 , such that ak ∈ OF goes to 0 as i → +∞

}
. Denote by υX0 :

r
[u]
ϖ → N ∪ {+∞}, the valuation relative to X0, i.e. if f =

∑
bkX

k
0 , then υX0(f) = inf {k ∈ N, bk ̸= 0}.

For N ∈ N, we set r[u]
ϖ,N := {f ∈ r[u]

ϖ , υX0(f) ≥ N} and define R[u]
ϖ,N to be the topological closure of

r
[u]
ϖ,N ⊗r+

ϖ
R+
ϖ ⊂ R

[u]
ϖ .

Lemma 2.11. Let s ∈ Z and N ∈ N≥1 such that N ≥ se/u(p− 1), then 1− p−sφ is bijective on R
[u]
ϖ,N .

Proof. The claim follows from [CN17, Lemma 3.1], where by explicit computations, one shows that
p−ksφk(R[u]

ϖ,N ) ⊂ pn(k)R
[u]
ϖ,N , where n(k) depends on k and goes to +∞ as k → +∞. So it follows that

the series of operators
∑
k∈N p

−ksφk converge as an inverse to 1− p−sφ on R
[u]
ϖ,N .

2.6.1. The operator ψ. Set uα := (1 +X0)α0Xα1
1 · · ·X

αd
d , where α = (α0, . . . , αd) is a (d+ 1)-tuple

with αi ∈ {0, . . . , p− 1} for each 0 ≤ i ≤ d. Over the ring Rϖ, we have OF -linear differential operators
∂0 = (1 + X0) d

dX0
and ∂i = Xi

d
dXi

, for 1 ≤ i ≤ d. Therefore, for 0 ≤ i ≤ d, we have that ∂iuα = αiuα
and φ(uα) = upα.

Lemma 2.12 ([CN17, Proposition 2.15]). Any x in Rϖ/p can be uniquely written as x =
∑
α cα(x), with

∂i◦cα(x) = αicα(x), for 0 ≤ i ≤ d. Moreover, there exists a unique xα in Rϖ/p, such that cα(x) = xpαuα.
Furthermore, if x is in R+

ϖ/p, then cα(x) belongs to R+
ϖ/p.

Proposition 2.13. Any x in Rϖ can be uniquely written as x =
∑
α cα(x), with cα(x) in φ

(
Rϖ

)
uα.

Moreover, if x is in R+
ϖ with cα(x) = φ(xα)uα, then cα(x) belongs to R+

ϖ, for all α, and ∂icα(x)−αicα(x)
belongs to pR+

ϖ, for 0 ≤ i ≤ d. Finally, if x is in R
(0,v]+
ϖ then cα(x) is in R

(0,v]+
ϖ , for all α.

Proof. The first two claims follow from Lemma 2.12 and the last from [CN17, Proposition 2.15].

Definition 2.14. Define the left inverse ψ of the Frobenius φ on S = R+
ϖ or S = Rϖ, by the formula

ψ(x) = φ−1(
c0(x)

)
. Since Rϖ is an extension of degree pd+1 of φ(Rϖ), with basis the uα’s, and since

φ(uα) = upα, for all α, therefore, we have that TrRϖ/φ(Rϖ)(uα
)

= 0, if α ̸= 0, and we can define ψ

intrinsically as ψ(x) := 1
pd+1φ

−1 ◦ TrRϖ/φ(Rϖ)(x).

The operator ψ defined above is closely related to the operator defined in Proposition 2.4 (also
denoted ψ; the relation will become clear in §2.7). Note that ψ is not a ring morphism; it is a left inverse
to φ and, more generally, we have that ψ(φ(x)y) = xψ(y). Also, we have that ∂i ◦ φ = pφ ◦ ∂i and
∂i ◦ψ = p−1ψ ◦ ∂i, for i = 0, 1, . . . , d. Indeed, the first equality can be obtained by checking on the basis
elements uα and the second equality is obtained by an easy computation using Proposition 2.13.

For any k ∈ N, we can write Xk
0 =

∑p−1
j=0 φ(aj,k)(1 + X0)j , for some aj,k in R+

ϖ. Therefore, by
continuity, we obtain the following:

Lemma 2.15. (i) The definition of ψ extends to surjective maps R(0,v]+
ϖ → R

(0,pv]+
ϖ , R[u]

ϖ → R
[pu]
ϖ and

R
[u,v]
ϖ → R

[pu,pv]
ϖ .

(ii) For the same reasons, the maps x 7→ cα(x) also extend and lead to decompositions S = ⊕αSα,
where Sα = S ∩ φ(Rϖ)uα for S = R⋆

ϖ, with ⋆ ∈ {,+, [u], (0, v]+, [u, v]}. Since ψ(x) = φ−1(
c0(x)

)
,

therefore, we have that Sψ=0 = ⊕α ̸=0Sα.

Lemma 2.16. Let S = R⋆
ϖ, for ⋆ ∈ { ,+, [u], (0, v]+, [u, v]}. Then, for 0 ≤ i ≤ d, the operator ∂i on

S⋆
α /pS

⋆
α is given by multiplication by αi, where αi is the i-th entry in α = (α0, . . . , αd).
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Proof. If ⋆ ∈ { ,+}, then the claim was already shown in Proposition 2.13. For ⋆ ∈ {[u], (0, v]+, [u, v]},
the elements of S⋆

α are those of the form
∑
k∈Z p

rkXk
0xk, where xk ∈ S+ goes to 0 when k → +∞

and rk is determined by “⋆”. Let x =
∑
k∈Z p

rkXk
0xk. Then, note that for 1 ≤ i ≤ d, we have that

∂i(Xk
0 ak) − αiX

k
0 ak = Xk

0
(
∂i(ak) − αiak

)
belongs to pS+ by Proposition 2.13. Therefore, the claim

follows for all 1 ≤ i ≤ d and ⋆ ∈ { ,+, [u], (0, v]+, [u, v]}. Next, we will look at the case of i = 0. We first
assume that x is in S[u] and write x =

∑
k∈N p

rkxk
∑p−1
j=0 φ(aj,k)(1 + X0)j , for some aj,k in S+. Then,

cα(x) =
∑p−1
j=0

∑
k∈N p

rkφ(aj,k)c(α0−j,α1,··· ,αd)(xk)(1 + X0)j , where α0 − j denotes its value modulo p.
Since ∂0

(
c(α0−j,α1,··· ,αd)(xk)

)
− (α0− j)c(α0−j,α1,··· ,αd)(xk) belongs to pS+ and ∂0 ◦φ = pφ ◦∂0, therefore,

we get the desired conclusion for i = 0 and x in S[u]. Next, assume that x is in S(0,v]+ and using the
result for S, we get that ∂0(x)−α0x belongs to pS∩S(0,v]+ = pS(0,v]+. Finally, by combining the results
for S[u] and S(0,v]+, we get the conclusion for any x in S[u,v]. This allows us to conclude.

Proposition 2.17. Assume that v < p.

(i) Let x in Rψ=0
ϖ , then Xk

0ψ(x) = ψ(φ(X0)kx), for all k ∈ Z.

(ii) ψ
(
X−pN

0 R
(0,v/p]+
ϖ

)
⊂ X−N

0 R
(0,v]+
ϖ , for all N ∈ N.

(iii) The natural map ⊕α ̸=0φ
(
R

(0,v]+
ϖ

)
uα →

(
R

(0,v/p]+
ϖ

)ψ=0 is an isomorphism.

Proof. The claim in (i) follows from an elementary computation. Claims in (ii) and (iii) follow from
[CN17, Proposition 2.16].

2.7. Cyclotomic embedding. In this subsection, we will describe the relationships between period
rings discussed in §2.2 and §2.4, as well as, for the ring R⋆

ϖ, where ⋆ ∈ { ,+,PD}. Define a morphism
of rings ιcycl : R+

ϖ,□ → Ainf(R), by sending X0 7→ πm = φ−m(π) and Xi 7→ [X♭
i ], for 1 ≤ i ≤ d. The

map ιcycl admits a unique extension to an embedding R+
ϖ → Ainf(R) such that θ ◦ ιcycl is the projection

R+
ϖ ↠ R[ϖ] (see [Abh21, Lemma 3.12]). This embedding commutes with the respective Frobenii,

i.e. ιcycl ◦ φ = φ ◦ ιcycl. By continuity, the morphism ιcycl extends to embeddings RPD
ϖ ⊂ Acris(R),

R
[u]
ϖ ⊂ A[u]

R
, R(0,v]+

ϖ ⊂ A(0,v]+
R

, R[u,v]
ϖ ⊂ A[u,v]

R
and Rϖ ⊂ AR. Denote by A⋆

R,ϖ the image of R⋆
ϖ under

ιcycl. These rings are stable under the action of GR and the action factors through ΓR; we equip these
rings with the induced action of ΓR. Moreover, for ⋆ ∈ {+,PD, [u], [u, v], (0, v]+}, we equip A⋆

R,ϖ with
a filtration using Definition 2.7 and ιcycl. It is easy to see that for u ≤ 1 ≤ v, the filtration on A⋆

R,ϖ

coincides with the filtration induced via the embedding A⋆
R,ϖ ⊂ B+

dR(R), where we consider the natural
filtration on B+

dR(R) (see §2.2). From [CN17, §2.4.2], note that we have (φ,ΓR)-equivariant inclusions
A[u′]
R,ϖ ⊂ APD

R,ϖ ⊂ A[u]
R,ϖ, for u ≥ 1

p−1 and u′ ≤ 1
p .

Note that the preceding discussion works well for R[ϖ], where ϖ = ζpm − 1 with m ≥ 1. For R, one
can repeat the constructions above to obtain the period ring A+

R ⊂ A+
R,ϖ (see [Abh21, §3.3.2]), equipped

with an induced filtration FilkA+
R = A+

R ∩ FilkA+
R,ϖ = πkA+

R (see [Abh21, Lemma 3.17]). Recall that,

Lemma 2.18 ([Abh21, Lemma 3.14]). The element t/π is a unit in APD
F,ϖ ⊂ APD

R,ϖ ⊂ A[u]
R,ϖ ⊂ A[u,v]

R,ϖ .

Lemma 2.19. For k ∈ Z and ⋆ ∈ {+,PD, [u], [u, v]}, we have FilkA⋆
R,ϖ ∩ πA⋆

R,ϖ = πFilk−1A⋆
R,ϖ, as

submodules of A⋆
R,ϖ.

Proof. Let A = A⋆
R,ϖ and B = R[ϖ, 1/p]JPϖK = R[ϖ, 1/p]JX0 − ϖK (see Definition 2.7 for the latter

ring), where ϖ = ζpm−1. Using the inverse of the isomorphism ιcycl : R⋆
ϖ

∼−→ A⋆
R,ϖ = A, we may regard

A as a subring of B.
We will prove the claim by induction on k. Note that the claim is trivial for k ≤ 0 and for k = 1

we have that FilkA ∩ πA = πA. So, let k ∈ N≥2 and assume that the claim is true for k − 1, i.e.
Filk−1A ∩ πA = πFilk−2A. Now, note that FilkA ∩ πA = FilkA ∩ Filk−1A ∩ πA = FilkA ∩ πFilk−2A. In
particular, to get the claim, it is enough to show that FilkA∩πFilk−2A = πFilk−1A. Let x be an element
of FilkA ∩ πFilk−2A and write x = πy, for some y in Filk−2A. From the description of the filtration on
A in Definition 2.7, it follows that we can write x = ξkx′ and y = ξk−2y′, for some x′ and y′ in B (note
that ιcycl(Pϖ) = ξ). Since B is ξ-torsion free and π = ξπ1, we get that ξx′ = π1y

′ in B. But we have
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π1 = (1 + πm)pm−1 − 1 = (πm−ϖ+ ζpm)pm−1 − 1 = (πm−ϖ)z+ ζp− 1, for some z in B and ζp = ζp
m−1

pm

(note that πm = ιcycl(X0)). Moreover, from Definition 2.7, recall that ξ and πm −ϖ generate the same
ideal in B. Therefore, we obtain that (ζp − 1)y′ = ξx′ − (πm −ϖ)zy′ is an element of ξB. As (ζp − 1) is
a unit in B, it follows that we have y′ = ξy′′, for some y′′ in B. So, we can write y = ξk−2y′ = ξk−1y′′,
and see that it belongs to ξk−1B ∩A = Filk−1A. Hence, x = πy is an element of πFilk−1A, in particular,
FilkA ∩ πFilk−2A ⊂ πFilk−1A. The other inclusion, i.e. πFilk−1A ⊂ FilkA ∩ πFilk−2A, is obvious. This
concludes our proof.

Lemma 2.20 ([CN17, Lemma 2.35]). If v < p, then

(i) The element π−pm−1
m π1 is a unit in A(0,v]+

R,ϖ ;

(ii) In A(0,v]+
R,ϖ , the element p is divisible by π⌊(p−1)pm−1/v⌋

m , hence also by π(p−1)pm−2
m ;

(iii) Let v = p− 1, then π−pm

m π is a unit in A(0,v/p]+
R,ϖ and p/π ∈ A(0,v/p]+

R,ϖ .

Next, we prove some claims for the action of ΓR.

Lemma 2.21. Let k ∈ N and note that for ⋆ ∈ {+,PD, [u]} and i ∈ {0, 1, . . . , d}, we have that
(γi − 1)

(
pm, πp

m

m

)kA⋆
R,ϖ ⊂

(
pm, πp

m

m

)k+1A⋆
R,ϖ .

Proof. Let i = 0 and note that we have (γ0− 1)πm = πx, for some x ∈ A+
R,ϖ. Since π = (1 + πm)pm − 1,

we get that (γ0 − 1)πm belongs to
(
pmπm, π

pm

m

)
A+
R,ϖ. Moreover, (γ0 − 1)πpm

m = (πx + πm)pm − πpm

m

belongs to
(
pmπm, π

pm

m

)2A+
R,ϖ. Proceeding by induction on k ≥ 1 and using the fact that γ0 − 1 acts as

a twisted derivation (i.e. for all x, y in A+
R,ϖ, we have (γ0 − 1)xy = (γ0 − 1)x · y + γ0(x)(γ0 − 1)y), we

conclude that (γ0 − 1)
(
pmπm, π

pm

m

)kA+
R,ϖ ⊂

(
pmπm, π

pm

m

)k+1A+
R,ϖ. Furthermore, any f in APD

R,ϖ can be
written as f =

∑
n∈N fnπ

n
m/(⌊n/e⌋!), such that fn is in A+

R,ϖ and goes to 0 p-adically as n→ +∞. For
notational convenience, we take n = je, for some j in N, and see that (γ0−1)πjem/j! is in

(
pm, πp

m

m

)
APD
R,ϖ.

Proceeding by induction on k ≥ 1 and using that γ0 − 1 acts as a twisted derivation, we conclude that
(γ0 − 1)

(
pm, πp

m

m

)kAPD
R,ϖ ⊂

(
pm, πp

m

m

)k+1APD
R,ϖ.

Next, for i ∈ {1, . . . , d}, note that we have (γi − 1)[X♭
i ] = π[X♭

i ] is in
(
pm, πp

m

m

)
A+
R,ϖ and (γi −

1)
(
[X♭

i ]−1)
= −π(1 + π)−1[X♭

i ]−1 belongs to
(
pmπm, π

pm

m

)
A+
R,ϖ. Proceeding by induction on k ≥ 0 and

using the fact that γi−1 also acts as a twisted derivation, we conclude that (γi−1)
(
pmπm, π

pm

m

)kA+
R,ϖ ⊂(

pmπm, π
pm

m

)k+1A+
R,ϖ. Again, by the description of elements of APD

R,ϖ, using the discussion for A+
R,ϖ

and the fact that γi − 1 acts as a twisted derivation, we conclude that (γi − 1)
(
pm, πp

m

m

)kAPD
R,ϖ ⊂(

pm, πp
m

m

)k+1APD
R,ϖ. Finally, the claim for A[u]

R,ϖ follows in a similar manner.

Lemma 2.22. We have that (γ0 − 1)A(0,v]+
R,ϖ ⊂

(
pmπm, π

pm

m

)
A(0,v]+
R,ϖ and (γi − 1)A(0,v]+

R,ϖ ⊂ πA(0,v]+
R,ϖ , for

i ∈ {1, . . . , d}. Moreover, for i ∈ {0, 1, . . . , d} and k ∈ N, we have that (γi − 1)
(
pm, πp

m

m

)kA[u,v]
R,ϖ ⊂(

pm, πp
m

m

)k+1A[u,v]
R,ϖ .

Proof. Let i = 0 and from the proof of Lemma 2.21, we have that (γ0−1)πm is in
(
pmπm, π

pm

m

)
A+
R,ϖ. So

we conclude that (γ0 − 1)A+
R,ϖ belongs to

(
pmπm, π

pm

m

)
A+
R,ϖ. Observe that γ0(πm) = χ(γ0)πma, where

χ(γ0) = exp(pm) is in Z×
p and a is a unit in A+

R,ϖ. So, we can write (γ0 − 1)π−1
m = pmz/(χ(γ0)aπm)

and, therefore, (γ0 − 1)(p/πm) belongs to
(
pmπm, π

pm

m

)
A(0,v]+
R,ϖ . Proceeding by induction on k ≥ 1 and

using the fact that γ0 − 1 acts as a twisted derivation, we conclude that (γ0 − 1)
(
pmπm, π

pm

m

)kA(0,v]+
R,ϖ ⊂(

pmπm, π
pm

m

)k+1A(0,v]+
R,ϖ .

For 1 ≤ i ≤ d, from the analysis for A+
R,ϖ in Lemma 2.21, we already have that (γi−1)A+

R,ϖ ⊂ πA+
R,ϖ.

Since passing from A+
R,ϖ to A(0,v]+

R involves only the arithmetic variable πm, on which γi acts trivially.
Therefore, we conclude that (γi− 1)A(0,v]+

R,ϖ ⊂ πA(0,v]+
R,ϖ , and proceeding by induction on k ≥ 1 and using

that γi−1 acts as a twisted derivation, we get that (γi−1)
(
pmπm, π

pm

m

)kA(0,v]+
R,ϖ ⊂

(
pmπm, π

pm

m

)k+1A(0,v]+
R,ϖ .
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This shows the first claim. Finally, the claim for A[u,v]
R,ϖ follows by combining discussion above with Lemma

2.21 for A[u]
R,ϖ.

2.8. Filtered Poincaré Lemma. In this subsection we will state and prove a filtered version of
the PD-Poincaré Lemma which will be useful for §5.

2.8.1. Fat period rings. We recall the definition from [CN17, §2.6] and [Abh21, §3.4]. Let A and B
be two p-adically complete filtered OF -algebras. Let ι : B → A be a continuous injective homomorphism
of filtered OF -algebras and let f : B⊗OF

A→ A denote the ring homomorphism sending x⊗ y 7→ ι(x)y.

Definition 2.23. Define E to be the p-adic completion of the divided power envelope of B⊗OF
A, with

respect to Ker f .

For consistency in notations, in the following definition, we write Acris(R) as APD
R

.

Definition 2.24. In the notation of Definition 2.23, we record the following:

(i) Let ⋆ ∈ {PD, [u], [u, v]} and define E⋆
R,ϖ = E, for B = R⋆

ϖ, A = A⋆
R,ϖ and ι = ιcycl (see §2.7).

(ii) Let ⋆ ∈ {PD, [u], [u, v]} and define E⋆

R
= E, for B = R⋆

ϖ, A = A⋆

R
and ι = ιcycl (see §2.7).

Remark 2.25. Let us note some properties of the ring E in Definition 2.24:

(i) The ring E is the p-adic completion of B⊗OF
A adjoin (x⊗1−1⊗ι(x))[k], for all x in B and n ∈ N,

and (Vi − 1)[k] for 0 ≤ i ≤ d and k ∈ N, where Vi = Xi⊗1
1⊗ι(Xi) for 1 ≤ i ≤ d and V0 = 1+(X0⊗1)

1+(1⊗ι(X0)) .
The morphism f : B ⊗OF

A→ A extends uniquely to a continuous morphism f : E → A.

(ii) The ring E is equipped with an Z-indexed decreasing filtration, which we define to be FilrE := E
for r ≤ 0, and for r ≥ 0, define FilrE to be the topological closure of the ideal generated by elements
of the form x1x2

∏d
i=0(Vi − 1)[ki], with x1 in Filr1B, x2 in Filr2A and r1 + r2 +

∑d
i=0 ki ≥ r.

(iii) From [CN17, Lemma 2.36], we have that any element x in E can be uniquely written as x =∑
k∈Nd+1 xk(1− V0)[k0] · · · (1− Vd)[kd], with xk in A for all k = (k0, k1, . . . , kd) ∈ Nd+1 and xk → 0

as |k| =
∑d
i=0 ki → +∞. Moreover, an element x is in FilrE if and only if xk is in Filr−|k|A, for

all k ∈ Nd+1.

(iv) The ring E is equipped with a natural A-linear continuous de Rham differential operator d :
E → Ω1

E/A. Moreover, by the description of the filtration on E in (iii), it is easy to see that
the differential operator satisfies Griffiths transversality with respect to the filtration, i.e. we have
d : FilrE → Filr−1⊗E Ω1

E/A. In the special case that ι : B ∼−→ A, we see that E is further equipped
with a natural B-linear continuous de Rham differential operator d : E → Ω1

E/B satisfying Griffiths
transversality with respect to the filtration.

Lemma 2.26. Rings in Definition 2.24 have desirable properties:

(i) In Definition 2.24 (i), the tensor product Frobenii φ⊗φ on R⋆
ϖ⊗OF

A⋆
R,ϖ, for ⋆ ∈ {PD, [u], [u, v]},

extend respectively uniquely to continuous morphisms EPD
R,ϖ → EPD

R,ϖ, E[u]
R,ϖ → E

[u]
R,ϖ and E

[u,v]
R,ϖ →

E
[u,v/p]
R,ϖ . Moreover, the actions of GR on A⋆

R,ϖ extend respectively uniquely to continuous actions
of GR on EPD

R,ϖ, E[u]
R,ϖ and E

[u,v]
R,ϖ , which commute with the respective Frobenii. Furthermore, we

have (φ,GR)-equivariant inclusions EPD
R,ϖ ⊂ E

[u]
R,ϖ ⊂ E

[u,v]
R,ϖ .

(ii) In Definition 2.24 (ii), the tensor product Frobenii φ⊗φ on R⋆
ϖ ⊗OF

A⋆

R
, for ⋆ ∈ {PD, [u], [u, v]},

extend respectively uniquely to continuous morphisms EPD
R
→ EPD

R
, E[u]

R
→ E

[u]
R

and E
[u,v]
R

→
E

[u,v/p]
R

. Moreover, the actions of GR on A⋆

R
extend respectively uniquely to continuous actions of

GR on EPD
R

, E[u]
R

and E
[u,v]
R

, which commute with the respective Frobenii. Furthermore, we have
(φ,GR)-equivariant inclusions EPD

R
⊂ E[u]

R
⊂ E[u,v]

R
.
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(iii) The natural (φ,ΓR)-equivariant inclusion of rings A⋆
R,ϖ ⊂ A⋆

R
induces a natural (φ,ΓR)-equivariant

injective homomorphism of rings E⋆
R,ϖ ⊂ E⋆

R
. Moreover, the filtration and the A⋆

R,ϖ-linear con-
nection on E⋆

R,ϖ are respectively induced from the filtration and A⋆

R
-linear connection on E⋆

R
, in

particular, FilrE⋆
R,ϖ = E⋆

R,ϖ ∩ FilrE⋆

R
⊂ E⋆

R
, for all r ∈ Z.

Proof. Claims in (i) and (ii) follow from [CN17, Lemma 2.38]. The claim in (iii) follows from the
description of E⋆

R,ϖ and E⋆

R
in Remark 2.25 and the fact that A⋆

R,ϖ ∩ FilrA⋆

R
= A⋆

R,ϖ ∩ FilrBdR(R) =
FilrA⋆

R,ϖ, for all r ∈ Z.

Remark 2.27. From Definition 2.24 and Lemma 2.26, note that we have a natural embedding OAcris(R) ⊂
EPD
R

compatible with the respective Frobenii, Acris(R)-linear connections and actions of GR, and the
natural filtration on the former is induced from the filtration on the latter. Furthermore, from §3.2
recall that we have the ring OAPD

R,ϖ ⊂ OAcris(R) and from [Abh21, Remark 4.20] we have an alternative
construction of OAPD

R,ϖ using the embedding R ⊂ RPD
ϖ

∼−→ APD
R,ϖ (the last morphism is ιcycl in §2.7).

This induces an embedding OAPD
R,ϖ ⊂ EPD

R,ϖ compatible with the respective Frobenii and actions of ΓR,
and the natural filtration on the former is induced from the filtration on the latter. Denote the OF -linear
differential operator over APD

R,ϖ as ∂A and the OF -linear differential operator over RPD
ϖ (as well as over

R) as ∂R. Then the induced differential operators ∂R ⊗ 1 + 1 ⊗ ∂A over OAPD
R,ϖ, as well as, EPD

R,ϖ, are
compatible.

Lemma 2.28. For r ∈ Z and ⋆ ∈ {+,PD, [u], [u, v]}, we have FilrE⋆
R,ϖ ∩ πE

⋆
R,ϖ = πFilr−1E⋆

R,ϖ, as
submodules of E⋆

R,ϖ.

Proof. Let E := E⋆
R,ϖ and A := A⋆

R,ϖ, for ⋆ ∈ {+,PD, [u], [u, v]}. The claim is trivial for r ≤ 0,
so assume that r ≥ 1. Note that we have πFilr−1E ⊂ FilrE ∩ πE, so we need to show the reverse
inclusion. Let x be any element of FilrE ∩πE, and write x = πy, for some y in E. From the description
of the filtration on E in Remark 2.25 (iii), we have a unique presentation of x as

∑
k∈Nd+1 xk(1 −

V0)[k0] · · · (1− Vd)[kd], with xk in Filr−|k|A for all k ∈ Nd+1. Moreover, we have a unique presentation of
y as

∑
k∈Nd+1 yk(1−V0)[k0] · · · (1−Vd)[kd], with yk in A for all k ∈ Nd+1. Then using the equality x = πy,

we get that xk = πyk, for all k ∈ Nd+1. Now, from Lemma 2.19 and the fact that A is π-torsion free, it
follows that xk is an element of πFilr−|k|−1A, hence, x is an element of πFilr−1E.

Finally, to work with various filtered modules later, we define a filtered ring (analogous to OBdR(R))
containing all the rings described so far and inducing the same filtrations as described above. From
[Bri08, Proposition 5.2.2], recall that the natural inclusion B+

dR ⊂ OB+
dR(R) extends to a B+

dR-linear
isomorphism of rings B+

dRJT1, . . . , TdK
∼−→ OBdR(R), by sending the indeterminate Ti 7→ Xi − [X♭

i ], for
each 1 ≤ i ≤ d. We enlarge OBdR(R) by setting,

B+ := B+
dRJT0, T1, . . . , TdK, and B := B+[1/t],

in particular, we have natural inclusions of rings OB+
dR(R) ⊂ B+ and OBdR(R) ⊂ B. We equip the

latter rings with filtrations similar to [Bri08, p. 52]. Set FilrB+ := (t, T0, . . . , Td)rB+, for all r ∈ N, and
FilrB+ = B+, for r < 0. Moreover, set Fil0B :=

∑
n∈N t

−nFilnB+ and FilrB := trFil0B, for all r ∈ Z.
Similar rings were studied in [AI12, §3.2.1], in the more general setting of semistable schemes. Now,
employing arguments similar to [Bri08, Proposition 5.2.5, 5.2.6 & 5.2.8], the following is clear:

Lemma 2.29. Let xi denote the image of Ti in gr1B+ and yi denote the image of Ti/t in gr0B, for
0 ≤ i ≤ d. Then, we have that gr•B+ ∼−→ C(R)[t, x0, . . . , xd], where the grading is given by the degree
of the polynomial in t, x0, . . . , xd, and gr•B ∼−→ C(R)[t, t−1, y0, . . . , yd], where the grading is given by the
degree of t, in particular, we have gr0B+ ∼−→ C(R)[y0, . . . , yd]. Moreover, the filtration on B+ is the
same as the induced filtration from B, i.e. FilrB+ = FilrB ∩ B+ ⊂ B, for all r ∈ Z.

Remark 2.30. From Lemma 2.29 and the description of the natural filtration on OB+
dR(R) in [Bri08, p.

52], it is clear that the filtration on OB+
dR(R) is induced from the filtration on B+, i.e. FilrOB+

dR(R) =
OB+

dR(R)∩FilrB+ ⊂ B+, for all r ∈ Z. Then it also follows that FilrOBdR(R) = OBdR(R)∩FilrB ⊂ B,
for all r ∈ Z.
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Now, recall that we have an inclusion of rings A[u,v]
R
⊂ B+

dR(R) and the former is equipped with a
filtration induced from the latter (see §2.4.3). Then, upon using the description of E[u,v]

R,ϖ from Remark
2.25 (i), we see that the preceding embedding naturally extends to an injective ring homomorphism
E

[u,v]
R
→ B+, via Vi − 1 7→ Ti/[X♭

i ], for 1 ≤ i ≤ d, and V0 − 1 7→ T0/(1 + πm). Using the description of
the filtration on E

[u,v]
R,ϖ from Remark 2.25 and the filtration on B+ from above, we see that,

Lemma 2.31. The filtration on E
[u,v]
R

is induced from the filtration on B+, i.e. FilrE[u,v]
R

= E
[u,v]
R
∩

FilrB+ ⊂ B+, for all r ∈ Z.

Remark 2.32. Let S be any ring out of Acris(R), OAcris(R), OAPD
R,ϖ, R⋆

ϖ, E⋆
R,ϖ, E⋆

R
, for ⋆ ∈

{PD, [u], [u, v]}. Then using Remark 2.27, Remark 2.30 and Lemma 2.31 it is easy to see that FilrS =
S[1/p] ∩ FilrB ⊂ B and Filr(S[1/p]) := S[1/p] ∩ FilrB = (FilrS)[1/p] ⊂ B, for all r ∈ Z.

2.8.2. Filtered R-modules. Let M be a finitely generated p-torsion free R-module such that M [1/p]
is a finite projective R[1/p]-module. Moreover, assume that M [1/p] is equipped with a decreasing,
separated and exhaustive filtration by R[1/p]-submodules {FilrM [1/p]}r∈Z, such that FilaM [1/p] =
M [1/p] and FilbM [1/p] = 0, for some a, b ∈ Z, and for each r ∈ Z, the R[1/p]-modules FilrM [1/p] and
grrM [1/p] are finite projective. Next, let S be a filtered R-algebra equipped with a Z-indexed decreasing
filtration such that the natural map R → S is injective and the induced filtration on R is trivial (see
Remark 2.34 for examples). Consider the S[1/p]-module MS [1/p] := S⊗RM [1/p] and we equip MS [1/p]
with a tensor product filtration given as FilrMS [1/p] :=

∑
i+j=r FiliS ⊗R FiljM [1/p], for all r ∈ Z.

Lemma 2.33. The filtration {FilrMS [1/p]}r∈Z is a well-defined Z-indexed decreasing filtration on MS [1/p]
by S[1/p]-submodules. Moreover, we have grrMS [1/p] = ⊕i+j=rgriS ⊗R grjM [1/p], for each r ∈ Z.

Proof. We need to check that FilrMS [1/p] is an S[1/p]-submodule of MS [1/p], for each r ∈ Z. So, for
each j ∈ Z, let us consider the following exact sequence of finite projective R[1/p]-modules, in particular,
flat R-modules,

0 −→ Filj+1M [1/p] −→ FiljM [1/p] −→ grjM [1/p] −→ 0. (2.6)

Extending scalars in (2.6) along the natural map R→ S and by decreasing induction on j ≥ a, it is easy
to see that the natural map S⊗R FiljM [1/p]→ S⊗R FilaM [1/p] = S⊗RM [1/p] is injective. Therefore,
for any i + j = r, it follows that the natural map FiliS ⊗R FiljM [1/p] ↪→ S ⊗R FiljM [1/p] → MS [1/p]
is injective, where the first arrow is obtained by tensoring the R-linear inclusion FiliS ⊂ S with the
flat R-module FiljM [1/p] and the second arrow is as above. Hence, for each r ∈ Z, we get that
FilrMS [1/p] =

∑
i+j=r FiliS ⊗R FiljM [1/p] is an S[1/p]-submodule of MS [1/p]. It is clear that the

filtration is decreasing.
Next, let us note that upon tensoring (2.6) with FiliS and griS, we obtain the following R-linear

commutative diagram:

0 0 0

0 Fili+1S ⊗R Filj+1M [1/p] Fili+1S ⊗R FiljM [1/p] Fili+1S ⊗R grjM [1/p] 0

0 FiliS ⊗R Filj+1M [1/p] FiliS ⊗R FiljM [1/p] FiliS ⊗R grjM [1/p] 0

0 griS ⊗R Filj+1M [1/p] griS ⊗R FiljM [1/p] griS ⊗R grjM [1/p] 0

0 0 0.

(2.7)

Since FiljM [1/p] and grjM [1/p] are finite projective modules over R[1/p], in particular, flat modules
over R, we get that all rows and columns of (2.7) are exact. From the diagram, it easily follows that we
have grrMS [1/p] = ⊕i+j=rgriS ⊗R grjM [1/p], for each r ∈ Z.
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Remark 2.34. Let S be any ring out of OAcris(R), OAPD
R,ϖ, R⋆

ϖ, E⋆
R,ϖ or E⋆

R
, for ⋆ ∈ {PD, [u], [u, v]},

equipped with the filtration as discussed in §2.2, Definition 2.7 and §2.8.1. Then from Lemma 2.33 the
S[1/p]-module MS [1/p] := S ⊗R M [1/p] is equipped with a well-defined Z-indexed decreasing tensor
product filtration by S[1/p]-submodules. Moreover, after inverting p above or letting S[1/p] be any ring
out of OBcris(R), OB+

dR(R), OBdR(R), B+ or B, note that from the discussions in §2.2, Definition 2.7
and §2.8.1, the ring S[1/p] is equipped with a Z-indexed decreasing filtration (in the latter cases we abuse
notations by using S[1/p], even though S is not well defined). Then by employing arguments similar
to the proof of Lemma 2.33 (use R[1/p] and S[1/p] in place of R and S, respectively), we see that the
S[1/p]-moduleMS [1/p] := S[1/p]⊗R[1/p]M [1/p] is equipped with a well-defined Z-indexed decreasing ten-
sor product filtration by S[1/p]-submodules given as FilrMS [1/p] :=

∑
i+j=r FiliS[1/p]⊗R[1/p]FiljM [1/p].

Moreover, for each r ∈ Z, we have grrMS [1/p] = ⊕i+j=rgriS[1/p]⊗R[1/p] grjM [1/p].

Next, let S and S′ be two filtered R-algebras equipped with respective Z-indexed decreasing filtrations
such that the natural maps R → S and R → S′ are injective and the induced filtration on R is trivial
(see Remark 2.36 for examples). Assume that S ⊂ S′ and FilrS = S ∩ FilrS′, for all r ∈ Z. Set
MS [1/p] := S ⊗RM [1/p] and MS′ [1/p] := S′ ⊗RM [1/p], equipped with the tensor product filtration as
in Lemma 2.33. Note that MS [1/p] ⊂MS′ [1/p] and we claim the following:

Lemma 2.35. For each r ∈ Z, we have FilrMS′ [1/p] ∩ MS [1/p] = FilrMS [1/p], as submodules of
MS′ [1/p].

Proof. Let us first note that an easy induction on r shows that proving the equality Filr+1MS′ [1/p] ∩
MS [1/p] = Filr+1MS [1/p] is equivalent to proving the equality Filr+1MS′ [1/p]∩FilrMS [1/p] = Filr+1MS [1/p].
Next, consider the following diagram with R-linear exact rows,

0 Filr+1MS [1/p] FilrMS [1/p] grrMS [1/p] 0

0 Filr+1MS′ [1/p] FilrMS′ [1/p] grrMS′ [1/p] 0.

(2.8)

From the diagram (2.8), it is easy to see that proving the equality Filr+1MS′ [1/p]∩FilrM = Filr+1MS [1/p]
is equivalent to showing that the right vertical arrow in the diagram (2.8) is injective. Now, using
Lemma 2.33, note that we have grrMS [1/p] = ⊕i+j=rgriS ⊗R grjM [1/p], for each r ∈ Z. Similarly,
we also have that grrMS′ = ⊕i+j=rgriS′ ⊗R grjM [1/p], for each r ∈ Z. Since FiliS′ ∩ S = FiliS,
therefore, by using a diagram similar to (2.8), it follows that the natural R-linear map griS → griS′

is injective, for all i ∈ Z. Furthermore, as griM [1/p] is flat over R, it follows that the natural map
griS⊗R grjM [1/p]→ griS′⊗R grjM [1/p] is also injective. Hence, it follows that the right vertical arrow
in (2.8) is injective, allowing us to conclude.

Remark 2.36. Let S and S′ be any two rings out of OAcris(R), OAPD
R,ϖ, R⋆

ϖ, E⋆
R,ϖ or E⋆

R
, for ⋆ ∈

{PD, [u], [u, v]}, equipped with the filtrations as discussed in §2.2, Definition 2.7 and §2.8.1. Then these
rings satisfy the assumptions of Lemma 2.35 and for the respective tensor product filtrations on MS [1/p]
and MS′ [1/p], as in Lemma 2.33, it follows that we have FilrMS′ [1/p] ∩MS [1/p] = FilrMS [1/p], for
all r ∈ Z. Moreover, after inverting p above or letting S[1/p] or S′[1/p] be any ring out of OBcris(R),
OB+

dR(R), OBdR(R), B+ or B, note that by Remark 2.34, the respective tensor product filtrations on
MS [1/p] and MS′ [1/p] are well defined. Then by employing arguments similar to the proof of Lemma
2.35 (use R[1/p], S[1/p] and S′[1/p] in place of R, S and S′, respectively), we see that for each r ∈ Z,
we have FilrMS′ [1/p] ∩MS [1/p] = FilrMS [1/p], as submodules of MS′ [1/p].

Lemma 2.37. Let S = E
[u,v]
R,ϖ and set MS [1/p] := E

[u,v]
R,ϖ ⊗R M [1/p], equipped with the tensor prod-

uct filtration as in Lemma 2.33. Assume that Fil0M [1/p] = M [1/p]. Then for any r ∈ N, we have
FilrMS [1/p] ∩ πMS [1/p] = πFilr−1MS [1/p], as submodules of MS [1/p].

Proof. The claim is trivial for r = 0, so assume that r ≥ 1. We will prove the claim by induction on r.
Note that for r = 1, we have that FilrMS [1/p] ∩ πMS [1/p] = πMS [1/p]. So, let r ∈ N≥2 and assume
that the claim is true for r − 1, i.e. Filr−1MS [1/p] ∩ πMS [1/p] = πFilr−2MS [1/p]. Then, we see that,

FilrMS [1/p] ∩ πMS [1/p] = FilrMS [1/p] ∩ Filr−1MS [1/p] ∩ πMS [1/p] = FilrMS [1/p] ∩ πFilr−2MS [1/p].
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In particular, to get the claim, it is enough to show that FilrMS [1/p]∩πFilr−2MS [1/p] = πFilr−1MS [1/p].
Now, consider the following diagram with exact rows,

0 Filr−1MS [1/p] Filr−2MS [1/p] grr−2MS [1/p] 0

0 FilrMS [1/p] Filr−1MS [1/p] grr−1MS [1/p] 0,

π π π (2.9)

where the left and middle vertical arrows are multiplication-by-π and the right vertical arrow is the
induced map, which we again denote as multiplication-by-π. Note that that all the vertical arrows in
(2.9) are R-linear. Moreover, from the diagram (2.9), we see that showing the equality FilrMS [1/p] ∩
πFilr−2MS [1/p] = πFilr−1MS [1/p] is equivalent to showing that the right vertical arrow in (2.9) is injec-
tive. Note that by using Lemma 2.33 and Remark 2.34, we have that grr−2MS [1/p] = ⊕i+j=r−2griS ⊗R
grjM [1/p] and similarly for grr−1MS [1/p]. Therefore, the right vertical arrow in (2.9) induces R-linear
maps griS⊗RgrjM [1/p] π−→ gri−1S⊗RgrjM [1/p], for i+j = r−2. As grjM [1/p] is a projective R-module
and the preceding map is R-linear, it is enough to show that the map griS π−→ gri+1S, induced from the
multiplication-by-π map FiliS π−→ Fili+1S, is injective. This follows from Lemma 2.28. Hence, we obtain
that the right vertical arrow in (2.9) is injective, in particular, FilrMS [1/p]∩πMS [1/p] = πFilr−1MS [1/p],
for each r ∈ N.

Next, we note an application of Lemma 2.35, which will be used in §5. Let V be a positive crystalline
representation of GR as in §2.3 and let ODcris(V ) denote the associated filtered (φ, ∂)-module over
R[1/p]. From [Bri08, Proposition 8.3.1 and Proposition 8.3.2], we know that ODcris(V ), FilrODcris(V )
and grrODcris(V ) are finite projective R[1/p]-modules, for all r ∈ N. Let us assume that ODcris(V ) is
finite free over R[1/p] and there exists a finite free R-submodule M ⊂ ODcris(V ) such that M [1/p] =
ODcris(V ). Let S and S′ be as in Lemma 2.35 and equip MS and MS′ with induced filtrations, i.e.
FilrMS := FilrMS [1/p] ∩MS ⊂ MS [1/p] and FilrMS′ := FilrMS′ [1/p] ∩MS′ ⊂ MS′ [1/p]. As M is free
over R, the natural map MS →MS′ is injective and we note the following:

Lemma 2.38. For each r ∈ N, we have FilrMS = FilrMS′ ∩MS, as submodules of MS′. Moreover, if
S = E

[u,v]
R,ϖ , then we have FilrMS ∩ πMS = πFilr−1MS, as submodules of MS.

Proof. The first claim is obvious from the definition of the respective filtrations on MS and MS′ and using
Lemma 2.35. For the second claim, using Lemma 2.37, note that FilrMS ∩ πMS = πFilr−1MS [1/p] ∩
πMS = πFilr−1MS , as claimed.

Finally, let us note that V is a crystalline representation of GR, in particular, a de Rham represen-
tation and we have M [1/p] = ODcris(V ). Then by the definition of de Rham representations, we have a
natural OBdR(R)-linear isomorphism αdR : OBdR(R) ⊗R[1/p] M [1/p] ∼−→ OBdR(R) ⊗Qp V , compatible
with the tensor product filtration of Remark 2.34 on the left and the filtration on the right is induced by
the natural filtration on OBdR(R). In particular, we have that αdR(Filr(OBdR(R)⊗R[1/p] M [1/p])) ∼−→
FilrOBdR(R)⊗Qp V , for all r ∈ Z. Extending scalars along the natural map OBdR(R)→ B from §2.8.1,
we obtain the following B-linear isomorphism,

αB : B ⊗R[1/p] M [1/p] ∼−→ B ⊗Qp V. (2.10)

We equip the source of αB with the tensor product filtration of Remark 2.34 and the target with the
filtration induced by the natural filtration on B. Then by using Lemma 2.29 in an argument similar to
the proof of [Bri08, Proposition 8.3.2], we obtain the following:

Lemma 2.39. The isomorphism in (2.10) is compatible with the respective filtrations described above,
i.e. αB(Filr(B ⊗R[1/p] M [1/p])) ∼−→ FilrOBdR(R)⊗Qp V , for all r ∈ Z.

Proof. Note that (2.10) is an isomorphism and the filtation on M [1/p] is exhaustive, so it is enough to
show that the maps on the associated graded pieces, induced by (2.10), are bijective. For each r ∈ Z,
consider the following diagram:
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⊕i+j=rgriOBdR(R)⊗R[1/p] grjM [1/p] grrOBdR(R)⊗ V

⊕i+j=rgriB ⊗R[1/p] grjM [1/p] grrB ⊗ V,

∼

where the top horizontal arrow is the isomorphism induced by the filtration compatible OBdR(R)-linear
isomorphism αdR, the left vertical arrow is induced by the compatibility of filtrations on the source of
αdR and αB (see Remark 2.35) and the right vertical arrow is induced by the compatibility of filtrations
on the target of αdR and αB (see Lemma 2.29). Now, recall that from Lemma 2.29 we have griB ∼−→
tiC(R)[y0, . . . , yd] and from [Bri08, Proposition 5.2.6] we have that griOBdR(R) ∼−→ tiC(R)[y1, . . . , yd].
In particular, we see that griB ∼−→ Z[y0]⊗ZgriOBdR(R). Therefore, it follows that the bottom horizontal
arrow of the diagram above is given as the extension of scalars along Z → Z[y0] of the top horizontal
arrow, hence, it is also an isomorphism. This allows us to conclude.

2.8.3. Poincaré Lemma. In the notation of Definition 2.23, let us set A = A⋆
R,ϖ, B = R⋆

ϖ and

E = E⋆
R,ϖ, for ⋆ ∈ {PD, [u], [u, v]}. Let ω0 := d[X♭

0]
1+[X♭

0] and ωi := d[X♭
i ]

[X♭
i ] , for 1 ≤ i ≤ d. Set Ω1 := ⊕di=1Zωi

and Ωk := ∧k Ω1, for all k ∈ N. Then, we have Ωk
E/B = E ⊗Z Ωk and from Remark 2.25 (iv), note that

for r ∈ Z, we have the following filtered de Rham complex of E relative to B,

FilrΩ•
E/B := FilrE −→ Filr−1E ⊗Z Ω1 −→ Filr−2E ⊗Z Ω2 −→ · · · .

From the discussion before Lemma 2.38, let M be a finite free R-module such that M [1/p] =
ODcris(V ), where V is a positive crystalline representation of GR. Moreover, we set MB := B ⊗R M ,
equipped with a filtration induced from the tensor product filtration on MB[1/p], and similarly, we set
ME := E ⊗R M , equipped with a filtration induced from the tensor product filtration on ME [1/p].
Furthermore, the B-linear differential operator on E induces a quasi-nilpotent integrable connection
∂ : ME →ME⊗E Ω1

E/B satisfying Griffiths transversality with respect to the filtration (since ∂(FilrE) ⊂
Filr−1E). In particular, for each r ∈ Z, we have the following filtered de Rham complex,

FilrME ⊗ Ω•
E/B := FilrME −→ Filr−1ME ⊗E Ω1

E/B −→ Filr−2ME ⊗E Ω2
E/B −→ · · ·

= FilrME −→ Filr−1ME ⊗Z Ω1 −→ Filr−2ME ⊗Z Ω2 −→ · · · .

Using the equality MB = M∂=0
E and Lemma 2.38, let us note that we have FilrMB = FilrME ∩M∂=0

E =
(FilrME)∂=0 and we obtain the following filtered Poincaré Lemma:

Lemma 2.40. The natural map FilrMB → FilrME ⊗ Ω•
E/B is a quasi-isomorphism.

Proof. We have a natural injection ϵ : FilrMB → FilrME , so we give a contracting (B-linear) homotopy.
Note that M is a finite free R-module, so we may choose {f1, . . . , fh} as an R-basis of M . Now define a
B-linear map h0 : ME →MB as

∑h
j=1 ajfj 7→

∑h
j=1 aj,0fj , where aj is in E and aj,0 is the projection to

the 0-th coordinate (see Remark 2.25 (iii), where 0 corresponds to the coordinate (0, . . . , 0)). Moreover,
note that after inverting p and using the tensor product filtration on ME [1/p], we get that h0 induces a
B[1/p]-linear map h0 : FilrME [1/p] → FilrMB[1/p]. In particular, we obtain an induced B-linear map
h0 : FilrME →MB ∩ FilrMB[1/p] = FilrMB. It is clear that we have h0ϵ = id.

Next, for q > 0, define a B-linear map hq : ME ⊗Z Ωq → ME ⊗Z Ωq−1, given by the formula
hq

(
fjaj

∏d
i=0(Vi − 1)[ki]Vi1ωi1 ∧ · · · ∧ Viqωiq

)
= fjaj

∏d
i=0(Vi − 1)[ki+δji1 ]Vi2ωi2 ∧ · · · ∧ Viqωiq , if kj =

0 and 0 otherwise (here δ denotes the Kronecker δ-symbol). Moreover, note that after inverting p
and using the tensor product filtration on ME [1/p], we get that hq induces a B[1/p]-linear map hq :
Filr−qME [1/p] ⊗Z Ωq → Filr−q+1ME [1/p] ⊗Z Ωq−1. In particular, we obtain an induced B-linear map
hq : Filr−qME ⊗Z Ωq → Filr−q+1ME ⊗Z Ωq−1. It is easy to see ϵh0 + h1d = id and dhq + hq+1d = id.
Hence, we obtain the desired B-linear homotopy, proving the claim.
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3. Finite height p-adic representations

In this section, we will recall the notion of relative Wach modules from [Abh21] and prove some lemmas
that will be used later. We will use the setup and notations of §2.1, in particular, we fix some m ∈ N≥1.
Notation. For an algebra S admitting a Frobenius endomorphism φ and an S-module M admitting a
Frobenius-semilinear endomorphism φ : M → M , we will denote by φ∗(M) ⊂ M the S-submodule
generated by the image of φ.

3.1. Relative Wach modules. Set q := φ(π)/π in A+
R and let T be a free Zp-representation of

GR. Then, note that we have an A+
R-submodule D+(T ) := (A+ ⊗Qp T )HR ⊂ D(T ), equipped with

induced commuting actions of (φ,ΓR).

Definition 3.1 ([Abh21, Definition 4.8]). A Zp-representation T is said to be positive and of finite
q-height if there exists a finite projective A+

R-submodule N(T ) ⊂ D+(T ) of rank = rkZpT , stable under
the action of φ and ΓR and satisfying the following conditions:

(i) The natural AR-linear map AR ⊗A+
R

N(T ) ∼−→ D(T ) is a (φ,ΓR)-equivariant isomorphism, where
N(T ) is equipped with the induced action of (φ,ΓR);

(ii) The A+
R-module N(T )/φ∗(N(T )) is killed by qs for some s ∈ N;

(iii) The induced action of ΓR on N(T )/πN(T ) is trivial;

(iv) There exists R′ ⊂ R finite étale over R such that A+
R′ ⊗A+

R
N(T ) is free over A+

R′ .

The height of T is defined to be the smallest s ∈ N satisfying (ii) above. Furthermore, a positive finite
q-height p-adic representation V of GR is a representation admitting a positive finite q-height Zp-lattice
T ⊂ V and we set N(V ) := N(T )[1/p], satisfying properties analogous to (i)-(iv) above. The height
of V is defined to be the height of T . For k ∈ Z, let T (k) := T ⊗Zp Zp(k), V (k) := T (k)[1/p], define
N(T (k)) := 1

πk N(T )(k) and N(V (k)) := 1
πk N(V )(k) and set height of T (k) = (height of T )−k. We call

these twists as representations of finite q-height.

For general properties of Wach modules, we refer the reader to [Abh21, §4.2]. Let us note that there
is a natural filtration on Wach modules attached to finite q-height representations.

Definition 3.2. Let V be a finite q-height represenation of GR. For each r ∈ Z, set FilrN(V ) :=
{x in N(V ), such that φ(x) is in qrN(V )} and FilrN(T ) := FilrN(V ) ∩N(T ) ⊂ N(V ).

Lemma 3.3. We have FilrN(T ) = {x in N(T ), such that φ(x) is in qrN(T )}. Moreover, we have that
FilrN(T (k)) = π−kFilr+kN(T )(k) and FilrN(V (k)) = π−kFilr+kN(V )(k).

Proof. The first claim is true because qrN(V ) ∩N(T ) = (qrB+
R ∩A+

R) ⊗A+
R

N(T ) = qrN(T ). To show
the second claim, let π−kx⊗ ϵ⊗k be an element of Filrπ−kN(T )(k), with x ∈ N(T ) and ϵ⊗k a Zp-basis of
Zp(k). By assumption, φ(π−kx⊗ ϵ⊗k) = (qπ)−kφ(x)⊗ ϵ⊗k belongs to qrπ−kN(T )(k). Therefore, we see
that φ(x) belongs to qr+kN(T ), i.e. x is in Filr+kN(T ). The converse, π−kFilr+kN(T )(r) ⊂ FilrN(T (k)),
is obvious.

Lemma 3.4. Let T be a finite q-height Zp-representation of GR. Then, we have FilrN(T ) ∩ πN(T ) =
πFilr−1N(T ) ⊂ N(T ), for all r ∈ N. For V = T [1/p], a similar statement is true for N(V ).

Proof. Using Lemma 3.3, one can reduce to the case of positive finite q-height representations. The
claim is obvious if Filr−1N(T ) = N(T ). So we may assume that Filr−1N(T ) ⊊ N(T ), i.e. r ≥ 2. Let x
be any element of FilrN(T ) ∩ πN(T ) and write x = πy, for some y ∈ N(T ). We will show that y is in
Filr−1N(T ). Note that φ(x) is in qrN(T ), where q = φ(π)/π = p + πa, for some a ∈ A+

F . Therefore,
we get that πφ(y) is in qr−1N(T ), i.e. πφ(y) = qr−1z, for some z in N(T ). In particular, we have
qr−1z ≡ pr−1z ≡ 0 mod πN(T ). However, N(T )/πN(T ) is p-torsion free since A+

R/πA+
R

∼−→ R and
N(T ) is projective over A+

R. So, it follows that z is in πN(T ), i.e. y belongs to Filr−1N(T ). The other
inclusion is obvious, since πFilr−1N(T ) ⊂ FilrN(T ). This concludes our proof.



Syntomic complex and p-adic nearby cycles 22

Remark 3.5. Set FilrAinf(R) := ξrAinf(R) and FilrA := A ∩ FilrAinf(R) ⊂ Ainf(R), for each r ∈ N.
If T is a positive finite q-height Zp-representation of GR, then from [Abh21, Lemma 4.53] note that, for
the filtration on Wach modules as in Definition 3.2, we have FilrN(T ) = N(T ) ∩ FilrAinf(R) ⊗Zp T =
N(T ) ∩ FilrA⊗Zp T ⊂ Ainf(R)⊗Zp T , for each r ∈ N.

The operator ψ defined in §2.4 commutes with the action of GR, so by linearity, it extends to a map
ψ : D(T )→ D(T ) and from Proposition 2.4 we get that ψ(D+(T )) ⊂ D+(T ).

Lemma 3.6. Let T be positive finite q-height Zp-representation of GR of height s. Then for k ≥ s, we
have ψ(N(T (k))) ⊂ N(T (k)).

Proof. Note that we have qsN(T ) ⊂ φ∗(N(T )). So, for k ≥ s and x in N(T (k)), we must have that
φ(πk)x = (qπ)kx is in φ∗(N(T )(k)). Therefore, ψ(x) belongs to 1

πk N(T )(k) = N(T (k)).

3.2. Wach modules and crystalline representations. From [Abh21, §4.3.1], we have an
R-algebra OAPD

R,ϖ ⊂ OAcris(R) equipped with a Frobenius endomorphism φ, a continuous action of ΓR,
a ΓR-stable filtration and an APD

R,ϖ-linear integrable connection satisfying Griffiths transversality with
respect to the filtration and commuting with the action of φ and ΓR.

Theorem 3.7 ([Abh21, Theorem 4.24, Proposition 4.27, Corollary 4.26]). Let V be a finite q-height
representation of GR, then V is crystalline. Moreover, if V is positive then we have an isomorphism of
R[1/p]-modules M [1/p] :=

(
OAPD

R,ϖ ⊗A+
R

N(V )
)ΓR ∼−→ ODcris(V ), compatible with respective Frobenii,

filtrations and connections. Furthermore, we have a natural OAPD
R,ϖ-linear isomorphisms

OAPD
R,ϖ ⊗A+

R
N(V ) ∼←− OAPD

R,ϖ ⊗RM [1/p] ∼−→ OAPD
R,ϖ ⊗R ODcris(V ), (3.1)

compatible with the respective Frobenii, filtrations, connections and the actions of ΓR.

Remark 3.8. In Theorem 3.7, the OAPD
R,ϖ-module OAPD

R,ϖ ⊗A+
R

N(V ) is equipped with the following
structures: a Frobenius endomorphism, given as φ ⊗ φ; an APD

R,ϖ-linear connection, given by the nat-
ural APD

R,ϖ-linear differential operator ∂R ⊗ 1 (see Remark 2.27 for notations); an action of ΓR, where
any g in ΓR acts as g ⊗ g; an N-indexed decreasing filtration given as the tensor product filtration,
i.e. Filr

(
OAPD

R,ϖ ⊗A+
R

N(V )
)

=
∑
i+j=r FiliOAPD

R,ϖ ⊗A+
R

FiljN(V ). The aforementioned filtration is well
defined because each term FiliOAPD

R,ϖ ⊗A+
R

FiljN(V ) is an OAPD
R,ϖ-submodule of OAPD

R,ϖ ⊗A+
R
N . In-

deed, note that the OAPD
R,ϖ-linear composition FiliOAPD

R,ϖ ⊗A+
R

FiljN(V ) → FiliOAPD
R,ϖ ⊗A+

R
N(V ) →

OAPD
R,ϖ ⊗A+

R
N(V ) is injective, where the first arrow is obtained by tensoring the A+

R-linear inclusion
FiljN(V ) → N(V ) with the flat A+

R-module FiliOAPD
R,ϖ (see [Abh23, Remark 3.25]) and the second

arrow is obtained by tensoring the A+
R-linear inclusion FiliOAPD

R,ϖ → OAPD
R,ϖ with the flat A+

R-module
N(V ). The module M [1/p] is equipped with induced structures, in particular, the filtration on M [1/p]
is given as FilrM [1/p] =

(
Filr

(
OAPD

R,ϖ⊗A+
R

N(V )
))ΓR and its compatibility with the Hodge filtration on

ODcris(V ) is shown in [Abh21, §4.5.1]. Futhermore, in (3.1), the structure of the Frobenius, filtration,
connection and the action of ΓR on the left-hand term is clear from the discussion above. The middle
and right-hand terms are equipped with the following structures: a Frobenius endomorphism, given as
φ⊗ φ; an APD

R,ϖ-linear connection, given as ∂R ⊗ 1 + 1⊗ ∂D, where ∂D is the connection on ODcris(V )
(see §2.3); an action of ΓR, where any g in ΓR acts as g ⊗ 1; an N-indexed decreasing filtration given
as the tensor product filtration (see Lemma 2.33), where we use the filtration on M [1/p] as above and
the Hodge filtration on ODcris(V ). As the respective connections on OAPD

R,ϖ and ODcris(V ) satisfy
Griffiths transversality with respect to their respective filtrations, therefore, it follows that the connec-
tion on OAPD

R,ϖ ⊗R ODcris(V ) described above also satisfies Griffiths transversality with respect to the
tensor product filtration. Then, by the compatibility of the isomorphisms in (3.1) with connections and
filtrations, we see that the respective connection on each term of (3.1) satisfies Griffiths transversality
with respect to the filtration on it. Finally, note that the left-hand isomorphism in (3.1) is given as
ab⊗ x←[ a⊗ b⊗ x.

The proof of Theorem 3.7 depends on the following important observation:
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Lemma 3.9 ([Abh21, Proposition 4.27]). Let V be a positive finite q-height representation of GR such
that the A+

R-module N(T ) is finite free of rank = dimQp V . Then there exists a finite free R-module
M0 ⊂ M :=

(
OAPD

R,ϖ ⊗A+
R

N(T )
)ΓR , stable under the Frobenius and such that M0[1/p] = M [1/p] ∼−→

ODcris(V ) are free R[1/p]-modules of rank = dimQp V .

Proposition 3.10. Let V be a positive finite q-height representation of GR of height s such that N(T )
is free over A+

R. Let M0 ⊂ M :=
(
OAPD

R,ϖ ⊗A+
R

N(T )
)ΓR be the free R-module obtained in Lemma 3.9.

Then the R-module M0/φ
∗(M0) is killed by pms.

Proof. In order to prove the claim, we will use without recalling constructions and notations from
the proof of [Abh21, Proposition 4.28]. Let f = {f1, . . . , fh} be an A+

R-basis of N(T ). Then from
Lemma 3.9 and the proof of [Abh21, Proposition 4.28], we have that M0 is a free R-module with a
basis given as g = {g1, . . . , gh}, where g = φm(f)φm(A) for some A in GL(h,OŜPD

m ). It is easy to
see that M0 is independent of the choice of the A+

R-basis of N(T ). Note that we have q = φ(π)/π =
pφ(π/t)(t/π), and since π/t is a unit in OAPD

R,ϖ (see Lemma 2.18), therefore, we obtain that q and p

are associates in OAPD
R,ϖ. Furthermore, N(T )/φ∗(N(T )) is killed by qs, where s is the height of V . So(

OAPD
R,ϖ⊗A+

R
N(T )

)
/φm,∗

(
OAPD

R,ϖ⊗A+
R

N(T )
)

is killed by pms, where we write φm,∗
(
OAPD

R,ϖ⊗A+
R

N(T )
)

=
⊕hi=1OAPD

R,ϖφ
m(fi). Now, recall that detA is a unit in OŜPD

m (see [Abh21, Lemma 4.43]), therefore,
φm(detA) is a unit in OAPD

R,ϖ and φm(A) is invertible over OAPD
R,ϖ, in particular, OAPD

R,ϖ ⊗R M0
∼−→

φm,∗
(
OAPD

R,ϖ ⊗A+
R

N(T )
)
. So, it follows that the cokernel of the natural inclusion OAPD

R,ϖ ⊗R M0 ⊂
OAPD

R,ϖ ⊗A+
R

N(T ) is killed by pms. Moreover, the observation above also implies that the cokernel of
the injective map φm,∗

(
OAPD

R,ϖ ⊗RM0
)
⊂ OAPD

R,ϖ ⊗RM0
∼−→ φm,∗

(
OAPD

R,ϖ ⊗A+
R

N(T )
)

is killed by pms.
In other words, we get that pms

(
OAPD

R,ϖ⊗RM0
)
⊂ φm,∗

(
OAPD

R,ϖ⊗RM0
)
⊂ φ∗(

OAPD
R,ϖ⊗RM0

)
. Finally,

since the action of the Frobenius commutes with the action of ΓR, therefore, by taking ΓR-invariants we
get that pmsM0 ⊂ φ∗(M0), i.e. M0/φ

∗(M0) is killed by pms.

Remark 3.11. From the proof of Proposition 3.10, note that we have an inclusion ps
(
OAPD

R,ϖ ⊗A+
R

N(T )
)
⊂ φ∗(

OAPD
R,ϖ ⊗A+

R
N(T )

)
. Since the Frobenius commutes with the action of ΓR, therefore, by

taking ΓR-invariants of the preceding inclusion, we get that psM ⊂ φ∗(M). Moreover, from Lemma
3.9 and Proposition 3.10, since M0 ⊂ M , therefore, it also follows that the cokernel of the composition
OAPD

R,ϖ ⊗R M → OAPD
R,ϖ ⊗A+

R
N(T ) is killed by pms (in fact, the cokernel is killed by ps, see Remark

3.13).

Remark 3.12. Using Theorem 3.7, we equip M ⊂ M [1/p] with a p-adically quasi-nilpotent integrable
connection ∂ : M →M⊗RΩ1

R and an induced filtration compatible with the tensor product filtration on
OAPD

R,ϖ ⊗A+
R

N(V ) (see [Abh21, §4.5.1]); the connection satisfies Griffiths transversality with respect to
the filtration. Furthermore, using the explicit description of M0 in Proposition 3.10, we obtain an induced
filtration on M0 and an induced p-adically quasi-nilpotent integrable connection ∂ : M0 → M0 ⊗R Ω1

R,
satisfying Griffiths transversality with respect to the filtration.

Remark 3.13. Note that we fixed m ∈ N≥1 in the beginning and the R-modules obtained above depend
on this choice. In particular, let 1 ≤ m ≤ m′ with ϖ = ζpm − 1 and ϖ′ = ζpm′ − 1. Then we have an
inclusion OAPD

R,ϖ ⊂ OAPD
R,ϖ′ and we obtain that M =

(
OAPD

R,ϖ⊗A+
R

N(T )
)ΓR ⊂

(
OAPD

R,ϖ′⊗A+
R

N(T )
)ΓR =

M ′. As the cokernel of OAPD
R,ϖ ⊗R M → OAPD

R,ϖ ⊗A+
R

N(T ) is killed by pms (see Remark 3.11) and
OAPD

R,ϖ′ ⊗R M ⊂ OAPD
R,ϖ′ ⊗R M ′, therefore, the cokernel of OAPD

R,ϖ′ ⊗R M ′ → OAPD
R,ϖ′ ⊗A+

R
N(T )

is also killed by pms. In particular, taking m = 1, we see that the cokernel of OAPD
R,ϖ′ ⊗R M ′ →

OAPD
R,ϖ′ ⊗A+

R
N(T ) is always killed by ps. Finally, let M0 and M ′

0 be R-modules respectively obtained
for m and m′ in Lemma 3.9, then we have that φm′−m(M ′

0) ⊂M0.

3.3. Filtrations and a Poincaré Lemma. Let T be a positive finite q-height Zp-representation
of GR and set V = T [1/p]. Let N(T ) denote the associated Wach module over A+

R and set M :=
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(OAPD
R,ϖ ⊗A+

R
N(T ))ΓR as a finitely generated p-torsion free R-module. Now consider the following

diagram:
B ⊗R[1/p] M [1/p] B ⊗R[1/p] N(V )

B ⊗R[1/p] ODcris(V ) B ⊗R[1/p] V,

α
∼

≀ ≀ β
αB
∼

(3.2)

where the bottom horizontal arrow is the filtration compatible B-linear isomorphism from (2.10) (see
Lemma 2.39); the left vertical arrow is the extension of the R[1/p]-linear isomorphism M [1/p] ∼−→
ODcris(V ) (see the second isomorphism in (3.1) of Theorem 3.7), along R[1/p] → B, compatible with
the respective (tensor product) filtrations; the top horizontal arrow is the extension of the OAPD

R,ϖ-linear
isomorphism OAPD

R,ϖ ⊗RM [1/p] ∼−→ OAPD
R,ϖ ⊗A+

R
N(V ) (see the first isomorphism in (3.1) of Theorem

3.7), along OAPD
R,ϖ → B (see Remark 2.32); the right vertical arrow is the B-linear extension of the

natural inclusion N(V ) ⊂ Ainf(R)⊗Qp V ⊂ B⊗Qp V . The diagram commutes by definition and the right
vertical arrow is an isomorphism since the other three arrows are isomorphisms (see [Abh21, §4.5] for a
similar diagram over OBcris(R)). Using the left vertical arrow of the diagram (3.2), for each r ∈ Z, we
set

Filr(B ⊗A+
R

N(V )) := β−1(FilrB ⊗Qp V ). (3.3)

By the compatibility of the left vertical arrow and the bottom horizontal arrow of (3.2) with the respective
filtrations, an easy diagram chase in (3.2) shows that, for each r ∈ Z, the top horizontal arrow induces
a B-linear isomorphism,

α : Filr(B ⊗RM [1/p]) ∼−→ Filr(B ⊗A+
R

N(V )). (3.4)

3.3.1. Filtration on scalar extensions of Wach modules. Let S be any ring out of Acris(R),
OAcris(R), A⋆

R,ϖ for ⋆ ∈ {+,PD, [u], [u, v], (0, v]+}, E⋆

R,ϖ for ⋆ ∈ {PD, [u], [u, v]}, or E⋆

R
for ⋆ ∈

{PD, [u], [u, v]}. Let us set NS := S ⊗A+
R

N(T ). Note that we have a natural embedding NS →
B ⊗A+

R
N(V ) and we equip the former with an induced filtration from the latter, i.e. for each r ∈ Z,

using (3.3), set
FilrNS := NS ∩ Filr(B ⊗A+

R
N(V )) ⊂ B ⊗A+

R
N(V ). (3.5)

Similarly, we set FilrNS [1/p] := NS [1/p] ∩ Filr(B ⊗A+
R

N(V )), for each r ∈ Z, and it is clear that
FilrNS = NS ∩ FilrNS [1/p].

Remark 3.14. Let us take S and S′ to be any two rings out of Acris(R), OAcris(R), A⋆
R,ϖ for ⋆ ∈

{+,PD, [u], [u, v], (0, v]+}, E⋆

R,ϖ for ⋆ ∈ {PD, [u], [u, v]}, or E⋆

R
for ⋆ ∈ {PD, [u], [u, v]}, such that S ⊂ S′.

Then from the definition of filtrations on NS and NS′ in (3.5), it is clear that FilrNS = NS ∩ FilrNS′ ⊂
NS′ .

Lemma 3.15. The filtration on NS in (3.5) is stable under the natural action of GR on NS.

Proof. Let us consider the following diagram,

E
[u,v]
R
⊗RM [1/p] E

[u,v]
R
⊗A+

R
N(V )

B ⊗R[1/p] M [1/p] B ⊗A+
R

N(V ),

α
∼

α
∼

(3.6)

where the bottom horizontal arrow is the top horizontal isomorphism of (3.2); the top horizontal arrow
is the extension of the OAPD

R,ϖ-linear isomorphism OAPD
R,ϖ ⊗R M [1/p] ∼−→ OAPD

R,ϖ ⊗A+
R

N(V ) (see the

first isomorphism in (3.1) of Theorem 3.7), along the GR-equivariant map OAPD
R,ϖ → E

[u,v]
R

(see Remark
2.27) and compatible with the respective Frobenii, A[u,v]

R
-linear connections and the actions of GR; the

vertical maps are extensions of scalars along the map E
[u,v]
R
→ B (see Lemma 2.31). Now by using the
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compatibility of the tensor product filtrations for extension of scalars E[u,v]
R,ϖ → B (see Remark 2.35) and

the isomorphism in (3.4), an easy diagram chase in (3.6) shows that, for each r ∈ Z, the top horizontal
arrow induces the following E[u,v]

R
-linear isomorphism,

α : Filr
(
E

[u,v]
R
⊗RM [1/p]

) ∼−→ Filr
(
E

[u,v]
R
⊗A+

R
N(V )

)
. (3.7)

As the source of (3.7) is stable under the natural action of GR on E[u,v]
R
⊗RM [1/p] and the top horizontal

arrow of (3.6) is GR-equivariant, therefore, it follows that the target of (3.7) is stable under the natural
action of GR on E

[u,v]
R
⊗A+

R
N(V ). Finally, note that every S admits a GR-equivariant injective map

S → E
[u,v]
R

(see §2.8.1), so by using Remark 3.14, we obtain that FilrNS is stable under the natural
action of GR on NS .

Remark 3.16. Let S be any ring out of OAcris(R), E⋆

R,ϖ for ⋆ ∈ {PD, [u], [u, v]}, or E⋆

R
for ⋆ ∈

{PD, [u], [u, v]}. Then by extending the OAPD
R,ϖ-linear isomorphism OAPD

R,ϖ⊗RM [1/p] ∼−→ OAPD
R,ϖ⊗A+

R

N(V ) (see the first isomorphism in (3.1) of Theorem 3.7), along the GR-equivariant map OAPD
R,ϖ → S

(see Remark 2.27), we obtain an S-linear isomorphism S ⊗RM [1/p] ∼−→ S ⊗A+
R

N(V ) compatible with
the respective Frobenii, the actions of GR and the natural A⋆

R,ϖ-linear or A⋆

R
-linear (depending on S)

extension of the respective connections. Moreover, by using Remark 3.14 and an argument similar to
the proof of Lemma 3.15 shows that, for each r ∈ Z, the isomorphism in (3.7) induces a GR-equivariant
S-linear isomorphism,

α : Filr(S ⊗RM [1/p]) ∼−→ Filr(S ⊗A+
R

N(V )). (3.8)

In particular, as the connection on S ⊗R M [1/p] satisfies Griffiths transversailty with respect to the
tensor product filtration, therefore, similar to Remark 3.8, it follows that the connection on S⊗A+

R
N(V )

satisfes Griffiths transversality with respect to the filtration in (3.5).

Remark 3.17. Let E = E⋆
R,ϖ or E⋆

R
, for ⋆ ∈ {PD, [u], [u, v]} and we claim that Filr(E ⊗A+

R
N(V )) =∑

i+j=r FiliE ·FiljN(V ), where FiliE ·FiljN(V ) denotes the image of FiliE⊗A+
R

FiljN(V )→ E⊗A+
R

N(V ).
Indeed, using Lemma 2.31, Remark 3.5 and (3.4), it easily follows that FiliE · FiljN(V ) ⊂ Filr(B ⊗A+

R

N(V )), in particular, from (3.5) we deduce that
∑
i+j=r FiliE ·FiljN(V ) ⊂ Filr(E⊗A+

R
N(V )). To show

the reverse inclusion, recall that FilrM [1/p] ∼−→ FilrODcris(V ) is a finite projective R[1/p]-module (see
Theorem 3.7 and [Bri08, Proposition 8.3.2]), in particular, flat as an R-module and the natural map
FiliE ⊗R FiljM [1/p]→ E ⊗RM [1/p] is injective by Lemma 2.33, for each i, j ∈ N; we denote the image
as FiliE · FiljM [1/p] and note that Filr(E ⊗RM [1/p]) =

∑
i+j=r FiliE ⊗R FiljM [1/p] =

∑
i+j=k FiliE ·

FiljM [1/p]. Now, since the isomorphism E ⊗R[1/p] M [1/p] ∼−→ E ⊗A+
R

N(V ) is given by the natural
multiplication map and the filtration on M [1/p] is given as the tensor product filtration (see Remark
3.8), therefore, we obtain that the natural map

∑
i+j=k FiliE · FiljM [1/p]→

∑
i+j=r FiliE · FiljN(V ) is

injective. But from (3.8), we have that Filr(S ⊗RM [1/p]) ∼−→ Filr(S ⊗A+
R

N(V )). Hence, it follows that
Filr(E ⊗A+

R
N(V )) =

∑
i+j=r FiliE · FiljN(V ).

Next, let S be any ring out of A⋆
R,ϖ for ⋆ ∈ {+,PD, [u], [u, v], (0, v]+} or E⋆

R,ϖ for ⋆ ∈ {PD, [u], [u, v]}
and set NS := S ⊗A+

R
N(T ). Then, similar to Lemma 3.4, we claim the following:

Lemma 3.18. For each r ∈ Z, we have FilrNS ∩ πNS = πFilr−1NS.

Proof. Note that the claim is clear for r ≤ 0, so let r ≥ 1. Let S′ = E
[u,v]
R,ϖ and using the definition of the

filtration on NS′ [1/p] in (3.5), the S′-linear isomorphism in (3.7) and Lemma 2.37, note that

FilrNS′ [1/p] ∩ πNS′ [1/p] = α(Filr(S′ ⊗RM [1/p])) ∩ α(πS′ ⊗RM [1/p])
= α(Filr(S′ ⊗RM [1/p]) ∩ π(S′ ⊗RM [1/p]))
= α(πFilr−1(S′ ⊗RM [1/p])) = πFilr−1NS′ [1/p].
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In particular, we have FilrNS′ ∩πNS′ = πFilr−1NS′ [1/p]∩πNS′ = πFilr−1NS′ . Now, using the definition
of the filtration on NS in (3.5), Remark 3.14 and the equality above, we get FilrNS∩πNS ⊂ πFilr−1NS′∩
πNS = πFilr−1NS . The other inclusion, i.e. πFilr−1NS ⊂ FilrNS ∩ πNS is obvious. This allows us to
conclude.

Lemma 3.19. Let S = A⋆
R,ϖ for ⋆ ∈ {+,PD, [u], [u, v], (0, v]+} or E⋆

R,ϖ for ⋆ ∈ {PD, [u], [u, v]}.
Then we have FilrNS [1/p] =

∑
i+j=r FiliS · FiljN(V ), where FiliS · FiljN(V ) denotes the image of

FiliS ⊗A+
R

FiljN(V )→ NS [1/p].

Proof. Note that the claim for E⋆
R,ϖ was shown in Remark 3.17. For A⋆

R,ϖ, the claim for ⋆ ∈ {PD, [u], [u, v]}
follows from the proof of Lemma 3.22 (see Remark 3.23) and for A+

R,ϖ, the claim follows from Lemma
3.20. So it remains to show the claim for A(0,v]+

R,ϖ . Let S = A(0,v]+
R,ϖ , A = A+

R,ϖ, B = A[u]
R,ϖ, C = A[u,v]

R,ϖ ,
and N [1/p] = N(V ). Note that by definition, we have C = S + B and the ideal FiliC is topologically
generated by FiliS + FiliB, for all i ∈ N (see Remark 2.8). Moreover, from Remark 3.23, we have
that FilrNB[1/p] =

∑
i+j=r FiliB ·FiljN [1/p] and FilrNC [1/p] =

∑
i+j=r FiliC ·FiljN [1/p]. So by setting

M :=
∑
i+j=r FiliS ·FiljN [1/p], we see that FilrNC [1/p] =

∑
i+j=r FiliC ·FiljN [1/p] = M+FilrNB[1/p] =

FilrNS [1/p] + FilrNB[1/p]. Now, consider the following diagram with exact rows:

0 M M + FilrNB[1/p] (FilrNB[1/p])/(M ∩ FilrNB[1/p]) 0

0 FilrNS [1/p] FilrNC [1/p] (FilrNC [1/p])/(FilrNS [1/p]) 0,

where the left vertical arrow is injective (by an argument similar to the first part of Remark 3.17).
To get the claim, it is enough to show that the right vertical arrow is bijective. Note that we have
(FilrNC [1/p])/(FilrNS [1/p]) = (FilrNS [1/p]+FilrNB[1/p])/(FilrNS [1/p]) = (FilrNB[1/p])/(FilrNS [1/p]∩
FilrNB[1/p]). It is clear that M ∩ FilrNB[1/p] ⊂ FilrNS [1/p] ∩ FilrNB[1/p], and we claim that the re-
verse inclusion also holds. Indeed, as N [1/p] is a finite projective A+

R[1/p]-module and A = S ∩B ⊂ C,
therefore, we get that NA[1/p] = NS [1/p] ∩ NB[1/p] ⊂ NC [1/p]. Then, it follows that FilrNS [1/p] ∩
FilrNB[1/p] ⊂ NS [1/p] ∩ NB[1/p] = NA[1/p], in particular, we see that FilrNS [1/p] ∩ FilrNB[1/p] =
FilrNA[1/p] ∩ FilrNB[1/p] ⊂ M ∩ FilrNB[1/p], where the equality follows from Remark 3.14 and the
inclusion follows by using the description of FilrNA[1/p] from Lemma 3.20. Hence, we obtain that the
left vertical arrow in the diagram above is bijective as well, i.e. FilrNS [1/p] =

∑
i+j=r FiliS · FiljN(V ).

This concludes our proof.

Set FiliAinf(R) := Ainf(R) ∩ FiliAcris(R) = ξiAinf(R) ⊂ Acris(R), for i ∈ Z, and we claim the
following:

Lemma 3.20. For S = A+
R,ϖ and any r ∈ Z, we have FilrNS [1/p] = (FilrAinf(R)⊗Zp V ) ∩NS [1/p] =∑

i+j=r FiliA+
R,ϖ · FiljN(V ).

Proof. The first equality is obvious from the definition of the filtration on NS [1/p] in (3.5) and Remark
3.14. For the second equality, we will show a stronger claim: FilrNS =

∑
i+j=r FiliA+

R,ϖ ·FiljN(T ). From
the first equality, note that we have FilrNS = (FilrAinf(R)⊗Zp V )∩NS = (FilrAinf(R)⊗Zp T )∩NS . Let
us set F rNS :=

∑
i+j=r FiliA+

R,ϖ ·FiljN(T ), for each r ∈ N, and note that the inclusion F rNS ⊂ FilrNS

is obvious. To prove the reverse inclusion, we will simplify the claim a bit. Note that the natural map
A+
R,ϖ ⊗A+

R
FilrN(T ) → NS is injective because the morphism A+

R → A+
R,ϖ is flat. So it follows that

we have F rNS =
∑
i+j=r FiliA+

R,ϖ ⊗A+
R

FiljN(T ) = ξF r−1NS + A+
R,ϖ ⊗A+

R
FilrN(T ). Now, to show

the inclusion FilrNS ⊂ F rNS , we will proceed by induction on r ∈ N. The case r = 0 is trivial, so
assume that r ≥ 1 and the claim holds for all k ≤ r− 1. Let us note that inside Ainf(R)⊗Zp T , we have
FilrNS ∩ ξFilr−2NS = (ξrAinf(R)⊗Zp T ) ∩NS ∩ (ξr−1Ainf(R)⊗Zp T ) ∩ ξNS = ξFilr−1NS . Therefore, it
follows that the natural inclusion FilrNS ⊂ Filr−1NS induces an injective map (FilrNS)/(ξFilr−1NS)→
(Filr−1NS)/(ξFilr−2NS), where we have,

(Filr−1NS)/(ξFilr−2NS) = (A+
R,ϖ ⊗A+

R
Filr−1N(T ))/((A+

R,ϖ ⊗A+
R

Filr−1N(T )) ∩ (ξFilr−2NS)).
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In particular, given any element x in FilrNS , we can write x = ξy+ z, for some y ∈ Filr−1NS = F r−1NS

and z ∈ A+
R,ϖ ⊗A+

R
Filr−1N(T ). To obtain the claim, it is enough to show that z is an element of F rNS .

Note that we have FilrNS = (ξrAinf(R) ⊗Zp T ) ∩ NS , so we see that z = x − ξy = ξrz′, for some
z′ ∈ Ainf(R) ⊗Zp T . Recall that we have A+

R,ϖ = A+
R[πm], where πm = φ−m(π), and it follows that

any element in a ∈ A+
R,ϖ has a unique presentation as a =

∑e
i=0 ai(1 + πm)i/p, with ai ∈ A+

R and
e = pm−1(p − 1). Now, let us write z =

∑
j fjnj , for some fj ∈ A+

R,ϖ and nj ∈ Filr−1N(T ). Then
expressing each fj as above, i.e. in terms of the powers of 1 + πm, and rearranging the sum for z
in terms of the powers of 1 + πm, we get that z =

∑e
i=0 zi(1 + πm)i/p, for some zi ∈ Filr−1N(T )

(obtained from elements nj above). Now, by using Remark 3.5, we can write each zi as ξr−1wi, for
some wi ∈ Ainf(R)⊗Zp T . Plugging the values of z and zi into the equality z =

∑e
i=0 zi(1 + πm)i/p and

noting that ξ is a nonzerodivisor on Ainf(R)⊗Zp T , we get that ξz′ =
∑e
i=0wi(1 + πm)i/p. Reducing the

latter equality modulo ξAinf(R) ⊗Zp T , we obtain the equality
∑e
i=0wiζ

i/p
pm = 0 mod ξ in C(R) ⊗Zp T ,

which is possible only if w0 = w1 = · · · = we mod ξAinf(R)⊗Zp T . So we write ξz′ = ξw0 +
∑e
i=1(wi −

w0)(1 + πm)i/p, with wi − w0 ∈ ξAinf(R) ⊗Zp T , for each 1 ≤ i ≤ e. In particular, we get that
z = ξrz′ = ξrw0 +

∑e
i=1 ξ

r−1(wi − w0)(1 + πm)i/p = ξz0 +
∑e
i=1(zi − z0)(1 + πm)i/p. Note that z0 is in

Filr−1N(T ) and zi − z0 = ξr−1(wi −w0) is in (ξrAinf(R)⊗Zp T ) ∩ Filr−1N(T ) = FilrN(T ) (see Remark
3.5), for each 1 ≤ i ≤ e. Therefore, it follows that z belongs to ξFilr−1NS+A+

R,ϖ⊗A+
R

FilrN(T ) = F rNS .
This allows us to conclude.

Next, let k ∈ Z and consider the p-adic representation V (k) of GR. Using (3.5) and Lemma 3.15, we
define a ΓR-stable filtration on E

[u,v]
R,ϖ ⊗A+

R
N(V (k)) as follows:

Filr
(
E

[u,v]
R,ϖ ⊗A+

R
N(V (k))

)
:= π−kFilr+k

(
E

[u,v]
R,ϖ ⊗A+

R
N(V )

)
(k). (3.9)

From the explicit description of the filtration in Remark 3.17 and by using Lemma 3.3, it follows that
we have Filr

(
E

[u,v]
R,ϖ ⊗A+

R
N(V (k))

)
=

∑
i+j=r FiliE[u,v]

R,ϖ ·FiljN(V (k)). Furthermore, let S be any ring out
of A⋆

R,ϖ for ⋆ ∈ {+,PD, [u], [u, v], (0, v]+}, or E⋆

R,ϖ for ⋆ ∈ {PD, [u], [u, v]}. Then we note that we have
a natural embedding S ⊗A+

R
N(T (k))→ E

[u,v]
R,ϖ ⊗A+

R
N(V (k)), and we equip the former with an induced

ΓR-stable filtration from the latter, i.e. for each r ∈ Z, set

Filr
(
S ⊗A+

R
N(T (k))

)
:=

(
S ⊗A+

R
N(T (k))

)
∩ Filr

(
E

[u,v]
R,ϖ ⊗A+

R
N(V (k))

)
⊂ E[u,v]

R,ϖ ⊗A+
R

N(V (k)). (3.10)

Using (3.9) and Remark 3.14, it easily follows that,

Lemma 3.21. For each r ∈ Z, we have Filr
(
S ⊗A+

R
N(T (k))

)
= π−kFilr+k

(
S ⊗A+

R
N(T )

)
(k).

3.3.2. Filtered Poincaré Lemma. In the notation of §2.8.3, let us set A = A⋆
R,ϖ (resp. A⋆

R
),

B = R⋆
ϖ and E = E⋆

R,ϖ (resp. E⋆

R
), for ⋆ ∈ {PD, [u], [u, v]}. Let ω0 := dX0

1+X0
and ωi := dXi

Xi
, for

1 ≤ i ≤ d. Set Ω1 := ⊕di=1Zωi and Ωk := ∧k Ω1. Then, we have Ωk
E/A = E ⊗Z Ωk and from Remark 2.25

(iv), note that for r ∈ Z, we have the following filtered de Rham complex of E relative to A,

FilrΩ•
E/A := FilrE −→ Filr−1E ⊗Z Ω1 −→ Filr−2E ⊗Z Ω2 −→ · · · .

Let T be a positive finite q-height Zp-representation of GR as above and assume that N(T ) is finite
free over A+

R. Let us set NA := A ⊗A+
R

N(T ), equipped with a filtration as in (3.5), and similarly,
we set NE := E ⊗A+

R
N(T ), equipped with a filtration as in (3.5). Note that the A-linear differential

operator on E induces a quasi-nilpotent integrable connection ∂ : NE → NE⊗E Ω1
E/A satisfying Griffiths

transversality with respect to the filtration (since the same is true after inverting p, see Remark 3.16).
In particular, for each r ∈ Z, we have the following filtered de Rham complex,

FilrNE ⊗ Ω•
E/A := FilrNE −→ Filr−1NE ⊗E Ω1

E/A −→ Filr−2NE ⊗E Ω2
E/A −→ · · ·

= FilrNE −→ Filr−1NE ⊗Z Ω1 −→ Filr−2NE ⊗Z Ω2 −→ · · · .

Using the equality NA = N∂=0
E and (3.5), we note that FilrNA = FilrNE ∩N∂=0

E = (FilrNE)∂=0. Then,
we have the following filtered Poincaré Lemma:
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Lemma 3.22. The natural map FilrNA → FilrNE ⊗ Ω•
E/A is a quasi-isomorphism.

Proof. The proof is the same as the proof of Lemma 2.40, with some small changes. We have a natural
injection ϵ : FilrNA → FilrNE , so we give a contracting (A-linear) homotopy. Define an A-linear map
h0 : NE → NA as

∑h
j=1 ajfj 7→

∑h
j=1 aj,0fj , where {f1, . . . , fh} is an A+

R-basis of N(T ) and aj is in
E with aj,0 its projection to the 0-th coordinate (see Remark 2.25 (iii)). Moreover, after inverting
p and using the description of the filtration on NE [1/p] in Remark 3.17, we see that h0 induces an
A[1/p]-linear map h0 : FilrNE [1/p] → FilrNA[1/p] (using Remark 3.17 note that, h0(FilrNE [1/p]) =∑
i+j=r FiliA·FiljN(V ) ⊂ FilrNA[1/p]). In particular, we obtain an induced A-linear map h0 : FilrNE →

NA ∩ FilrNA[1/p] = FilrNA, and it is clear that h0ϵ = id.
Next, for q > 0, define an A-linear map hq : NE ⊗Z Ωq → NE ⊗Z Ωq−1 given by the formula

hq
(
fjaj

∏d
i=0(Vi− 1)[ki]Vi1ωi1 ∧ · · · ∧Viqωiq

)
= fjaj

∏d
i=0(Vi− 1)[ki+δji1 ]Vi2ωi2 ∧ · · · ∧Viqωiq , if kj = 0 and

0 otherwise. Moreover, after inverting p and using the description of filtration on NE [1/p] in Remark
3.17, we get that hq induces an A[1/p]-linear map hq : Filr−qNE [1/p]⊗Z Ωq → Filr−q+1NE [1/p]⊗Z Ωq−1.
In particular, we obtain an induced A-linear map hq : Filr−qNE ⊗Z Ωq → Filr−q+1NE ⊗Z Ωq−1. It is easy
to see ϵh0 + h1d = id and dhq + hq+1d = id. This allows us to conclude.

Remark 3.23. From the proof of Lemma 3.22, using the map h0 : FilrNE [1/p]→ FilrNA[1/p], it follows
that for any r ∈ Z, we have FilrNA[1/p] =

∑
i+j=r FiliA · FiljN(V ), where FiliA · FiljN(V ) denotes the

image of FiliA⊗A+
R

FiljN(V )→ A⊗A+
R

N(V ).

3.4. Relative Fontaine-Laffaille modules. In this subsection we will consider the category of
relative Fontaine-Laffaille modules MF[0,s], free(R,Φ, ∂) defined in [Tsu20, §4] as a full subcategory of the
abelian category MF∇

[0,s](R) introduced in [Fal89, §II]. Let s ∈ N such that s ≤ p− 2.

Definition 3.24. Define the category of free relative Fontaine-Laffaille modules of level [0, s], denoted
by MF[0,s], free(R,Φ, ∂), as follows:
An object with weights/level in the interval [0, s] is a quadruple (M,Fil•M,∂,Φ) such that,

(i) M is a free R-module of finite rank. It is equipped with a decreasing filtration {FilkM}k∈Z by
finite R-submodules, with Fil0M = M and Fils+1M = 0, and such that grkFilM is a finite free
R-module for all k ∈ Z.

(ii) The connection ∂ : M →M⊗RΩ1
R is quasi-nilpotent and integrable and satisfies Griffiths transver-

sality with respect to the filtration, i.e. ∂(FilkM) ⊂ Filk−1M ⊗R Ω1
R for all k ∈ Z.

(iii) Let (φ∗(M), φ∗(∂)) denote the pullback of (M,∂) by φ : R → R, and equip it with a decreasing
filtration Filkp(φ∗(M)) =

∑
i∈N(pi/i!)φ∗(Filk−iM), for all k ∈ Z. We suppose that there is an

R-linear morphism Φ : φ∗(M)→M such that Φ is compatible with connections, Φ
(
Filkp(φ∗(M))

)
⊂

pkM , for 0 ≤ k ≤ s, and
∑s
k=0 p

−kΦ
(
Filkp(φ∗(M))

)
= M . We denote the composition M →

φ∗(M) Φ−→M by φ.

A morphism between two objects of the category MF[0,s], free(R,Φ, ∂) is a continuous R-linear map
compatible with the homomorphism Φ and the connection ∂ on each side.

Remark 3.25. In Definition 3.24 (iii), note that φ∗(M) denotes the R-module R⊗φ,RM on which the
OF -linear connection is given by the formula φ∗(∂)(a⊗ x) = da⊗ x+ a⊗ ∂(x), for any a in R and x in
M . Furthermore, compatibility of the R-linear morphism Φ : φ∗(M)→M with connections means that
for any a in R and x in M , we must have ∂ ◦ Φ(a⊗ x) = Φ ◦ φ∗(∂)(a⊗ x).

To an object M in MF[0,s], free(R,φ,Fil), we functorially associate a Zp-module as T ∗
cris(M) :=

HomR,Fil,φ,∂(M,OAcris(R)), i.e. R-linear maps from M to OAcris(R), compatible with the respective
Frobenii, filtrations and connections. Set Tcris(M) := HomZp(T ∗

cris(M),Zp), and note that it is a finite
free Zp-module of rank = rkRM , admitting a continuous action of GR. By [Fal89] and [Tsu20], it is
known that the p-adic representation Vcris(M) := Qp⊗Zp Tcris(M) is crystalline with Hodge-Tate weights
in the interval [−s, 0].
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Theorem 3.26 ([Abh21, Theorem 5.4]). For a free relative Fontaine-Laffaille module M over R of level
[0, s], the associated p-adic representation Vcris(M) := Qp⊗Zp Tcris(M) of GR is a positive finite q-height
representation (in the sense of Definition 3.1).
Remark 3.27. (i) The results of [Abh21] are shown for s = p − 2. However, all the arguments can

be adapted almost verbatim (by replacing p− 2 everywhere by any 0 ≤ s ≤ p− 2).

(ii) Let M be a free relative Fontaine-Laffaille module over R of level [0, s] and let T = Tcris(M) be its
associated Zp-representation of GR. Then, from Theorem 3.26 we have a free relative Wach module
N(T ) over A+

R, associated to T . Moreover, by combining [Abh21, Propositions 5.23 & 5.27] and the
proof of [Abh21, Theorem 5.4], we have a natural isomorphism OAPD

R,ϖ⊗RM
∼−→ OAPD

R,ϖ⊗A+
R

N(T ),
compatible with the respective Frobenii, filtrations, connections and the actions of ΓR.

(iii) From the proof of [Abh21, Theorem 5.4], one can observe that M/Φ(φ∗(M)) is ps-torsion and s
equals the maximum among the absolute value of Hodge-Tate weights of Vcris(M).

Remark 3.28. In Defintion 3.24, we considered finite free R-modules. For R/pn-module M/pn, the
associated Z/pn-representation of GR is given as Tcris(M/pn) = Tcris(M)/pn. Moreover, we associate
a Wach module to T/pn = Tcris(M)/pn as N(T/pn) := N(T )/pn and we have a natural isomorphism
OAPD

R,ϖ/p
n⊗A+

R/p
n N(T/pn) ∼−→ OAPD

R,ϖ/p
n⊗R/pn M/pn compatible with the respective Frobenii, filtra-

tions, connections and the actions of ΓR (see [Abh21, §5.3]).

4. Galois cohomology complexes
In this section, we will describe Koszul complexes computing the cohomology for the action of ΓR and
Lie ΓR on certain modules.

4.1. Relative Fontaine-Herr complex. From §2.4, recall that we have an equivalence between
Zp-representations of GR and étale (φ,ΓR)-modules over AR, so it is natural to expect that the con-
tinuous GR-cohomology groups of a Zp-representation T could be computed using its associated étale
(φ,ΓR)-module D(T ). Below, we will consider the continuous cohomology (for the weak topology) of
étale (φ,ΓR)-modules over AR and A†

R (see §2.4).

Definition 4.1. Let D be an étale (φ,ΓR)-module over AR or A†
R. In the derived category of abelian

groups, let RΓcont(ΓR, D) denote the complex of continuous cochains with values in D.
Theorem 4.2 ([Her98], [AI08, Theorem 3.3, Theorem 7.10.6]). Let T in RepZp

(GR) and let D(T ) and
D†(T ) be the associated étale (φ,ΓR)-module over AR and A†

R, respectively. Then we have natural
quasi-isomorphisms [

RΓcont(ΓR,D(T )) 1−φ−−→ RΓcont(ΓR,D(T ))
]
≃ RΓcont(GR, T ),[

RΓcont(ΓR,D†(T )) 1−φ−−→ RΓcont(ΓR,D†(T ))
]
≃ RΓcont(GR, T ).

Remark 4.3. Theorem 4.2 is also valid for S = R[ϖ], where ϖ = ζpm − 1, and we replace GR by
GS ◁ GR, ΓR by ΓS = Γ′

R ⋊ ΓK ◁ ΓR and consider complexes in terms of étale (φ,ΓS)-modules over
respective period rings AR,ϖ and A†

R,ϖ (defined in an obvious way).

4.2. Koszul complexes. Recall that K = F (ζpm) for m ∈ N≥1. Let S = R[ϖ] for ϖ = ζpm − 1.
From §2.4, recall that S∞[1/p] = R∞[1/p] is a Galois extension of S[1/p], with Galois group ΓS = Γ′

R ⋊
ΓK ◁ΓR. Also recall that we fixed topological generators {γ0, γ1, . . . , γd} of ΓS such that {γ1, . . . , γd} are
topological generators of Γ′

S := Γ′
R and γ0 is a lift (to ΓS) of a topological generator of ΓK . Furthermore,

χ denotes the p-adic cyclotomic character and recall that c = χ(γ0) = exp(pm).
In this subsection, we will recall the definition of Koszul complexes from [CN17, §4.2] computing

continuous ΓS-cohomology of topological modules admitting a continuous action of ΓS , in particular,
étale (φ,ΓS)-modules (see Remark 4.3). Let τi = γi−1, for 1 ≤ i ≤ d, and set K(τi) : 0 −→ ZpJτiK

τi−−−→
ZpJτiK −→ 0, where the non-trivial map is multiplication by τi and the right-hand term is placed in
degree 0.
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Definition 4.4. Define K(τ1, . . . , τd) := K(τ1)⊗̂ZpK(τ2)⊗̂Zp · · · ⊗̂ZpK(τd), to be the Koszul complex
associated to (τ1, . . . , τd).

Remark 4.5. The degree q term in the complex K(τ1, . . . , τd) (Definition 4.4) equals the exterior power
∧qAAd, where A = ZpJτ1, . . . , τdK

∼−→ ZpJΓ′
SK, the last term denotes the Iwasawa algebra of Γ′

S . The
differential d1

q−1 : ∧qAAd → ∧
q−1
A Ad is given as d1

q−1
(
ei1···iq

)
=

∑q
k=1(−1)k+1e

i1···îk···iqτik , in the standard
basis {ei1···iq , 1 ≤ i1 < · · · < iq ≤ d} of ∧qAAd. In the category of topological A-modules, the augmentation
map A → Zp makes K(τ1, . . . , τd) into a resolution of Zp. Explicitly, the Koszul complex K(τ1, . . . , τd)
is given as,

0 AI
′
d · · · AI

′
1 A 0,

d1
d−1 d1

1 d1
0

where we have AI′
q = ⊕I′

q
A, for I ′

q = {(i1, . . . , iq), 1 ≤ i1 < · · · < iq ≤ d}, and the differentials are
as described above. Similarly, for c = χ(γ0), we can define the Koszul complex K(τ c1 , . . . , τ cd), where
τ ci := γci − 1.

Definition 4.6. Let Λ := ZpJΓSK and define the complex

K(Λ) := 0 ΛI′
d · · · ΛI′

d Λ 0,
d1

d−1 d1
1 d1

0

where we have ΛI′
q = ⊕I′

q
Λ and the indexing sets I ′

q were described in Remark 4.5. From [Mor08, Lemma
4.3], we have an isomorphism of complexes limm Zp

[
ΓK/ (ΓK)pm]

⊗Zp K(τ1, . . . , τd)
∼−→ K(Λ). Similarly,

one can obtain Kc(Λ) from K(τ c1 , . . . , τ cd). Both K(Λ) and Kc(Λ) are resolutions of ZpJΓKK in the
category of topological left Λ-modules.

Example 4.7. For d = 2, the complex K(Λ) in Definition 4.6 is given as follows:

0 Λ Λ⊕ Λ Λ 0,
d1

1 d1
0

where d1
1(x) = (−xτ2, xτ1) and d1

0(y, z) = yτ1 + zτ2.

Definition 4.8. Define a map τ0 : Kc(Λ) → K(Λ) by setting in each degree τ0
0 = γ0 − 1 and τ q0 :(

ai1···iq
)
7→

(
ai1···iq

(
γ0 − δi1···iq

))
, for 1 ≤ q ≤ d, 1 ≤ i1 < · · · < iq ≤ d and δi1···iq = δiq · · · δi1 , with

δij =
(
γcij − 1

)(
γij − 1

)−1.

Let M be a topological Zp-module admitting a continuous action of ΓS .

Definition 4.9. Define the two Γ′
S-Koszul complexes with values in M by setting Kos(Γ′

S ,M) :=
HomΛ,cont(K(Λ),M) and Kosc(Γ′

S ,M) := HomΛ,cont(Kc(Λ),M). Moreover, define the ΓS-Koszul complex
with values in M as Kos(ΓS ,M) :=

[
Kos(Γ′

S ,M) τ0−−−→ Kosc(Γ′
S ,M)

]
.

Proposition 4.10 ([Laz65, Lazard], [CN17, §4.2]). There exists a natural quasi-isomorphism of com-
plexes Kos(ΓS ,M) ≃ RΓcont(ΓS ,M).

Definition 4.11. Let D be an étale (φ,ΓS)-module over AR,ϖ and set

Kos(φ,ΓS , D) :=


Kos(Γ′

S , D) 1−φ //

τ0
��

Kos(Γ′
S , D)

τ0
��

Kosc(Γ′
S , D) 1−φ // Kosc(Γ′

S , D)

 .

Note that from Proposition 4.10 and Definition 4.11 we have a natural quasi-isomorphism of com-
plexes Kos(φ,ΓS , D) ≃

[
RΓcont(ΓS , D) 1−φ−−−→ RΓcont(ΓS , D)

]
. So we conclude the following:

Proposition 4.12. Let T be in RepZp
(GS) and Dϖ(T ) the associated étale (φ,ΓS)-module over AR,ϖ.

Then we have a natural quasi-isomorphism of complexes Kos(φ,ΓS , Dϖ(T )) ≃ RΓcont(GS , T ).
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4.3. Lie algebra cohomology. In this subsection we will fix constants u, v ∈ R such that (p −
1)/p ≤ u ≤ v/p < 1 < v, for example, one can take u = (p− 1)/p and v = p− 1.

4.3.1. Convergence of operators. From §2.7, recall that we have rings APD
R,ϖ, A[u]

R,ϖ and A[u,v]
R,ϖ

equipped with a continuous action of ΓS ◁ ΓR.

Lemma 4.13. For i ∈ {0, 1, . . . , d} the operators ∇i := log γi =
∑
k∈N(−1)k((γi−1)k+1)/(k+1) converge

as a series of operators on APD
R,ϖ, A[u]

R,ϖ and A[u,v]
R,ϖ .

Proof. From Lemma 2.21, note that we have (γ0 − 1)
(
pm, πp

m

m

)kAPD
R,ϖ ⊂

(
pm, πp

m

m

)k+1APD
R,ϖ, for all

k ≥ 0. Using the fact that γ0 − 1 acts as a twisted derivation, we see that, for any x in APD
R,ϖ,

the expression (γ0 − 1)kx belongs to
(
pm, πp

m

m

)kAPD
R,ϖ. Therefore, to check that the series ∇0(x) =∑

k∈N(−1)k((γ0 − 1)k+1(x))/(k + 1) converges in APD
R,ϖ, it is enough to show that for a fixed 0 ≤ j ≤ k,

the p-adic valuation of (⌊pmj/e⌋!)(pm(k−j)/k) goes to +∞ as k → +∞, which follows from an elementary
computation. In particular, we have that ∇0(x) converges in APD

R,ϖ.
Now, let us consider γi for i ∈ {1, . . . , d}. Again, from Lemma 2.21, note that we have (γi −

1)
(
pm, πp

m

m

)kAPD
R,ϖ ⊂

(
pm, πp

m

m

)k+1APD
R,ϖ, for all k ≥ 0. Using the fact that γi − 1 acts as a twisted

derivation, we conclude that for any x in APD
R,ϖ, the expression (γi − 1)kx belongs to

(
pm, πp

m

m

)kAPD
R,ϖ.

Therefore, using an estimate similar the case of γ0, we conclude that the series ∇i(x) =
∑
k∈N(−1)k((γi−

1)k+1(x))/(k + 1) converges in APD
R,ϖ. The case of A[u]

R,ϖ and A[u,v]
R,ϖ follow from similar arguments (use

Lemma 2.22 for A[u,v]
R,ϖ). This allows us to conclude.

Next, note that formally we can write,
log(1+X)

X = 1 + a1X + a2X
2 + a3X

3 + · · · ,
X

log(1+X) = 1 + b1X + b2X
2 + b3X

3 + · · · ,

where υp(ak) ≥ −k/(p − 1), for all k ≥ 1, and therefore, υp(bk) ≥ −k/(p − 1), for all k ≥ 1. Setting
X = γi − 1, for i ∈ {0, 1, . . . , d}, we make the following claim:

Lemma 4.14. For i ∈ {0, 1, . . . , d}, the operators ∇i/(γi − 1) = (log γi)/(γi − 1) and (γi − 1)/∇i =
(γi − 1)/(log γi) converge as series of operators on APD

R,ϖ, A[u]
R,ϖ and A[u,v]

R,ϖ .

Proof. We will only show that these series converge on APD
R,ϖ; the case of A[u]

R,ϖ and A[u,v]
R,ϖ follow similarly

(using Lemma 2.22 for A[u,v]
R,ϖ). Note that we have υp(ak) ≥ −k/(p− 1) and υp(bk) ≥ −k/(p− 1), for all

k ≥ 1, so it is enough to show the convergence of (γi−1)/(log γi). Now from Lemma 2.21, we have that for
k ≥ 1, (γi − 1)

(
pm, πp

m

m

)kAPD
R,ϖ ⊂

(
pm, πp

m

m

)k+1APD
R,ϖ. Since γi − 1 acts as a twisted derivation, therefore

for any x in APD
R,ϖ, from the proof of Lemma 4.13, we have that (γi − 1)kx belongs to

(
pm, πp

m

m

)kAPD
R,ϖ.

Therefore, to check that the series
∑
k∈N(−1)kbk(γi − 1)kx converges in APD

R,ϖ, it is enough to show that
for a fixed 0 ≤ j ≤ k, the p-adic valuation of bkpm(k−j)(⌊pmj/e⌋!) goes to +∞ as k → +∞, which follows
from an elementary computation. So, we get that the series (γi − 1)/(log γi) converges on APD

R,ϖ. This
concludes our proof.

4.3.2. Koszul Complexes for Lie ΓS. For 0 ≤ i ≤ d, let ∇i denote the operators defined as
above. The Lie algebra Lie Γ′

S of the p-adic Lie group Γ′
S is a finite free Zp-module of rank d, i.e.

Lie Γ′
S = Zp[∇i]1≤i≤d and the Lie algebra Lie ΓS of the p-adic Lie group ΓS is a finite free Zp-module

of rank d + 1, i.e. Lie ΓS = Zp[∇i]0≤i≤d. Moreover, we have [∇i,∇j ] = ∇i ◦ ∇j − ∇j ◦ ∇i = 0, for
1 ≤ i, j ≤ d, and [∇0,∇i] = ∇0 ◦ ∇i − ∇i ◦ ∇0 = pm∇i, for 1 ≤ i ≤ d. In particular, Lie Γ′

S is
commutative as a Zp-algebra, however, Lie ΓS is noncommutative. Let M be a topological Zp-module
admitting a continuous action of Lie ΓS .

Definition 4.15. Define the complex Kos(Lie Γ′
S ,M) := M −→M I′

1 −→ · · · −→M I′
d , with differentials

dual to those in Remark 4.5 (with τi replaced by ∇i).
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Consider a morphism of complexes ∇0 : Kos(Lie Γ′
S ,M)→ Kos(Lie Γ′

S ,M) defined on the q-th term
as ∇0 − qpm : M I′

q →M I′
q .

Definition 4.16. Define the Lie ΓS-Koszul complex with values in M as

Kos(Lie ΓS ,M) :=
[
Kos(Lie Γ′

S ,M) ∇0−−−−→ Kos(Lie Γ′
S ,M)

]
.

Proposition 4.17 ([Laz65, Lazard], [CN17, §4.3]). There exist natural quasi-isomorphisms of complexes
RΓcont(Lie Γ′

S ,M) ≃ Kos(Lie Γ′
S ,M) and RΓcont(Lie ΓS ,M) ≃ Kos(Lie ΓS ,M).

5. Syntomic complexes and finite height representations
We will assume the setup of §2. Recall that we fixed some m ∈ N≥1 and from §2.5, we have rings
R⋆
ϖ for ⋆ ∈ { ,+,PD, [u], (0, v]+, [u, v]}. Unless otherwise stated, we will assume u = (p − 1)/p and

v = p − 1. Note that the p-adic completion of the module of differentials of R relative to Z is given as
Ω1
R = ⊕di=1R d logXi. Also, for ⋆ ∈ {+,PD, [u], [u, v]}, we have Ω1

R⋆
ϖ

= R⋆
ϖ

dX0
1+X0

⊕
(
⊕di=1 R

⋆
ϖ d logXi

)
.

5.1. Formulation of the main result. In §5 and §6 we will work with the following class of
representations:

Assumption 5.1. Let T be a positive finite q-height Zp-representation of GR of height s, and we set
V = T [1/p] (see Definition 3.1). Assume that the Wach module N(T ) is free of rank = rkZpT over A+

R

and M ⊂ ODcris(V ) is a free R-submodule of rank = rkZpT such that M is stable under the induced
Frobenius, M [1/p] = ODcris(V ) and the induced connection over M is p-adically quasi-nilpotent, inte-
grable and satisfies Griffiths transversality with respect to the induced filtration. Furthermore, assume
that psM ⊂ φ∗(M) and there is a natural map OAPD

R,ϖ ⊗R M → OAPD
R,ϖ ⊗A+

R
N(T ) compatible with

the respective Frobenii, filtrations, connections and actions of ΓR, and such that it is a pN -isomorphism
with N = n(T, e) ∈ N, for e = [K : F ] = pm−1(p− 1).

Example 5.2. Following are some cases in which Assumption 5.1 is satisfied:

(i) Assuming that N(T ) is a free A+
R-module, from Proposition 3.10 and Remark 3.12 we have that

the R-module M := M0 (in the notation of the proposition) satisfies Assumption 5.1 with m = 1
and n(T, e) = s.

(ii) Let M =
(
OAPD

R,ϖ ⊗A+
R

N(T )
)ΓR with an additional assumption that it is free over R of rank

= rkZpT . Then, the module M depends on T and m ∈ N≥1 (see Remark 3.13), and it satisfies
Assumption 5.1 with n(T, e) = s (see Remark 3.11, Remark 3.12 and Remark 3.13).

(iii) For our intended global applications to relative Fontaine-Laffaille modules, we note that for repre-
sentations arising from finite free relative Fontaine-Laffaille modules of level [0, s] with s ≤ p − 2
as in §3.4, the conditions of Assumption 5.1 are automatically satisfied, with M being the relative
Fontaine-Laffaille module and n(T, e) = 0 (see Remark 3.27).

Let us first consider the case of S = R[ϖ]. From §2.5 we have the divided power ring RPD
ϖ ↠

S and we have a finite free RPD
ϖ -module MPD

ϖ := RPD
ϖ ⊗R M equipped with a Frobenius-semilinear

endomorphism φ given by the diagonal action on each component of the tensor product, and a filtration
{FilkMPD

ϖ }k∈N induced from the tensor product filtration on MPD
ϖ [1/p] (see the discussion before Lemma

2.38). Moreover, the OF -linear integrable connection on M and the continuous OF -linear de Rham
differential operator on RPD

ϖ induce an OF -linear integrable connection ∂ : MPD
ϖ → MPD

ϖ ⊗RPD
ϖ

Ω1
RPD

ϖ

defined by sending a ⊗ x 7→ a ⊗ ∂M (x) + xda. It is easy to see that the connection ∂ on MPD
ϖ satisfies

Griffiths transversality with respect to the filtration since the same is true for the connection on M and
the differential operator on RPD

ϖ . In particular, we have the following filtered de Rham complex:

FilrD•
S,M := FilrMPD

ϖ −→ Filr−1MPD
ϖ ⊗RPD

ϖ
Ω1
RPD

ϖ
−→ · · · . (5.1)
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Fix a basis of Ω1
RPD

ϖ
as

{ dX0
1+X0

, dX1
X1

, . . . , dXd
Xd

}
and we will equip Ω1

RPD
ϖ

with an action of Frobenius next.

Let j ∈ N and Ij = {0 ≤ i1 < · · · < ij ≤ d}. For i = (i1, . . . , ij) ∈ Ij , set ωi := dX0
1+X0

∧ dXi2
Xi2
∧ · · · ∧

dXij

Xij
,

if i1 = 0, and ωi := dXi1
Xi1
∧ · · · ∧

dXij

Xij
, otherwise. Define the operators φ and ψ on Ωj

RPD
ϖ

by the following
formulas:

φ
( ∑

i∈Ij

xiωi
)

=
∑
i∈Ij

φ(xi)ωi and ψ
( ∑

i∈Ij

xiωi
)

=
∑
i∈Ij

ψ(xi)ωi. (5.2)

Remark 5.3. Note that (5.2) is not the natural definition of Frobenius, since we have d(φ(x)) = pφ(dx)
in (5.2). But in order to define ψ integrally, we need to divide the usual Frobenius on Ω1

R⋆
ϖ

by powers
of p. Recall that with the usual definition of Frobenius we have φ∂ = ∂φ over M ⊂ ODcris(V ) (see
§2.3). However, using (5.2) for Ω1

R as well, we see that for any f ∈ M , we now have ∂M (φ(f)) =∑d
i=1 ∂i(φ(f))ωi =

∑
pφ(∂i(f))ωi = pφ(∂M (f)).

Definition 5.4. Let r ∈ N and consider the complex FilrD•
S,M as above. For n ∈ N, let Sn = S ⊗ Z/pn

and Mn = M ⊗ Z/pn. Define the syntomic complex and the syntomic cohomology of S with coefficients
in M as

Syn(S,M, r) :=
[

FilrD•
S,M

pr−p•φ−−−−−−→ D•
S,M

]
, H∗

syn(S,M, r) := H∗(Syn(S,M, r));
Syn(S,M, r)n := Syn(S,M, r)⊗ Z/pn, H∗

syn(Sn,Mn, r) := H∗(Syn(S,M, r)n).

Our main local result is as follows:

Theorem 5.5. Consider the setting of Assumption 5.1 and let r ∈ Z such that r ≥ s + 1. Then there
exists pN -quasi-isomorphisms

αLaz
r : τ≤r−s−1Syn(S,M, r) ≃ τ≤r−s−1RΓcont(GS , T (r)),

αLaz
r,n : τ≤r−s−1Syn(S,M, r)n ≃ τ≤r−s−1RΓcont(GS , T/pn(r)),

where N = N(T, e, r) ∈ N depends on the representation T , e = [K : F ] and the twist r.

Remark 5.6. For M as in Example 5.2 (ii), note that in Theorem 5.5, the constant N can precisely be
given as N = 14r + 9s+ 2 (see §6.1).

Remark 5.7. Almost all statements and proofs in §5 and §6 are true for m ≥ 1. However, for some
lemmas in §6.5 and §6.6 we need to assume that m ≥ 2. So from now on, the reader may safely assume
that m ≥ 2 in §5 and §6 and obtain Theorem 5.5 for m = 1, using the Galois descent of Lemma 6.21.

Using Theorem 5.5, we can obtain a similar statement over R. Recall that R is smooth over OF and
for r ∈ Z, we have the following filtered de Rham complex:

FilrD•
R,M := FilrM −→ Filr−1M ⊗R Ω1

R −→ Filr−2M ⊗R Ω2
R −→ · · · . (5.3)

Remark 5.8. One can also consider the formulation of filtered de Rham complex for R as in (5.1). In
that case one considers a surjection R+

ϖ ↠ R via the map X0 7→ 0. By writing down the corresponding
de Rham complex one readily sees that it is quasi-isomorphic to D•

R,M .

Using (5.3), similar to Definition 5.4, one can define the syntomic complex of R with coefficients in
M . Then using Theorem 5.5 for ϖ = ζp2 − 1 (in particular, Example 5.2 (ii) for m = 2), Corollary 6.20
and Galois descent in Lemma 6.21 for e = p(p− 1)), we obtain the following:

Corollary 5.9. Consider the setting of Assumption 5.1 and let r ∈ Z such that r ≥ s + 1. Then there
exists pN -quasi-isomorphisms

τ≤r−s−1Syn(R,M, r) ≃ τ≤r−s−1RΓcont(GR, T (r)),
τ≤r−s−1Syn(R,M, r)n ≃ τ≤r−s−1RΓcont(GR, T/pn(r)),

where N = N(p, r, s) ∈ N depending on the prime p, twist r and height s of T .
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Remark 5.10. For M as in Example 5.2 (ii), note that in Corollary 5.9, the constant N can precisely
be given as N = 18r + 9s+ 3p(p− 1) + 2 (see §6.1).

In Theorem 5.5 we only prove the p-adic case. The modulo pn case follows in a similar manner. The
complete proof is divided in two main steps: first, we will modify the syntomic complexes with coefficients
in M to relate it to a “differential” Koszul complex with coefficients in N(T ) (see Proposition 5.28).
Next, we will modify the Koszul complex from the first step to obtain a Koszul complex computing the
continuous GS-cohomology of T (r) (see Definition 5.5 and Proposition 6.1). The key to the connection
between these two steps will be provided by the comparison isomorphism in Theorem 3.7 and a filtered
Poincaré Lemma. In the rest of §5 we will show the first step. The second step will be worked out in §6.

5.2. Syntomic complexes with coefficients. For ⋆ ∈ {[u], [u, v], [u, v/p]}, define a finite free
R⋆
ϖ-module M⋆

ϖ := R⋆
ϖ ⊗R M . Via the diagonal action of Frobenius on each component, define

Frobenius-semilinear operators φ : M [u]
ϖ → M

[u]
ϖ and φ : M [u,v]

ϖ → M
[u,v/p]
ϖ . Equip M⋆

ϖ with a fil-
tration {FilkM⋆

ϖ}k∈N induced from the tensor product filtration on M⋆
ϖ[1/p] (see the discussion before

Lemma 2.38). Furthermore, the OF -linear integrable connection on M and the continuous OF -linear
de Rham differential operator on R⋆

ϖ induce an OF -linear integrable connection on Mϖ, which satisfies
Griffiths transversality with respect to the filtration since the same is true for the connection on M and
the differential operator on R⋆

ϖ. In particular, we have the following filtered de Rham complex:

FilrD•
R⋆

ϖ,M
:= FilrM⋆

ϖ −→ Filr−1M⋆
ϖ ⊗ Ω1

R⋆
ϖ
−→ Filr−2M⋆

ϖ ⊗ Ω2
R⋆

ϖ
−→ · · · . (5.4)

Moreover, for ⋆ ∈ {[u], [u, v], [u, v/p]}, we define operators φ and ψ on Ωj

R⋆
ϖ

as in (5.2). From (5.4), for
⋆ ∈ {[u], [u, v]}, denote by D•

R⋆
ϖ,M

the source de Rham complex and for ⋆ ∈ {[u], [u, v/p]}, denote by
E•
R⋆

ϖ,M
the target de Rham complex.

Definition 5.11. Define Syn(M⋆
ϖ, r) :=

[
FilrD•

R⋆
ϖ,M

pr−p•φ−−−−−−→ E•
R⋆

ϖ,M

]
.

5.3. Change of the disk of convergence. In this section, we will denote the syntomic complex
Syn(S,M, r) in Definition 5.4 as Syn(MPD

ϖ , r).

Proposition 5.12. For 1
p−1 ≤ u ≤ 1, the natural morphism between syntomic complexes Syn

(
MPD
ϖ , r

)
→

Syn
(
M

[u]
ϖ , r

)
, induced by the inclusion MPD

ϖ ⊂M [u]
ϖ , is a p2r-isomorphism.

The proposition follows from the following lemma by setting k = r.

Lemma 5.13. Let j, k ∈ N. If 1
p−1 ≤ u ≤ 1, the following map is a pk+r-isomorphism

pk − pjφ : FilrM [u]
ϖ ⊗ Ωj

R
[u]
ϖ

/FilrMPD
ϖ ⊗ Ωj

RPD
ϖ
−→M [u]

ϖ ⊗ Ωj

R
[u]
ϖ

/MPD
ϖ ⊗ Ωj

RPD
ϖ
.

Proof. The proof is motivated by [CN17, Lemma 3.2]. Note that we can decompose everything in the
basis of the ωi’s, where i ∈ Ij = {0 ≤ i1 < · · · < ij ≤ d}. Then by the definition of Frobenius on ωi we
are reduced to showing that pk − pjφ : FilrM [u]

ϖ /FilrMPD
ϖ → M

[u]
ϖ /MPD

ϖ is a pk+r-isomorphism. Since
φ

(
R

[u]
ϖ

)
⊂ R[u/p]

ϖ ⊂ RPD
ϖ , for 1

p−1 ≤ u ≤ 1, therefore, we have MPD
ϖ ⊂M [u]

ϖ and φ
(
M

[u]
ϖ

)
⊂MPD

ϖ .
For pk-injectivity, recall that we have FilrM [u]

ϖ = M
[u]
ϖ ∩ FilrMPD

ϖ (see Lemma 2.38), so for any
x in FilrM [u]

ϖ it suffices to show that if (pk − pjφ)x ∈ MPD
ϖ then pkx ∈ MPD

ϖ . As we can write
pkx = (pk − pjφ)x + pjφ(x) and φ

(
M

[u]
ϖ

)
⊂ MPD

ϖ , therefore, we get that pkx ∈ MPD
ϖ . Next, let us

show the pk+r-surjectivity. Let {f1, . . . , fh} be an R-basis of M and take x =
∑h
i=1 ai ⊗ fi ∈ M

[u]
ϖ .

Let N = ke
u(p−1) , then from the definition of R[u]

ϖ we can write ai = ai1 + ai2, with ai2 ∈ R
[u]
ϖ,N and

ai1 ∈ p−⌊Nu/e⌋R+
ϖ ⊂ p−kRPD

ϖ , where we write R[u]
ϖ,N as in the notation of Lemma 2.11 (it consists of

power series in X0 involving terms Xs
0 for s ≥ N). Now let x1 =

∑h
i=1 ai1 ⊗ fi and x2 =

∑h
i=1 ai2 ⊗ fi,

so that x = x1 + x2. By Lemma 2.11 and the fact that M is stable under φ, it follows that (1− pj−kφ)
is bijective on R

[u]
ϖ,N ⊗R M (note that the series of operators

∑
i∈N p

(j−k)iφi converge as an inverse to
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1−pj−kφ on R[u]
ϖ,N⊗RM). In particular, we can write x2 = (1−pj−kφ)z, for some z =

∑h
i=1 bi⊗fi ∈M

[u]
ϖ .

Also, by Lemma 2.9 we can write bi = bi1 + bi2, with bi1 ∈ FilrR[u]
ϖ and bi2 ∈ p−⌊ru⌋R+

ϖ. By setting
z1 =

∑h
i=1 bi1 ⊗ fi ∈ FilrM [u]

ϖ and z2 =
∑h
i=1 bi2 ⊗ fi ∈ p−rMPD

ϖ , we obtain that (1 − pj−kφ)z2 =
p−k(pk − pjφ)z2 ∈ p−k−rMPD

ϖ . Using the preceding observation in the expression for x, we get that
x − (1 − pj−kφ)z1 = x1 + (1 − pj−kφ)z2 ∈ p−kMPD

ϖ + p−k−rMPD
ϖ ⊂ p−k−rMPD

ϖ . Therefore, we obtain
that x ∈ p−k−rMPD

ϖ + p−k(pk − pjφ)FilrM [u]
ϖ , allowing us to conclude.

5.4. Change of the annulus of convergence. We will consider the base change of the syntomic
complex from RPD

ϖ to R[u,v]
ϖ .

Proposition 5.14. For pu ≤ v, there exists a p2r+4s-quasi-isomorphism

τ≤r−s−1Syn
(
M [u]
ϖ , r

)
≃ τ≤r−s−1Syn

(
M [u,v]
ϖ , r

)
,

i.e. we have p2r+4s-isomorphisms Hk
syn

(
M

[u]
ϖ , r

)
≃ Hk

syn
(
M

[u,v]
ϖ , r

)
for 0 ≤ k ≤ r − s− 1.

Proof. The claim follows by combining the results from Lemmas 5.15, 5.16 & 5.18.

To prove the claim in Proposition 5.14, we will pass to the corresponding (quasi-isomorphic) ψ-complex.
Recall that we have φ∗(

ODcris(V )
) ∼−→ ODcris(V ). Let f = {f1, . . . , fh} denote an R-basis of M .

Then f and φ(f) form two different basis of ODcris(V ) over R[1/p]. So, we can write f = φ(f)X,
where X = (xij) ∈ Mat

(
h,R[1/p]). For our choice of M (see Assumption 5.1) and using Theorem

3.7 and Proposition 3.10, we have xij ∈ p−sR, where 1 ≤ i, j ≤ h and s is the height of V . Define
ψ : M [u] = R

[u]
ϖ ⊗RM → p−sR

[pu]
ϖ ⊗RM by sending fy⊺ 7→ fψ(Xy⊺), where we consider the operator ψ

on R
[u]
ϖ defined in §2.6. It is easy to show that this map is well defined, i.e. independent of choice of a

basis for M . Using the operator ψ on M
[u]
ϖ as above and on Ω•

R
[u]
ϖ

as in (5.2), define the complex

Synψ
(
M [u]
ϖ , r

)
:=

[
FilrM [u]

ϖ ⊗ Ω•
R

[u]
ϖ

pr+sψ−p•+s

−−−−−−−−→M [pu]
ϖ ⊗ Ω•

R
[pu]
ϖ

]
.

Lemma 5.15. The commutative diagram

FilrM [u]
ϖ ⊗ Ω•

R
[u]
ϖ

M
[u]
ϖ ⊗ Ω•

R
[u]
ϖ

FilrM [u]
ϖ ⊗ Ω•

R
[u]
ϖ

M
[pu]
ϖ ⊗ Ω•

R
[pu]
ϖ

,

id

pr−p•φ

psψ

pr+sψ−p•+s

defines a p2s-quasi-isomorphism from Syn
(
M

[u]
ϖ , r

)
to Synψ

(
M

[u]
ϖ , r

)
.

Proof. First, we will look at the cokernel complex which is the cokernel of the right vertical arrow.
By definition, we have that ψ(M [u]

ϖ ) ⊂ p−sM
[pu]
ϖ , in particular, psψ(M [u]

ϖ ) ⊂ M
[pu]
ϖ . Moreover, note

that the operator ψ : R[u]
ϖ → R

[pu]
ϖ is surjective and psM ⊂ φ∗(M) (see Assumption 5.1). Therefore,

M
[pu]
ϖ = R

[pu]
ϖ ⊗R M ⊂ ψ(R[u]

ϖ ⊗R φ∗(M)) ⊂ ψ(M [u]
ϖ ). Hence, psψ(M [u]

ϖ ) is ps-isomorphic to M [pu]
ϖ and

the cokernel complex is killed by ps.
Next, for the kernel complex, we proceed as follows: let M = ⊕hj=1Rfj , therefore M [u]

ϖ = ⊕hj=1R
[u]
ϖ fj .

Recall that M/φ∗(M) is killed by ps, so we have a ps-isomorphism ⊕hj=1R
[u]
ϖ φ(fj)

∼−→ M
[u]
ϖ . Note that

an element y =
∑h
j=1 yjφ(fj) is in

(
⊕hj=1R

[u]
ϖ φ(fj)

)ψ=0 if and only if yj is in (R[u]
ϖ )ψ=0. Indeed, ψ(y) = 0

if and only if
∑h
j=1 ψ(yj)fj = 0, and since fj are linearly independent over R[1/p], therefore, we see

that ψ(y) = 0 if and only if ψ(yj) = 0, for all 1 ≤ j ≤ h. In particular, we obtain a ps-isomorphism(
M

[u]
ϖ

)ψ=0 ∼←−
(
⊕hj=1 R

[u]
ϖ φ(fj)

)ψ=0 = ⊕hj=1(R[u]
ϖ )ψ=0φ(fj).

Using the definiton of ψ on Ωk

R
[u]
ϖ

in the chosen basis of (5.2), it easily follows that
(
M⊗RΩk

R
[u]
ϖ

)ψ=0 =(
M

[u]
ϖ

)ψ=0 ⊗Z Ωk. Recall that from Lemma 2.15 (ii), we have a decomposition (R[u]
ϖ )ψ=0 = ⊕α ̸=0R

[u]
ϖ,α =
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⊕α̸=0R
[u]
ϖ uα, where uα = (1 + X0)α0Xα1

1 · · ·X
αd
d , where α = (α0, . . . , αd) is a (d + 1)-tuple with

αi ∈ {0, . . . , p − 1} for each 0 ≤ i ≤ d. Moreover, we have ∂i(uα) = αiuα, for each 0 ≤ i ≤ d. In
particular, ∂i(R[u]

ϖ,α) ⊂ R
[u]
ϖ,α. Now, using the decomposition of (R[u]

ϖ )ψ=0, we set Mα = ⊕hj=1R
[u]
ϖ,αφ(fj)

and obtain that
(
M

[u]
ϖ

)ψ=0 is ps-isomorphic to ⊕α ̸=0Mα. From the OF -linear continuous de Rham differ-
ential operator on R[u]

ϖ,α and the OF -linear integrable connection on M [u]
ϖ , we obtain an induced OF -linear

integrable connection ∂ : Mα →Mα ⊗Ω1
R

[u]
ϖ,α

= Mα ⊗Z Ω1. Then the decomposition of
(
M

[u]
ϖ )ψ=0 shows

that the kernel complex in the claim is ps-isomorphic to direct sum of the following complexes:

0 −→Mα −→Mα ⊗ Ω1 −→Mα ⊗ Ω2 −→ · · · , (5.5)

where α ̸= 0. We will show that (5.5) is exact for each α; the idea of the proof is based on [CN17,
Lemma 3.4]. Since everything is p-adically complete and p-torsion free, we only need to show the
exactness of (5.5) modulo p. Note that for y =

∑h
j=1 yjφ(fj) ∈ Mα, we have ∂

( ∑h
j=1 yjφ(fj)

)
=∑h

j=1 yj∂M (φ(fj)) + φ(fj)∂(yj), where ∂M denotes the connection on M . Recall that from Remark 5.3
we have φ∂M = p∂Mφ. So ∂(y) −

∑h
i=1 φ(fj)∂(yj) ∈ pMα. Moreover, by using Lemma 2.16 we have

∂i(yj)− αiyj ∈ pR[u]
ϖ,α. So we get that the complex (5.5) has a very simple shape modulo p: if d = 0 it

is just Mα
α0−−→Mα; if d = 1 it is the complex Mα

(α0,α1)−−−−→Mα ⊕Mα
−α1+α0−−−−−→Mα; for general d it is the

total complex attached to a (d + 1)-dimensional cube with all vertices equal to Mα and arrows in the
i-th direction equal to αi. As one of the αi is invertible by assumption, this implies that the cohomology
of the total complex is 0 and (5.5) is exact for each α. This allows us to conclude.

Following the defintion of ψ over M [u] (see the discussion before Lemma 5.15), one can define an
operator ψ : R[u,v]

ϖ ⊗RM → p−sR
[pu,pv]
ϖ ⊗RM as a left inverse to φ and set

Synψ
(
M [u,v]
ϖ , r

)
:=

[
FilrM [u,v]

ϖ ⊗ Ω•
R

[u,v]
ϖ

pr+sψ−p•+s

−−−−−−−−→M [pu,v]
ϖ ⊗ Ω•

R
[pu,v]
ϖ

]
.

Lemma 5.16. For u ≤ 1 ≤ v the natural morphism of complexes Synψ
(
M

[u]
ϖ , r

)
→ Synψ

(
M

[u,v]
ϖ , r

)
is a

p2r-quasi-isomorphism in degrees k ≤ r − s− 1.

Proof. The map between the complexes is induced by the following diagram:

FilrM [u]
ϖ ⊗ Ω•

R
[u]
ϖ

M
[pu]
ϖ ⊗ Ω•

R
[pu]
ϖ

FilrM [u,v]
ϖ ⊗ Ω•

R
[u,v]
ϖ

M
[pu,v]
ϖ ⊗ Ω•

R
[pu,v]
ϖ

,

pr+sψ−p•+s

pr+sψ−p•+s

where the vertical arrows are natural maps induced by the inclusion R
[u]
ϖ ⊂ R[u,v]

ϖ . Therefore, it suffices
to show that the mapping fiber[

FilrM [u,v]
ϖ ⊗ Ω•

R
[u,v]
ϖ

/FilrM [u]
ϖ ⊗ Ω•

R
[u]
ϖ

pr+sψ−p•+s

−−−−−−−−−→M [pu,v]
ϖ ⊗ Ω•

R
[pu,v]
ϖ

/M [pu]
ϖ ⊗ Ω•

R
[pu]
ϖ

]
,

is p2r-acyclic. By Lemma 5.17, we can ignore the filtration, and by working in the basis {ωi, i ∈ Ik}
of Ωk, it is enough to show that pr+sψ − pk+s : M [u,v]

ϖ /M
[u]
ϖ −→ M

[pu,v]
ϖ /M

[pu]
ϖ is a pr-isomorphism

for k ≤ r − s − 1. But note that M [u,v]
ϖ /M

[u]
ϖ

∼−→ M
[pu,v]
ϖ /M

[pu]
ϖ , therefore, we see that 1 − piψ is an

endomorphism of this quotient, for i = r − k. Moreover, for i ≥ s+ 1, we get that 1− piψ is invertible
on M

[u,v]
ϖ /M

[u]
ϖ with the inverse given as 1 + pi−s(psψ) + p2(i−s)(psψ)2 + · · · . Therefore, it follows that

pr+sψ− pk+s = pk+s(pr−kψ− 1) is a pk+s-isomorphism. Since k+ s ≤ r− 1, we obtain that the complex
in the claim is p2r-acyclic.

Lemma 5.17. The natural map FilrM [u,v]
ϖ /FilrM [u]

ϖ →M
[u,v]
ϖ /M

[u]
ϖ is a pr-isomorphism for u ≤ 1 ≤ v.
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Proof. The map in the claim is injective by Lemma 2.38. For pr-surjectivity, let {f1, . . . , fh} be an
R-basis of M and let x =

∑h
i=1 bi⊗ fi ∈ R

[u,v]
ϖ ⊗RM . By [CN17, Lemma 3.5], we have a pr-isomorphism

FilrR[u,v]
ϖ /FilrR[u]

ϖ
∼−→ R

[u,v]
ϖ /R

[u]
ϖ , so we can write prbi = bi1 + bi2, with bi1 ∈ FilrR[u,v]

ϖ and bi2 ∈ R[u]
ϖ .

Since
∑h
i=1 bi1 ⊗ fi ∈ FilrM [u,v]

ϖ , we get the desired conclusion.

Lemma 5.18. The commutative diagram

FilrM [u,v]
ϖ ⊗ Ω•

R
[u,v]
ϖ

M
[u,v/p]
ϖ ⊗ Ω•

R
[u,v/p]
ϖ

FilrM [u,v]
ϖ ⊗ Ω•

R
[u,v]
ϖ

M
[pu,v]
ϖ ⊗ Ω•

R
[pu,v]
ϖ

,

id

pr−p•φ

psψ

pr+sψ−p•+s

defines a p2s-quasi-isomorphism from Syn
(
M

[u,v]
ϖ , r

)
to Synψ

(
M

[u,v]
ϖ , r

)
.

Proof. Proof of the claim follows in manner similar to the proof of Lemma 5.15 by replacing M [u]
ϖ with

M
[u,v]
ϖ and R

[u]
ϖ with R

[u,v]
ϖ . One only needs to note that Lemma 2.15 (ii) and Lemma 2.16 are true for

the ring R[u,v]
ϖ as well. We omit the proof.

5.5. Differential Koszul Complex. Our next goal is to relate the syntomic complex Syn
(
M

[u,v]
ϖ , r

)
in §5.4 to a complex with coefficients in the Wach module N(T ) from Assumption 5.1 (see Proposition
5.28). Before stating the result, in this subsection, we will verify some results in order to define the latter
complex.

Let Ω1
A[u,v]

R,ϖ

denote the p-adic completion of the module of differentials of A[u,v]
R,ϖ relative to Z. Via the

isomorphism ιcycl : R[u,v]
ϖ

∼−→ A[u,v]
R,ϖ , we choose a basis {ω0, ω1, . . . , ωd} of Ω1

A[u,v]
R,ϖ

obtained as the image

of
{ dX0

1+X0
, dX1
X1

, . . . , dXd
Xd

}
under ιcycl (see §2.5), in particular, we have the differential operators ∂i over

A[u,v]
R,ϖ , for 0 ≤ i ≤ d. Moreover, from Definition 2.7, A[u,v]

R,ϖ is endowed with a filtration and we have the
filtered de Rham complex FilrΩ•

A[u,v]
R,ϖ

. The differential operators ∂i are related to the infinitesimal action

of ΓR by the relation ∇i := log γi = t∂i, for 0 ≤ i ≤ d and where log γi =
∑
k∈N(−1)k(γi− 1)k+1/(k+ 1).

Let us set N [u,v]
ϖ (T ) := A[u,v]

R,ϖ ⊗A+
R

N(T ) equipped with a ΓR-stable filtration as in (3.5). Recall

that for an indeterminate X we have formal expressions log(1+X)
X and X

log(1+X) (see the discussion before
Lemma 4.14).

Lemma 5.19. For i ∈ {0, 1, . . . , d} the operators ∇i = log γi, ∇i/(γi − 1) = (log γi)/(γi − 1) and
(γi − 1)/∇i = (γi − 1)/(log γi) converge as series of operators on N

[u,v]
ϖ (T ). The same is true for

A[u,v]
R,ϖ ⊗A+

R
N(T (r)), for any r ∈ Z, and FilkN [u,v]

ϖ (T (r)), for any k ∈ Z.

Proof. We will only show the claim for the operator ∇i, the claim for the convergence of operators
∇i/(γi − 1) and (γi − 1)/∇i follows in a manner similar to Lemma 4.14. For 0 ≤ i ≤ d, we have
that γi − 1 acts as a twisted derivation, i.e. for any a ∈ A[u,v]

R,ϖ and x ∈ N(T ), we have (γi − 1)(ax) =
(γi−1)a ·x+γi(a)(γi−1)x. Note that the action of ΓR is trivial on N(T )/πN(T ). So using Lemma 2.22
and the preceding discussion we have (γi−1)

(
pm, πp

m

m

)k
N

[u,v]
ϖ (T ) ⊂

(
pm, πp

m

m

)k+1
N

[u,v]
ϖ (T ). Now, similar

to the proof of Lemma 4.13, for k ≥ 0, it follows that we have (γi − 1)kN [u,v]
ϖ (T ) ⊂

(
pm, πp

m

m

)k
N

[u,v]
ϖ (T ).

The same estimation of the p-adic valuation of the coefficients as in the proof Lemma 4.13 helps us in
concluding that log γi converges as a series of operators on N

[u,v]
ϖ (T ).

Next, from Lemma 3.21 recall that FilkN [u,v]
ϖ (T (r)) = π−rFilr+kN [u,v]

ϖ (T )(r). As t/π is a unit in
A[u,v]
R,ϖ (see Lemma 2.18) and the action of ΓS is trivial on t−r ⊗ ϵ⊗r, where ϵ⊗r denotes a Zp-basis of

Zp(r), therefore, it is enough to show that ∇i converges on FilkN [u,v]
ϖ (T ), for all k ∈ N. Now, recall

that from Remark 3.16 we have a ΓR-equivariant isomorphism of E[u,v]
R,ϖ -modules α : Filr(E[u,v]

R,ϖ ⊗R
M [1/p]) ∼−→ Filk(E[u,v]

R,ϖ ⊗A+
R

N(V )) (see (3.8)). Moreover, note that ∇i converges on E
[u,v]
R,ϖ , since it
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converges on A[u,v]
R,ϖ (see Lemma 4.13) and ΓR acts trivially on R

[u,v]
ϖ . So, by using that the filtration

on E
[u,v]
R,ϖ ⊗R M [1/p] is given as the tensor product filtration (see 2.34), the action of ΓS is trivial on

M [1/p] and the ideal FiljE[u,v]
R,ϖ is closed in E

[u,v]
R,ϖ for all j ∈ N (see Remark 2.25 (ii)), it follows that

∇i converges on Filr(E[u,v]
R,ϖ ⊗R M [1/p]), and since α is ΓR-equivariant, therefore, ∇i also converges

on Filk(E[u,v]
R,ϖ ⊗A+

R
N(V )). Combining the two discussions above, it follows that ∇i(FilkN [u,v]

ϖ (T )) ⊂

Filk(E[u,v]
R,ϖ ⊗A+

R
N(V )) ∩ N [u,v]

ϖ (T ) = FilkN [u,v]
ϖ (T ) (see Remark 3.14). A similar argument shows that

the operators ∇i/(γi−1) and (γi−1)/∇i also converge on FilkN [u,v]
ϖ (T ). This allows us to conclude.

Lemma 5.20. For the filtered modules and operators ∇i defined above, for 0 ≤ i ≤ d, we have
∇i

(
FilkN [u,v]

ϖ (T )
)
⊂ πFilk−1N

[u,v]
ϖ (T ) = tFilk−1N

[u,v]
ϖ (T ).

Proof. Note that the action of ΓR is trivial on N
[u,v]
ϖ (T )/πN [u,v]

ϖ (T ). So using Lemma 5.19, we infer
that ∇i

(
FilkN [u,v]

ϖ (T )
)
⊂ FilkN [u,v]

ϖ (T ) ∩ πN [u,v]
ϖ (T ) = πFilk−1N

[u,v]
ϖ (T ), where the last equality follows

from Lemma 3.18. As t/π is a unit in E
[u,v]
R,ϖ (see Lemma 2.18), we can also write ∇i

(
FilkN [u,v]

ϖ (T )
)
⊂

tFilk−1N
[u,v]
ϖ (T ).

For 0 ≤ i ≤ d, it is easy to see that we have ∇i = log γi = limn→+∞(γp
n

i − 1)/pn, from which one can
easily show that ∇i satisfies a Leibniz rule (see the proof [MT20, Theorem 4.2] for a similar argument).
Now using Lemma 5.19 we define differential operators ∂i over N [u,v]

ϖ (T ) as ∂i := ∇i/t = (log γi)/t.
In the basis

{
ω0, . . . , ωd

}
of Ω1

A[u,v]
R,ϖ

, we set ∂ = (∂0, . . . , ∂d) and obtain a connection ∂ : N [u,v]
ϖ (T ) →

N
[u,v]
ϖ (T )⊗ Ω1

A[u,v]
R,ϖ

by sending ax 7→ a∂(x) + x⊗ da.

Lemma 5.21. The connection ∂ on N [u,v]
ϖ (T ) is integrable, satisfies a Leibniz rule and Griffiths transver-

sality with respect to the filtration, i.e. ∂i(FilkN [u,v]
ϖ (T )) ⊂ Filk−1N

[u,v]
ϖ (T ), for 0 ≤ i ≤ d.

Proof. From §4.3.2 recall that [∇i,∇j ] = 0 for 1 ≤ i, j ≤ d and [∇0,∇i] = pm∇i, for 1 ≤ i ≤ d. So it
follows that over N [u,v]

ϖ (T ) we have a composition of operators t2(∂i ◦∂j −∂j ◦∂i) = t∂i(t∂j)− t∂j(t∂i) =
∇i ◦ ∇j − ∇j ◦ ∇i = 0, for 1 ≤ i, j ≤ d. Next, for 1 ≤ i ≤ d, we have ∇0 ◦ ∇i − ∇i ◦ ∇0 =
t∂0 ◦ (t∂i) − t∂i ◦ (t∂0) = tpm∂i + t2∂0 ◦ ∂i − t2∂i ◦ ∂0 = pm∇i + t2(∂0 ◦ ∂i − ∂i ◦ ∂0). In particular,
∂0◦∂i−∂i◦∂0 = 0. Since ∂ ◦∂ = (∂i◦∂j)i,j , for 0 ≤ i ≤ j ≤ d, and N [u,v]

ϖ (T ) is t-torsion free, we conclude
that the connection ∂ is integrable. Moreover, it is clear that ∂ satisfies a Leibniz rule and it satisfies
Griffiths transversailty because we have ∂i

(
FilkN [u,v]

ϖ (T )
)

= t−1∇i
(
FilkN [u,v]

ϖ (T )
)
⊂ Filk−1N

[u,v]
ϖ (T ),

using Lemma 5.20.

Let S = A[u,v]
R,ϖ , then from Lemma 5.21, we have the filtered de Rham complex FilrN [u,v]

ϖ (T ) ⊗ Ω•
S .

In the chosen basis {ω1, . . . , ωd} of Ω1
S , an element of Ωq

S = ∧qΩ1
S can be expressed as

∑
i xiωi in a

unique manner, where xi ∈ S and ωi = ωi1 ∧ · · · ∧ ωiq , for i = (i1, . . . , iq) ∈ Iq = {0 ≤ i1 < · · · <
iq ≤ d}. In this case, the map involving differential operators becomes (∂i) :

(
Filk−qN

[u,v]
ϖ (T )

)Iq →(
Filk−q−1N

[u,v]
ϖ (T )

)Iq+1 for 0 ≤ i ≤ d.

Definition 5.22. Define the ∂-Koszul complex for FilkN [u,v]
ϖ (T ) as

Kos
(
∂A,FilkN [u,v]

ϖ (T )
)

: FilkN [u,v]
ϖ (T ) (∂i)−−→

(
Filk−1N [u,v]

ϖ (T )
)I1 −→ · · · .

Remark 5.23. (i) By definition, it follows that we have a natural isomorphism between complexes
FilkN [u,v]

ϖ (T )⊗ Ω•
A[u,v]

R,ϖ

∼−→ Kos
(
∂A,FilkN [u,v]

ϖ (T )
)
.

(ii) Let I ′
q = {(i1, . . . , iq), such that 1 ≤ i1 < · · · < iq ≤ d} and ∂′ = (∂1, . . . , ∂d). Set

Kos
(
∂′
A,FilkN [u,v]

ϖ (T )
)

: FilkN [u,v]
ϖ (T ) (∂i)−−→

(
Filk−1N [u,v]

ϖ (T )
)I′

1 −→ · · · ,

and note that Kos
(
∂A,FilkN [u,v]

ϖ (T )
)

=
[
Kos

(
∂′
A,FilkN [u,v]

ϖ (T )
) ∂0−−−→ Kos

(
∂′
A,Filk−1N

[u,v]
ϖ (T )

)]
.

(iii) Computations carried out in this section are true over the ring A[u,v/p]
R,ϖ as well.
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5.6. Poincaré Lemma. From Definition 2.24, Remark 2.25 and Lemma 2.26, recall that, for ⋆ ∈
{PD, [u], [u, v]}, we have rings E⋆

R,ϖ equipped with a filtration, Frobenius φ sending EPD
R,ϖ → EPD

R,ϖ,
E

[u]
R,ϖ → E

[u]
R,ϖ and E[u,v]

R,ϖ → E
[u,v/p]
R,ϖ and an action of GR which commutes with the Frobenius. Moreover,

from Remark 2.27, we have a subring OAPD
R,ϖ ⊂ OAcris(R) equipped with induced structures and we have

a natural embedding OAPD
R,ϖ ⊂ EPD

R,ϖ compatible with the respective Frobenii, filtrations, APD
R,ϖ-linear

connections and actions of ΓR.
From Assumption 5.1, we have a natural map OAPD

R,ϖ ⊗R M → OAPD
R,ϖ ⊗R N(T ), which is a

pn(T,e)-isomorphism compatible with the respective Frobenii, filtrations, connections and the actions
of ΓR. Recall that M [u,v]

ϖ = R
[u,v]
ϖ ⊗RM and N [u,v]

ϖ (T ) = A[u,v]
R,ϖ ⊗A+

R
N(T ) and after extension of scalars

we have a map E
[u,v]
R,ϖ ⊗R[u,v]

ϖ
M

[u,v]
ϖ → E

[u,v]
R,ϖ ⊗A[u,v]

R,ϖ

N
[u,v]
ϖ (T ), which is a pn(T,e)-isomorphism compatible

with the respective Frobenii, connections and the actions of ΓR. Moreover, in the pn(T,e)-isomorphism
above, the left hand term is equipped with a filtration as described in the discussion before Lemma 2.38
and the right hand term is equipped with a filtration as in (3.5), which is compatible with the filtration
on the left hand term by definition.

Let R1 := A[u,v]
R,ϖ , R2 := R

[u,v]
ϖ and R3 := E

[u,v]
R,ϖ . Set X0,1 := πm, X0,2 := X0 and set Xi,1 := [X♭

i ]
and Xi,2 := Xi, for 1 ≤ i ≤ d. For j = 1, 2, set Ω1

j := Z dX0,j

1+X0,j
⊕di=1 ZdXi,j

Xi,j
and Ω1

3 := Ω1
1 ⊕ Ω1

2.
For j = 1, 2, 3, let Ωk

j = ∧kΩj . Therefore, we see that Ωk
Rj

= Rj ⊗ Ωk
j . Recall that from (5.4) we

have the filtered de Rham complex FilrM [u,v]
ϖ ⊗ Ω•

1. Set ∆2 := E
[u,v]
R,ϖ ⊗R[u,v]

ϖ
M

[u,v]
ϖ equipped with a

filtration as described in the discussion before Lemma 2.38. Using the OF -linear de Rham differential
operator ∂R3 : FilrE[u,v]

R,ϖ → Filr−1E
[u,v]
R,ϖ ⊗ZΩ1

3 and the OF -linear integrable connection ∂R2 : FilrM [u,v]
ϖ →

Filr−1M
[u,v]
ϖ ⊗Z Ω1

2, we obtain an OF -linear integrable connection on ∆2 as ∂R3 : ∆2 → ∆2 ⊗Z Ω1
3 by

sending ax 7→ a∂R2(x) + ∂R3(a)x. Moreover, the connection ∂R3 on ∆2 satisfies Griffiths transversality
with respect to the filtration, i.e. ∂R3 : Filr∆2 → Filr−1∆2⊗ZΩ1

3, since the same is true for the differential
operator on E

[u,v]
R,ϖ and the connection on M

[u,v]
ϖ . In particular, we have the filtered de Rham complex

Filr∆2 ⊗ Ω•
3.

Lemma 5.24. The natural map FilrM [u,v]
ϖ ⊗ Ω•

2 → Filr∆2 ⊗ Ω•
3 is a quasi-isomorphism.

Proof. In the notation of §2.8.3, note that we have A = R1, B = R2 and E = R3. Moreover, by
definition, it is clear that FilrM [u,v]

ϖ = (Filr∆2)∂R1 =0. Therefore, by using Lemma 2.40, we obtain the
claim.

Similar to above and using the discussion of §5.5, it is easy to see that for R1 = A[u,v]
R,ϖ we have

a filtered de Rham complex FilrN [u,v]
ϖ (T ) ⊗ Ω•

1. Let ∆1 := E
[u,v]
R,ϖ ⊗A[u,v]

R,ϖ

N
[u,v]
ϖ (T ) equipped with the

filtration described in (3.5). Then similar to the case of ∆2, we have a filtered de Rham complex
Filr∆1 ⊗ Ω•

3 and similar to Lemma 5.24 we obtain the following:

Lemma 5.25. The natural map FilrN [u,v]
ϖ (T )⊗ Ω•

1 → Filr∆1 ⊗ Ω•
3 is a quasi-isomorphism.

Proof. In the notation of §3.3.2, note that we have A = R1, B = R2 and E = R3. Using the equality
N

[u,v]
ϖ (T ) = ∆∂=0

1 and (3.5), we note that FilrN [u,v]
ϖ (T ) = Filr∆1∩∆∂=0

1 = (FilrN [u,v]
ϖ (T ))∂=0. Therefore,

by using Lemma 3.22, we obtain the claim.

Remark 5.26. Statements analogous to Lemma 5.24 and Lemma 5.25 for R[u,v/p]
ϖ and A[u,v/p]

R,ϖ (instead
of R[u,v]

ϖ and A[u,v]
R,ϖ) respectively, are also true.

Definition 5.27. LetN [u,v]
ϖ (T ) as above equipped with a Frobenius-semilinear morphism φ : N [u,v]

ϖ (T )→
N

[u,v/p]
ϖ (T ). Using Definition 5.22 and Remark 5.23 set

Kos
(
φ, ∂A,FilrN [u,v]

ϖ (T )
)

:=


Kos

(
∂′
A,FilrN [u,v]

ϖ (T )
) pr−p•φ //

∂0
��

Kos
(
∂′
A, N

[u,v/p]
ϖ (T )

)
∂0
��

Kos
(
∂′
A,Filr−1N

[u,v]
ϖ (T )

) pr−p•+1φ // Kos
(
∂′
A, N

[u,v/p](T )
ϖ

)

 .
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Proposition 5.28. There exists a natural p2n(T,e)-quasi-isomorphism between complexes Syn
(
M

[u,v]
ϖ , r

)
and Kos

(
φ, ∂A,FilrN [u,v]

ϖ (T )
)
, where n(T, e) ∈ N as in Assumption 5.1.

Proof. Note that using Lemma 5.24 with R1 = R
[u,v]
ϖ , R3 = E

[u,v]
R,ϖ , ∆1 = E

[u,v]
R,ϖ ⊗R[u,v]

ϖ
M

[u,v]
ϖ and

∆′
1 = E

[u,v/p]
R,ϖ ⊗

R
[u,v/p]
ϖ

M
[u,v/p]
ϖ , we have natural quasi-isomorphisms of complexes Syn(M [u,v]

ϖ , r) ≃[
FilrM [u,v]

ϖ ⊗Ω•
1
pr−p•φ−−−−−→M

[u,v/p]
ϖ ⊗Ω•

1

]
≃

[
Filr∆1⊗Ω•

3
pr−p•φ−−−−−→ ∆′

1⊗Ω•
3

]
. Next, using Lemma 5.24 with

R2 = A[u,v]
R,ϖ , R3 = E

[u,v]
R,ϖ , ∆2 = E

[u,v]
R,ϖ ⊗A[u,v]

R,ϖ

N
[u,v]
ϖ (T ) and ∆′

2 = E
[u,v/p]
R,ϖ ⊗A[u,v/p]

R,ϖ

N
[u,v/p]
ϖ , together with

Remark 5.23, note that we have natural quasi-isomorphisms of complexes Kos(φ, ∂A,FilrN [u,v]
ϖ (T )) ≃[

FilrN [u,v]
ϖ (T ) ⊗ Ω•

2
pr−p•φ−−−−−→ FilrN [u,v/p]

ϖ ⊗ Ω•
2

]
≃

[
Filr∆2 ⊗ Ω•

3
pr−p•φ−−−−−→ ∆′

2 ⊗ Ω•
3

]
. Finally, using

the pn(T,e)-isomorphism E
[u,v]
R,ϖ ⊗R[u,v]

ϖ
M

[u,v]
ϖ

∼−→ E
[u,v]
R,ϖ ⊗A[u,v]

R,ϖ

N
[u,v]
ϖ (T ) from Assumption 5.1, we have

pn(T,e)-isomorphisms Filr∆1 ≃ Filr∆2 and ∆′
1 ≃ ∆′

2. Hence, from the discussion above, we obtain a
natural p2n(T,e)-quasi-isomorphism of complexes Syn

(
M

[u,v]
ϖ , r

)
≃ Kos

(
φ, ∂A,FilrN [u,v]

ϖ (T )
)
.

6. Syntomic complexes and (φ, Γ)-modules
In this section, we will work under the setup of Assumption 5.1 and carry out the second step of
the proof of Theorem 5.5. Recall that we have a finite free A[u,v]

R,ϖ-module N
[u,v]
ϖ (T ) = A[u,v]

R,ϖ ⊗A+
R

N(T ) equipped with a ΓR-stable filtration as in (3.5) and from Definition 5.27, we have the complex
Kos

(
φ, ∂A,FilrN [u,v]

ϖ (T )
)
. Let S = R[ϖ] and from the theory of étale (φ,ΓS)-modules in §2.4, we have

Dϖ(T (r)) = AR,ϖ ⊗AR D(T (r)), and from Defintion 4.11 we have the complex Kos
(
φ,ΓS , Dϖ(T (r))

)
.

In this section, our goal is to show the following:

Proposition 6.1. There exist natural pN -quasi-isomorphisms of complexes

τ≤rKos
(
φ, ∂A,FilrN [u,v]

ϖ (T )
)
≃ τ≤rKos

(
φ,ΓS , Dϖ(T (r))

)
,

where N = N(r, s) ∈ N depending only on the height s of the representation T and twist r.

6.1. Proof of Theorem 5.5. Note that by combining Proposition 5.12 and Proposition 5.14,
we have a natural p4r+4s-quasi-isomorphism of complexes τ≤r−s−1Syn

(
MPD
ϖ , r

)
≃ τ≤r−s−1Syn

(
M

[u,v]
ϖ , r

)
.

Next, from Proposition 5.28, we have a natural p2n(T,e)-quasi-isomorphism of complexes Syn
(
M

[u,v]
ϖ , r

)
≃

Kos
(
φ, ∂A,FilrN [u,v]

ϖ (T )
)
. Furthermore, by Proposition 6.1, we have a natural p10r+3s+2-quasi-isomorphism

of complexes τ≤rKos
(
φ, ∂A,FilrN [u,v]

ϖ (T )
)
≃ τ≤rKos

(
φ,ΓS , Dϖ(T (r))

)
, where τ≤ denotes the canonical

truncation (for the explicit constant, see the proof of Proposition 6.1 the end of §6.6). Finally, by Propo-
sition 4.10 and Theorem 4.2, we have a natural quasi-isomorphism of complexes Kos

(
φ,ΓS , Dϖ(T (r))

)
≃

RΓcont(GS , T (r)). Combining all these statements gives us the desired conclusion with N = 2n(T, e) +
14r + 7s+ 2. ■

In the rest of this section, we will prove Proposition 6.1.

6.2. From differential forms to the infinitesimal action of ΓS. Note that Lemma 5.19
describes the action of Lie ΓS on FilrN [u,v]

ϖ (T ). Then for the Lie subgroup Γ′
S ⊂ ΓS (see §2.4 for

notations), using Definition 4.15 we have the complex Kos
(
Lie Γ′

S ,FilrN [u,v]
ϖ (T )

)
and we consider its

subcomplex, i.e. a complex made of submodules in each degree stable under the differentials of the
complex, as follows:

K
(
Lie Γ′

S ,FilrN [u,v]
ϖ (T )

)
:= FilrN [u,v]

ϖ (T ) (∇i)−−−→
(
tFilr−1N [u,v]

ϖ (T )
)I′

1 −→ · · ·

· · · −→
(
tkFilr−kN [u,v]

ϖ (T )
)I′

k −→ · · · .
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Using the same differentials, we can define a complex K
(
Lie Γ′

S , tFilr−1N
[u,v]
ϖ (T )

)
as a subcomplex of

Kos
(
Lie Γ′

S ,FilrN [u,v]
ϖ (T )

)
. Now consider a morphism of complexes ∇0 : K

(
Lie Γ′

S ,FilrN [u,v]
ϖ (T )

)
→

K
(
Lie Γ′

S , tFilr−1N
[u,v]
ϖ (T )

)
, given as∇0 = log γ0 in degree 0 and as∇0−kpm :

(
tkFilr−kN [u,v]

ϖ (T (r))
)I′

k →(
tk+1Filr−k−1N

[u,v]
ϖ (T (r))

)I′
k on the k-th term of the definition above, for 1 ≤ k ≤ d. The morphism

of complexes is well defined because we have ∇0∇i − ∇i∇0 = pm∇i, for 1 ≤ i ≤ d (see §4.3.2
and the discussion after Definition 4.15). Write the total complex of the diagram thus obtained as
K

(
Lie ΓS ,FilrN [u,v]

ϖ (T )
)
, which is a subcomplex of Kos

(
Lie ΓS ,FilrN [u,v]

ϖ (T )
)

by definition. Similarly,
we can define complexes K

(
Lie Γ′

S , N
[u,v/p]
ϖ (T )

)
and K

(
Lie Γ′

S , tN
[u,v/p]
ϖ (T )

)
and a map ∇0 from the

former to the latter complex.
Recall that from Definition 5.27 we have the Koszul complex Kos

(
φ, ∂A,FilrN [u,v]

ϖ (T )
)
. Note that we

have∇i = t∂i, for all 0 ≤ i ≤ d (see §5.5). So we consider a morphism of complexes Kos
(
∂′
A,FilrN [u,v]

ϖ (T )
)
→

K
(
Lie Γ′

S ,FilrN [u,v]
ϖ (T )

)
, given by the identity map in degree 0 and multiplication by tk on the k-th term

of the definition above, i.e.
(
Filr−kN [u,v]

ϖ (T (r))
)I′

k ×tk−−→
(
tkFilr−kN [u,v]

ϖ (T (r))
)I′

k , for 1 ≤ k ≤ d. It is clear
that the map thus defined is bijective, i.e. we obtain an isomorphism of complexes. Similarly, multi-
plying by powers of t as above, we obtain an isomorphism of complexes Kos

(
∂′
A,Filr−1N

[u,v]
ϖ (T )

) ∼−→
K

(
Lie Γ′

S , tFilr−1N
[u,v]
ϖ (T )

)
. Furthermore, one can do a similar construction for N [u,v/p]

ϖ (T ) to obtain
isomorphism of complexes Kos

(
∂′
A, N

[u,v/p]
ϖ (T )

) ∼−→ K
(
Lie Γ′

S , N
[u,v/p]
ϖ (T )

)
and Kos

(
∂′
A, N

[u,v/p]
ϖ (T )

) ∼−→
K

(
Lie Γ′

S , tN
[u,v/p]
ϖ (T )

)
. As each term of these complexes admit a Frobenius-semilinear morphism

φ : tjFilr−jN [u,v]
ϖ (T ) → tjN

[u,v/p]
ϖ (T ), we obtain the following morphism of complexes (see Definition

5.27 for the source complex):

Kos
(
φ, ∂A,FilrN [u,v]

ϖ (T )
)
−→


K

(
Lie Γ′

S ,FilrN [u,v]
ϖ (T )

) pr−φ //

∇0
��

K
(
Lie Γ′

S , N
[u,v/p]
ϖ (T )

)
∇0
��

K
(
Lie Γ′

S , tFilr−1N
[u,v]
ϖ (T )

) pr−φ // K
(
Lie Γ′

S , tN
[u,v/p]
ϖ (T )

)

 .

From the discussion above, it follows that,

Lemma 6.2. The morphism of complexes described above is an isomorphism.

Recall that s is the height of T and we fixed some r ≥ s+ 1. Set N [u,v]
ϖ (T (r)) := A[u,v]

R,ϖ ⊗A+
R

N(T (r)),
equipped with the natural action of ΓR and a ΓR-stable filtration as in (3.10). Then, from Lemma
5.19, recall that the operators ∇i are well defined over FilkN [u,v]

ϖ (T (r)), for 0 ≤ i ≤ d. Using these
operators, we consider a subcomplex of the Koszul complex Kos

(
Lie Γ′

S ,Fil0N [u,v]
ϖ (T (r))

)
(Definition

4.15), as follows:

K
(
Lie Γ′

S ,Fil0N [u,v]
ϖ (T (r))

)
:= Fil0N [u,v]

ϖ (T (r)) (∇i)−−−→
(
tFil−1N [u,v]

ϖ (T (r))
)I′

1 −→ · · ·

· · · −→
(
tkFil−kN [u,v]

ϖ (T (r))
)I′

k −→ · · · .

Similarly, we can define a complex K
(
Lie Γ′

S , tFil−1N
[u,v]
ϖ (T (r))

)
as a subcomplex of the Koszul com-

plex Kos
(
Lie Γ′

S ,Fil0N [u,v]
ϖ (T (r))

)
. Moreover, similar to the discussion before Lemma 6.2, we can

define a morphism of complexes ∇0 : K
(
Lie Γ′

S ,Fil0N [u,v]
ϖ (T (r))

)
−→ K

(
Lie Γ′

S , tFil−1N
[u,v]
ϖ (T (r))

)
.

The associated total complex, written as K
(
Lie ΓS ,FilrN [u,v]

ϖ (T )
)
, is a subcomplex of the Koszul com-

plex Kos
(
Lie ΓS ,Fil0N [u,v]

ϖ (T (r))
)
. Furthermore, in a similar manner, we can define the complexes

K
(
Lie Γ′

S , N
[u,v/p]
ϖ (T (r))

)
and K

(
Lie Γ′

S , tN
[u,v/p]
ϖ (T (r))

)
and a morphism ∇0 from the former to the

latter complex.
Next, from Lemma 3.21, recall that FilkN [u,v]

ϖ (T (r)) = π−rFilk+rN
[u,v]
ϖ (T )(r), for each k ∈ Z. Let

ϵ−r denote a Zp-basis of Zp(−r), then we see that (tr ⊗ ϵ−r)FilkN [u,v]
ϖ (T (r)) = (t/π)rFilr+kN [u,v]

ϖ (T ) =
Filr+kN [u,v]

ϖ (T ), where the last equality follows since t/π is a unit in A[u,v]
R,ϖ (see Lemma 2.18). Now,
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consider a morphism of complexes K
(
Lie Γ′

S ,Fil0N [u,v]
ϖ (T (r))

)
→ K

(
Lie Γ′

S ,FilrN [u,v]
ϖ (T )

)
given as mul-

tiplication by tr ⊗ ϵ−r in each degree, in particular, it is given as
(
tkFil−kN [u,v]

ϖ (T (r))
)I′

k
×(tr⊗ϵ−r)−−−−−−→(

tkFilr−kN [u,v]
ϖ (T )

)I′
k on the k-th term of the definition above, for 1 ≤ k ≤ d. Note that the map thus de-

fined is bijective on each term by the preceding discussion. Similarly, we have (tr ⊗ ϵ−r)N [u,v/p]
ϖ (T (r)) =

(t/π)rN [u,v/p]
ϖ (T ) = N

[u,v/p]
ϖ (T ), which yields an isomorphism of complexes K

(
Lie Γ′

S , N
[u,v/p]
ϖ (T (r))

) ∼−→
K

(
Lie Γ′

S , tN
[u,v/p]
ϖ (T (r))

)
. Putting these together, we obtain that,

Lemma 6.3. The morphism of complexes below, given as multiplication by tr ⊗ ϵ−r on each term, is an
isomorphism:

K
(
Lie Γ′

S ,Fil0N [u,v]
ϖ (T (r))

) pr(1−φ) //

∇0
��

K
(
Lie Γ′

S , N
[u,v/p]
ϖ (T (r))

)
∇0
��

K
(
Lie Γ′

S , tFil−1N
[u,v]
ϖ (T (r))

) pr(1−φ) // K
(
Lie Γ′

S , tN
[u,v/p]
ϖ (T (r))

)


∼−→


K

(
Lie Γ′

S ,FilrN [u,v]
ϖ (T )

) pr−φ //

∇0
��

K
(
Lie Γ′

S , N
[u,v/p]
ϖ (T )

)
∇0
��

K
(
Lie Γ′

S , tFilr−1N
[u,v]
ϖ (T )

) pr−φ // K
(
Lie Γ′

S , tN
[u,v/p]
ϖ (T )

)

 .

In order to change from “Lie ΓS-Koszul complexes” to “ΓS-Koszul complexes”, we modify the source
complex in Lemma 6.3 to define K

(
φ,Lie ΓS , N [u,v]

ϖ (T (r))
)
, as follows:

K
(
Lie Γ′

S ,Fil0N [u,v]
ϖ (T (r))

) 1−φ //

∇0
��

K
(
Lie Γ′

S , N
[u,v/p]
ϖ (T (r))

)
∇0
��

K
(
Lie Γ′

S , tFil−1N
[u,v]
ϖ (T (r))

) 1−φ // K
(
Lie Γ′

S , tN
[u,v/p]
ϖ (T (r))

)

 .

By definition, the complex K
(
φ,Lie ΓS , N [u,v]

ϖ (T (r))
)

is p4r-isomorphic to the source complex in Lemma
6.3. Combining this with Lemma 6.2 and Lemma 6.3, we get that,

Proposition 6.4. There exists a natural p4r-quasi-isomorphism of complexes

Kos
(
φ, ∂A,FilrN [u,v]

ϖ (T )
)
≃ K

(
φ,Lie ΓS , N [u,v]

ϖ (T (r))
)
.

6.3. From the infinitesimal action of ΓS to the continuous action of ΓS. In this
subsection, we will study Koszul complexes involving operators γi − 1 over N [u,v]

ϖ (T (r)). Note that
we have (γi − 1)FilkN [u,v]

ϖ (T (r)) ⊂ FilkN [u,v]
ϖ (T (r)) ∩ πN [u,v]

ϖ (T (r)) = πFilk−1N
[u,v]
ϖ (T (r)), where the

last equality follows from Lemma 3.18 and Lemma 3.21. Define a subcomplex of the Koszul complex
Kos

(
Γ′
S ,Fil0N [u,v]

ϖ (T (r))
)

(see Definition 4.9), as follows:

K
(
Γ′
S ,Fil0N [u,v]

ϖ (T (r))
)

:= Fil0N [u,v]
ϖ (T (r)) (τi)−−−→

(
πFil−1N [u,v]

ϖ (T (r))
)I′

1 −→

−→
(
π2Fil−2N [u,v]

ϖ (T (r))
)I′

2 −→ · · · .

Similarly, we can define a complex Kc
(
Γ′
S , πFil−1N

[u,v]
ϖ (T (r))

)
as a subcomplex of the Koszul complex

Kosc
(
Γ′
S ,Fil0N [u,v]

ϖ (T (r))
)

(see Definition 4.9), where c = χ(γ0) = exp(pm). Consider a morphism of
complexes τ0 : K

(
Γ′
S ,Fil0N [u,v]

ϖ (T (r))
)
→ Kc

(
Γ′
S , πFil−1N

[u,v]
ϖ (T (r))

)
, which is given as γ0 − 1 in de-

gree 0 and as τk0 :
(
πkFil−kN [u,v]

ϖ (T (r))
)I′

k →
(
πk+1Fil−k−1N

[u,v]
ϖ (T (r))

)I′
k , on the k-th term of the

definition above, for 1 ≤ k ≤ d (see Definition 4.8 and Definition 4.9). Denote the total complex
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of the diagram thus obtained as K
(
ΓS ,Fil0N [u,v]

ϖ (T (r))
)
, which is a subcomplex of the Koszul com-

plex Kos
(
ΓS ,Fil0N [u,v]

ϖ (T (r))
)
. In a similar manner, we can define complexes K

(
Γ′
S , N

[u,v/p]
ϖ (T (r))

)
and

Kc
(
Γ′
S , πN

[u,v/p]
ϖ (T (r))

)
and a map τ0 from the former to the latter complex.

Recall that t/π is a unit in A[u,v]
R,ϖ (see Lemma 2.18), therefore, we see that tkFil−kN [u,v]

ϖ (T (r)) =
πkFil−kN [u,v]

ϖ (T (r)), for all k ∈ Z. Now, define a morphism of complexes β : K
(
Γ′
S ,Fil0N [u,v]

ϖ (T (r))
)
→

K
(
Lie Γ′

S ,Fil0N [u,v]
ϖ (T (r))

)
, which is the identity in degree 0 and given as

βk :
(
tkFil−kN [u,v]

ϖ (T (r))
)I′

k −→
(
tkFil−kN [u,v]

ϖ (T (r))
)I′

k

(ai1···ik) 7−→
(
∇ik · · · ∇i1τ

−1
i1
· · · τ−1

ik
(ai1···ik)

)
,

on the k-th term of the definition above, for 1 ≤ k ≤ d. Similarly, define a morphism of complexes
βc : Kc

(
Γ′
S , tFil−1N

[u,v]
ϖ (T (r))

)
→ Kc

(
Lie Γ′

S , tFil−1N
[u,v]
ϖ (T (r))

)
which is given as βc0 = ∇0τ

−1
0 in degree

0 and as

βck :
(
tk+1Fil−k−1N [u,v]

ϖ (T (r))
)I′

k −→
(
tk+1Fil−k−1N [u,v]

ϖ (T (r))
)I′

k

(ai1···ik) 7−→
(
∇ik · · · ∇i1∇0τ

−1
0 τ c,−1

i1
· · · τ c,−1

ik
(ai1···ik)

)
,

on the k-th term of the definition above, for 1 ≤ k ≤ d. Similarly, one can define the maps β

and βc for the A[u,v/p]
R,ϖ -module N

[u,v/p]
ϖ , giving morphisms of complexes β : K

(
Γ′
S , N

[u,v/p]
ϖ (T (r))

)
→

K
(
Lie Γ′

S , N
[u,v/p]
ϖ (T (r))

)
and βc : Kc

(
Γ′
S , tN

[u,v/p]
ϖ (T (r))

)
→ Kc

(
Lie Γ′

S , tN
[u,v/p]
ϖ (T (r))

)
.

For each j ∈ N, we have that tjFil−jN [u,v]
ϖ (T (r)) ⊂ N

[u,v]
ϖ (T (r)) and the induced Frobenius gives

φ(tjFil−jN [u,v]
ϖ (T (r))) = φ(tj−rFilr−jN [u,v]

ϖ (T )(r)) ⊂ tjN
[u,v/p]
ϖ (T (r)), where we have used Lemma 3.21

and the fact that t/π is a unit in A[u,v]
R,ϖ (see Lemma 2.18). Using the Frobenius morphism and the

morphism of complexes described above, we obtain an induced morphism of complexes
K

(
Γ′
S ,Fil0N [u,v]

ϖ (T (r))
) 1−φ //

τ0
��

K
(
Γ′
S , N

[u,v/p]
ϖ (T (r))

)
τ0
��

Kc
(
Γ′
S , tFil−1N

[u,v]
ϖ (T (r))

) 1−φ // Kc
(
Γ′
S , tN

[u,v/p]
ϖ (T (r))

)


(β,βc)−−−−→ K

(
φ,Lie ΓS , N [u,v]

ϖ (T (r))
)

We denote the complex on the left as K
(
φ,ΓS , N [u,v]

ϖ (T (r))
)

and write the map as

L = (β, βc) : K
(
φ,ΓS , N [u,v]

ϖ (T (r))
)
−→ K

(
φ,Lie ΓS , N [u,v]

ϖ (T (r))
)
,

Proposition 6.5. The morphism of complexes L described above is an isomorphism.

Proof. The proof follows in essentially the same manner as [CN17, Lemma 4.6]. One needs to use
Lemma 2.22, Lemma 4.14 and Corollary 5.19 instead of [CN17, Lemma 2.34] in the proof. We omit the
details.

6.4. Change of the annulus of convergence : Part 1. In this subsection, we will pass from
the analytic ring A[u,v]

R,ϖ to the overconvergent ring A(0,v]+
R,ϖ and also twist our module by Zp(r). Let us set

N
(0,v]+
ϖ (T (r)) := A(0,v]+

R,ϖ ⊗A+
R

N(T (r)) equipped with the natural action of ΓR and a ΓR-stable filtration

as in (3.10). Define a subcomplex of the Koszul complex Kos
(
Γ′
S ,Fil0N (0,v]+

ϖ (T (r))
)

(see Definition 4.9),
as follows:

K
(
Γ′
S ,Fil0N (0,v]+

ϖ (T (r))
)

:= Fil0N (0,v]+
ϖ (T (r)) (τi)−−−→

(
πFil−1N (0,v]+

ϖ (T (r))
)I′

1 −→

−→
(
π2Fil−2N (0,v]+

ϖ (T (r))
)I′

2 −→ · · · .

Similarly, we can define a complex Kc
(
Γ′
S , πFil−1N

(0,v]+
ϖ (T (r))

)
as a subcomplex of the Koszul com-

plex Kosc
(
Γ′
S ,Fil0N (0,v]+

ϖ (T (r))
)

(see Definition 4.9). Now, consider a morphism of complexes τ0 :
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K
(
Γ′
S ,Fil0N (0,v]+

ϖ (T (r))
)
→ Kc

(
Γ′
S , πFil−1N

(0,v]+
ϖ (T (r))

)
which is given as γ0 − 1 in degree 0 and as

τk0 :
(
πkFil−kN (0,v]+

ϖ (T (r))
)I′

2 →
(
πkFil−k−1N

(0,v]+
ϖ (T (r))

)I′
2 , on the k-th term of the definition above,

for 1 ≤ k ≤ d (see Definition 4.8 and Definition 4.9). Write the total complex of the diagram thus
obtained as K

(
ΓS ,Fil0N (0,v]+

ϖ (T (r))
)
, a subcomplex of the Koszul complex Kos

(
ΓS ,Fil0N (0,v]+

ϖ (T (r))
)
.

In a similar manner, we can define the complexes K
(
Γ′
S , N

(0,v/p]+
ϖ (T (r))

)
and Kc

(
Γ′
S , πN

(0,v/p]+
ϖ (T (r))

)
and a map τ0 from the former to the latter complex.

For each j ∈ N, we have that πjFil−jN (0,v]+
ϖ (T (r)) ⊂ N (0,v]+

ϖ (T (r)) and the induced Frobenius gives
φ(πjFil−jN (0,v]+

ϖ (T (r))) = φ(πj−rFilr−jN (0,v]+
ϖ (T )(r)) ⊂ πjN

(0,v/p]+
ϖ (T (r)), where the equality follows

from Lemma 3.21. So we define the complex,

K
(
φ,ΓS , N (0,v]+

ϖ (T (r))
)

:=


K

(
Γ′
S ,Fil0N (0,v]+

ϖ (T (r))
) 1−φ //

τ0
��

K
(
Γ′
S , N

(0,v/p]+
ϖ (T (r))

)
τ0
��

Kc
(
Γ′
S , πFil−1N

(0,v]+
ϖ (T (r))

) 1−φ // Kc
(
Γ′
S , πN

(0,v/p]+
ϖ (T (r))

)

 .

Proposition 6.6. The natural morphism of complexes K
(
φ,ΓS , N (0,v]+

ϖ (T (r))
)
→ K

(
φ,ΓS , N [u,v]

ϖ (T (r))
)
,

induced by the inclusion N
(0,v]+
ϖ (T (r)) ⊂ N [u,v]

ϖ (T (r)), is a p3r-quasi-isomorphism.

Proof. The map in the claim is injective on each term, so we need to show that the cokernel complex is
killed by p3r. In the cokernel complex, for k ∈ N, we have maps

1− φ : πkFil−kN [u,v]
ϖ (T (r))/πkFil−kN (0,v]+

ϖ (T (r)) −→ πkN [u,v/p]
ϖ (T (r))/πkN (0,v/p]+

ϖ (T (r)), (6.1)

and it is enough to show that these are p3r-bijective. Let us set N (0,v]+
ϖ (T ) := A(0,v]+

R,ϖ ⊗A+
R

N(T ),

N
(0,v]+
ϖ (T )(r) := N

(0,v]+
ϖ (T )⊗Zp Zp(r) and N [u,v]

ϖ (T )(r) := N
[u,v]
ϖ (T )⊗Zp Zp(r), equipped with the filtra-

tion as in (3.5) (upto twisting the filtered pieces by Zp(r) in the latter cases). Moreover, for any k ∈ N, by
Lemma 3.21 we have that πkFil−kN (0,v]+

ϖ (T (r)) = πk−rFilr−kN (0,v]+
ϖ (T )(r) and πkFil−kN [u,v]

ϖ (T (r)) =
πk−rFilr−kN [u,v]

ϖ (T )(r). So, for n = r − k, we can rewrite (6.1) as,

1− φ : π−nFilnN [u,v]
ϖ (T )/π−nFilnN (0,v]+

ϖ (T ) −→ π−nN [u,v/p]
ϖ (T )/π−nN (0,v/p]+

ϖ (T ). (6.2)

Note that the twist has disappeared since φ acts trivially on it. For n ≤ 0, the claim follows from Lemma
6.7. For n > 0, we first claim that the following natural map is pn-bijective:

π−n
1 N [u,v]

ϖ (T )/π−n
1 N (0,v]+

ϖ (T ) −→ π−nFilnN [u,v]
ϖ (T )/π−nFilnN (0,v]+

ϖ (T ), (6.3)

Indeed, recall that ξ = π/π1 and from (3.5) and Lemma 3.19, it is clear that ξnN (0,v]+
ϖ (T ) ⊂ FilnN (0,v]+

ϖ (T ),
in particular, we have N (0,v]+

ϖ (T ) ⊂ N
[u,v]
ϖ (T ) ∩ ξ−nFilnN (0,v]+

ϖ (T ) = (A[u,v]
R,ϖ ∩ ξ−nA(0,v]+

R,ϖ )⊗A+
R

N(T ) =

N
(0,v]+
ϖ (T ), where the first equality follows because N(T ) is free over A+

R and the second equality follows
because ξnA[u,v]

R,ϖ ∩A(0,v]+
R,ϖ ⊂ FilnA(0,v]+

R,ϖ = ξnA(0,v]+
R,ϖ (see Definition 2.7 and Remark 2.8). In particular,

we see that π−n
1 N

[u,v]
ϖ (T )∩ π−nFilnN (0,v]+

ϖ (T ) = π−n
1 N

(0,v]+
ϖ (T ), i.e. (6.3) is injective. Next, to show the

pn-surjectivity of (6.3), write A[u,v]
R,ϖ = A[u]

R,ϖ+A(0,v]+
R,ϖ and set N [u]

ϖ (T ) := A[u]
R,ϖ⊗A+

R
N(T ) and N+

ϖ(T ) :=
A+
R,ϖ ⊗A+

R
N(T ), equipped with the induced filtration as in (3.5). Then, to obtain the pn-surjectivity

of (6.3), it is enough to show that the natural map π−n
1 N

[u]
ϖ (T ) + π−nFilnN+

ϖ(T ) → π−nFilnN [u]
ϖ (T ) is

pn-surjective, or equivalently, that the natural map ξnN [u]
ϖ (T )+FilnN+

ϖ(T )→ FilnN [u]
ϖ (T ) is pn-surjective.

To show the latter claim, let {e1, . . . , eh} be an A+
R-basis of N(T ), and take x ∈ FilnN [u]

ϖ (T ) and
write x =

∑h
i=1 aiei, with ai ∈ A[u]

R,ϖ. Note that from Lemma 2.9 we can write ai = ai1 + ai2, with
ai1 ∈ FilnA[u]

R,ϖ ⊂ p−nξnA[u]
R,ϖ (see Remark 2.8) and ai2 ∈ p−⌊nu⌋A+

R,ϖ. So we see that x1 =
∑h
i=1 ai1ei

is in p−nξnN
[u]
ϖ (T ) and x2 =

∑h
i=1 ai2ei = x− x1 is in p−⌊nu⌋N+

ϖ(T )∩FilnN [u]
ϖ (T ) ⊂ N [u]

ϖ (T )[1/p]. Now,
as we have u = (p − 1)/p < 1, therefore, it follows that pnx2 is in N+

ϖ(T ) ∩ FilnN [u]
ϖ (T ) = FilnN+

ϖ(T )
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(see Lemma 3.18), i.e. pnx = pnx1 + pnx2 is in ξnN
[u]
ϖ (T ) + FilnN+

ϖ(T ). In particular, we get that (6.3)
is pn-bijective, and therefore, (6.2) is pn-isomorphic to

1− φ : π−n
1 N [u,v]

ϖ (T )/π−n
1 N (0,v]+

ϖ (T ) −→ π−nN [u,v/p]
ϖ (T )/π−nN (0,v/p]+

ϖ (T ).

Recall that we have v = p − 1, so by Lemma 2.20 (iii) it follows that π divides p in A(0,v/p]+
R,ϖ and π1

divides p in A(0,v]+
R,ϖ , therefore, (6.2) is p2n-isomorphic to the following map:

1− φ : N [u,v]
ϖ (T )/N (0,v]+

ϖ (T ) −→ N [u,v/p]
ϖ (T )/N (0,v/p]+

ϖ (T ).

Now, from Lemma 6.7, the map above is bijective (note that Frobenius has no effect on twist). Therefore,
we conclude that (6.1) is p3n-bijective. As n = r − k ≤ r, it follows that the cokernel complex of the
map in the claim of the lemma is killed by p3r. This allows us to conclude.

Lemma 6.7. For each k ∈ N, the following natural map is bijective

1− φ : πkN [u,v]
ϖ (T )/πkN (0,v]+

ϖ (T ) ∼−→ πkN [u,v/p]
ϖ (T )/πkN (0,v/p]+

ϖ (T ),

Proof. For k = 0, using a basis of N(T ), one first shows that the natural map N
[u,v]
ϖ (T )/N (0,v]+

ϖ (T ) →
N

[u,v/p]
ϖ (T )/N (0,v/p]+

ϖ (T ) is bijective, in particular, 1 − φ is an endomorphism of N [u,v]
ϖ (T )/N (0,v]+

ϖ (T ).
Then, following the strategy of [CN17, Lemma 4.8] one shows that on the preceding quotient, 1 + φ +
φ2 + · · · converges as an inverse to 1 − φ. We omit the details. For k > 0, note that φ preserves the
quotient πkN [u,v]

ϖ (T )/πkN (0,v]+
ϖ (T ). So, from the case k = 0, it follows that 1 + φ+ φ2 + · · · converges

on the preceding quotient as well.

6.5. Change of the annulus of convergence : Part 2. In this subsection, we will change the
ring of coefficients from A(0,v]+

R,ϖ to A(0,v/p]+
R,ϖ by replacing φ with its left inverse ψ (under the asssumption

that m ≥ 2).

6.5.1. From (φ,ΓS)-complexes to (ψ,ΓS)-complexes. From Proposition 2.4, recall that we have
the left inverse ψ of the Frobenius endomorphism on A, satisfying ψ(A) ⊂ A. This induces an operator
ψ : A(0,v/p]+

R,ϖ → A(0,v]+
R,ϖ , which commutes with the action of ΓR, in particular, we have ψ(A(0,v]+

R,ϖ ) ⊂
A(0,v]+
R,ϖ . Equivalently, one can also define the operator ψ by first identifying ιcycl : R(0,v/p]+

ϖ
∼−→ A(0,v/p]+

R,ϖ

and then considering the left inverse of the cyclotomic Frobenius over R(0,v/p]+
ϖ (see §2.6 and §2.7).

Next, from Lemma 3.6 recall that the operator ψ extends to N(T (r)) and we have ψ(N(T (r))) ⊂
N(T (r)). By extending scalars to A(0,v]+

R,ϖ and from the discussion above we see that ψ(N (0,v]+
ϖ (T (r))) ⊂

ψ(N (0,v/p]+
ϖ (T (r))) ⊂ N

(0,v]+
ϖ (T (r)). Moreover, using the description of the filtration on N

(0,v]+
ϖ (T )

from Lemma 3.19, it follows that for 0 ≤ k ≤ r, we have φ(Filr−kN (0,v]+
ϖ (T )) ⊂ qr−kN

(0,v/p]+
ϖ (T ).

Upon multiplying the terms of the preceding inclusion by φ(πk−r) and twisting by Zp(r), we get that
φ(πk−rFilr−kN (0,v]+

ϖ (T )(r)) ⊂ πk−rN
(0,v/p]+
ϖ (T )(r). In particular, by using Lemma 3.21, we note that

πkFil−kN (0,v]+
ϖ (T (r)) ⊂ ψ(πkN (0,v/p]+

ϖ (T (r))) and since Fil−kN (0,v]+
ϖ (T (r)) ⊂ N (0,v/p]+

ϖ (T (r)), therefore,
it follows that (ψ − 1)(πkFil−kN (0,v]+

ϖ (T (r))) ⊂ ψ(πkN (0,v/p]+
ϖ (T (r))).

Set K(Γ′
S , Nψ) := ψ(K(Γ′

S , N
(0,v/p]+
ϖ (T (r)))) and Kc(Γ′

S , Nψ) := ψ(Kc(Γ′
S , N

(0,v/p]+
ϖ (T (r)))). From

§6.4, recall that we defined maps τ0 : K
(
Γ′
S ,Fil0N (0,v]+

ϖ (T (r))
)
→ Kc

(
Γ′
S , πFil−1N

(0,v]+
ϖ (T (r))

)
and

τ0 : ψ(K(Γ′
S , N

(0,v/p]+
ϖ (T (r)))) → ψ(Kc(Γ′

S , N
(0,v/p]+
ϖ (T (r)))). As ψ commutes with the action of ΓS ,

therefore, from the latter map, we obtain an induced morphism τ0 : K(Γ′
S , Nψ) → Kc(Γ′

S , Nψ). Now,
using the discussion above, note that we have a well-defined map between source complexes of the maps
τ0 above, given as ψ− 1 : K

(
Γ′
S ,Fil0N (0,v]+

ϖ (T (r))
)
→ K(Γ′

S , Nψ), and similarly for the target complexes
of τ0. Therefore, similar to the complex K

(
φ,ΓS , N (0,v]+(T (r))

)
in §6.4, we define the following complex:

K
(
ψ,ΓS , N (0,v]+

ϖ (T (r))
)

:=


K

(
Γ′
S ,Fil0N (0,v]+

ϖ (T (r))
) ψ−1 //

τ0
��

K
(
Γ′
S , Nψ

)
τ0

��
Kc

(
Γ′
S , πFil−1N

(0,v]+
ϖ (T (r))

) ψ−1 // Kc
(
Γ′
S , Nψ

))

 .
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Proposition 6.8. The morphism τ≤rK
(
φ,ΓS , N (0,v]+

ϖ (T (r))
)
−→ τ≤rK

(
ψ,ΓS , N (0,v]+

ϖ (T (r))
)
, induced

by the identity in the first column and ψ in the second column is a pr+2-quasi-isomorphism.

Proof. By definition, note that the map is surjective on each term, so we need to show that the kernel
complex is pr+2-acyclic. As the map in the claim is identity on the first column, therefore, the kernel
complex can be written as

τ≤r
[
K

(
Γ′
S ,

(
N (0,v/p]+
ϖ (T (r))

)ψ=0) τ0−−→ Kc(Γ′
S ,

(
πN (0,v/p]+

ϖ (T (r))
)ψ=0)]

.

Clearly the terms of the complex above are φ(A(0,v]+
R,ϖ )-modules. Recall that p/π ∈ φ(A(0,v]+

R,ϖ ) (since π1

divides p in A(0,v]+
R,ϖ , see Lemma 2.20 (ii) for v = p − 1), so we obtain that (πkN (0,v/p]+

ϖ (T (r)))ψ=0 is
pr−k-isomorphic to (N (0,v/p]+

ϖ (T )(r))ψ=0, for k ≤ r. In particular, the complex above is pr-quasi-isomorphic
to the following complex:

τ≤r
[
Kos

(
Γ′
S ,

(
N (0,v/p]+
ϖ (T )(r)

)ψ=0) τ0−−→ Kosc
(
Γ′
S ,

(
N (0,v/p]+
ϖ (T )(r)

)ψ=0)]
. (6.4)

We will show that the complex in (6.4) is p2-acyclic, but to prove our claim we will need a simpler
description of the φ(A(0,v]+

R,ϖ )-module
(
N

(0,v/p]+
ϖ (T )

)ψ=0.
Let {e1, . . . , eh} denote an A+

R-basis of N(T ). As the attached (φ,ΓS)-module Dϖ(T ) = AR,ϖ ⊗AR

D(T ) over AR,ϖ is étale, so we see that {φ(e1), . . . φ(eh)} is an AR,ϖ-basis of Dϖ(T ). Now, let us note
that z =

∑h
j=1 zjφ(ej) is in Dϖ(T )ψ=0 if and only if zj ∈

(
AR,ϖ

)ψ=0, for each 1 ≤ j ≤ h. Indeed,
ψ(z) = 0 if and only if

∑h
j=1 ψ(zj)ej = 0, and since ej are linearly independent over AR,ϖ, therefore,

we see that ψ(z) = 0 if and only if ψ(zj) = 0, for all 1 ≤ j ≤ h. Next, using Lemma 2.15 (ii), note
that we have a decomposition Aψ=0

R,ϖ = ⊕α ̸=0φ
(
AR,ϖ

)
[X♭]α, where [X♭]α = (1 + πm)α0 [X♭

1]α0 · · · [X♭
d]αd

and α = (α0, . . . , αd) is a (d + 1)-tuple with αi ∈ {0, . . . , p − 1}. Therefore, we see that Dϖ(T )ψ=0 =( ∑h
j=1 AR,ϖφ(ej)

)ψ=0 = ⊕α ̸=0
∑h
j=1 φ

(
AR,ϖej

)
[X♭]α = ⊕α ̸=0φ

(
Dϖ(T )

)
[X♭]α. Note that inside Dϖ(T )

we have
(
N

(0,v/p]+
ϖ (T )

)ψ=0 = Dϖ(T )ψ=0 ∩ N (0,v/p]+
ϖ (T ). So using the decomposition above, we set

N [X♭]α := φ
(
Dϖ(T )

)
[X♭]α ∩N (0,v/p]+

ϖ (T ), for α ̸= 0, where the intersection is taken inside Dϖ(T )ψ=0.
Note that we have φ(A(0,v]+

R,ϖ ) ⊂ φ(AR,ϖ) ∩ A(0,v/p]+
R,ϖ . Therefore, it follows that N := N [X♭]α[X♭]−α

is a φ(A(0,v]+
R,ϖ )-module contained in N

(0,v/p]+
ϖ (T ), stable under the action of ΓS and independent of

α. Indeed, for the last part note that for α ̸= α′, we have
∑h
i=1 φ(xiei)[X♭]α ∈ N [X♭]α if and only

if
∑h
i=1 φ(xiei)[X♭]α′ ∈ N [X♭]α′ . In conclusion, we get that

(
N

(0,v/p]+
ϖ (T )

)ψ=0 = ⊕α ̸=0N [X♭]α =
⊕α ̸=0φ(N (0,v]+

ϖ )[X♭]α, where the last equality follows from the following:

Lemma 6.9. For v = p − 1, let x ∈ Dϖ(T ) such that φ(x) ∈ N (0,v/p]+
ϖ (T ), then x ∈ N (0,v]+

ϖ (T ). In
particular, we have N = φ(N (0,v]+

ϖ (T )).

Proof. Let N+
ϖ(T ) = A+

R,ϖ ⊗A+
R

N(T ) and note that Dϖ(T )/p = (N+
ϖ(T )/p)[1/πm] and N

(0,v]+
ϖ (T ) =∑

n∈N p
nπ

−⌊ne/v⌋
m N+

ϖ(T ) (since N(T ) is finite free over A+
R). Then the proof of [CN17, Lemma 2.14] can

easily be adapted to obtain the claim. We omit the details.

Remark 6.10. From Lemma 6.9, we have N = φ(N (0,v]+
ϖ (T )). Then for any i ∈ {0, . . . , d}, using Lemma

2.22 (i), note that (γi − 1)A(0,v]+
R,ϖ ⊂ πA(0,v]+

R,ϖ and from Definition 3.1 note that (γi − 1)N(T ) ⊂ πN(T ).
As φ commutes with the action of ΓS , therefore, we conclude that (γi − 1)N ⊂ φ(π)N .

From the discussion above, it follows that the complex in (6.4) is isomorphic to the complex

τ≤r
⊕
α ̸=0

[
Kos

(
Γ′
S , N(r)[X♭]α

) τ0 // Kosc
(
Γ′
S , N(r)[X♭]α

) ]
. (6.5)

Lemma 6.11. The complex described in (6.5) is p2-acyclic.
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Proof. Our proof is motivated by the proof of [CN17, Lemma 4.10]. One can treat the terms of (6.5) cor-
responding to each α separately. The case of αk ̸= 0, for some k ̸= 0, follows similar to the proof of [CN17,
Lemma 4.10], where one shows that both the complexes Kos

(
Γ′
S , N(r)[X♭]α) and Kosc

(
Γ′
S , N(r)[X♭]α)

are p-acyclic, by using the facts that (γk−1)N ⊂ φ(π)N (see Remark 6.10) and π divides p in φ(A(0,v]+
R,ϖ )

(since π1 divides p in A(0,v]+
R,ϖ , see Lemma 2.20 (ii) for v = p− 1). We omit the details.

Now, let αk = 0, for all k ̸= 0, and α0 ̸= 0. To prove that the complex in (6.5) is p-acyclic, we will
show that τ0 : Kos→ Kosc is injective and the cokernel complex is killed by p. This amounts to showing
the same statement for the following map:

γ0 − δi1 · · · δiq : N [X♭]α(r) −→ N [X♭]α(r), δij =
γc

ij
−1

γij
−1 . (6.6)

Let n = p−m(c − 1)α0 ∈ Z×
p , F = cr(1 + π)nγ0 − δi1 · · · δiq and ϵ⊗r a Zp-basis of Zp(r). Then we

note that (γ0 − δi1 · · · δiq )
(
x[X♭]α ⊗ ϵ⊗r

)
= F (x) · [X♭]α ⊗ ϵ⊗r, for any x ∈ N . Moreover, we have that

cr − 1 is divisible by pm, (1 + π)n = 1 + nπ mod π2 and δij − 1 ∈ (γij − 1)ZpJγij − 1K. Therefore, we
can write π−1F in the form π−1F = n + π−1F ′, with F ′ ∈

(
pm, π2, γ0 − 1, . . . , γd − 1

)
ZpJπ,ΓSK. Now,

let f = p/π ∈ φ(A(0,v]+
R ) and note that π−1pmx = πm−1fmx is in πm−1N . Moreover, we have that

(γj − 1)N ⊂ φ(π)N , for 0 ≤ j ≤ d (see Remark 6.10) and φ(π)/π2 ∈ φ(A(0,v]+
R,ϖ ) (since π1 divides p in

A(0,v]+
R,ϖ , see Lemma 2.20 (ii) for v = p− 1). Furthermore, πpm

m divides π and p in φ(A(0,v]+
R,ϖ ) (see Lemma

2.20 (ii) for v = p− 1). So we get that π−1F ′(x) ∈ πpm

m N (since we assumed m ≥ 2). In particular, we
see that π−1F ′ = 0 on πamN/π

a+b
m N , for all a ∈ N and b = pm. Hence, π−1F induces multiplication by

n on πamN/π
a+b
m N , for all a ∈ N, which implies that it is an isomorphism on N . From the preceding

discussion, we conclude that the map in (6.6) is injective and its image is contained in πN [X♭]α(r). But,
as π divides p in φ(A(0,v]+

R,ϖ ), therefore, we get that the cokernel of (6.6) is killed by p, as claimed.

Using Lemma 6.11, we conclude that the natural morphism of complexes, in the claim of Proposition
6.8, is a pr+2-quasi-isomorphism.

6.5.2. Changing the overconvergence radius. Recall that m ≥ 2 and let ℓ = pm−1. Then
from Proposition 2.17 (i), we have inclusions ψ

(
π−ℓ
m A(0,v]+

R,ϖ

)
⊂ ψ

(
π−ℓ
m A(0,v/p]+

R,ϖ

)
⊂ π−pm−2

m A(0,v]+
R,ϖ ⊂

π−ℓ
m A(0,v/p]+

R,ϖ . In other words, π−ℓ
m A(0,v]+

R,ϖ is stable under ψ. Set D(0,v]+
ϖ (T (r)) := A(0,v]+

R,ϖ ⊗A+
R

D+(T (r))

and note that it is stable under the action of ΓS . Next, from Lemma 2.15 we have that ψ
(
A(0,v/p]+
R,ϖ

)
=

A(0,v]+
R,ϖ , and for v = p − 1, using Lemma 2.20 (iii), we have that π−pℓ

m π is a unit in A(0,v/p]+
R,ϖ . So from

Proposition 2.17, it follows that ψ
(
π−rA(0,v/p]+

R,ϖ

)
= π−r

1 A(0,v]+
R,ϖ , and therefore, ψ

(
π−rD

(0,v/p]+
ϖ (T (r))

)
⊂

π−r
1 D

(0,v]+
ϖ (T (r)). Moreover, as we have ψ(N(T )) ⊂ D+(T ), so from the discussion above we see

that ψ
(
N

(0,v/p]+
ϖ (T (r))

)
⊂ ψ

(
π−rD

(0,v/p]+
ϖ (T (r))

)
⊂ π−r

1 D
(0,v]+
ϖ (T (r)). Furthermore, for k ∈ N and

k ≤ r, it follows that we have πkN
(0,v/p]+
ϖ (T (r)) ⊂ πk−rD

(0,v/p]+
ϖ (T (r)) and ψ

(
πkN

(0,v/p]+
ϖ (T (r))

)
⊂

πk−r
1 D

(0,v]+
ϖ (T (r)) ⊂ πk−rD

(0,v/p]+
ϖ (T (r)).

By replacing v by v/p in §6.4, we define a complex K
(
Γ′
S , N

(0,v/p]+
ϖ (T (r))

)
as follows:

N (0,v/p]+
ϖ (T (r)) (τi)−−−→

(
πN (0,v/p]+

ϖ (T (r))
)I′

1 −→
(
π2N (0,v/p]+

ϖ (T (r))
)I′

2 −→ · · · .

Similarly, we define a complex Kc
(
Γ′
S , N

(0,v/p]+
ϖ (T (r))

)
and a map τ0 from the former to the latter

complex. Note that from the discussion above and the inclusion N
(0,v/p]+
ϖ (T (r)) ⊂ π−rD

(0,v/p]+
ϖ (T (r)),

we have that (ψ − 1)
(
πkN

(0,v/p]+
ϖ (T (r))

)
⊂ π−rD

(0,v/p]+
ϖ (T (r)). So we define the following complex:

K
(
ψ,ΓS , N (0,v/p]+

ϖ (T (r))
)

:=


K

(
Γ′
S , N

(0,v/p]+
ϖ (T (r))

) ψ−1 //

τ0
��

Kos
(
Γ′
S , π

−rD
(0,v/p]+
ϖ (T (r))

)
τ0
��

Kc
(
Γ′
S , πN

(0,v/p]+
ϖ (T (r))

) ψ−1 // Kosc
(
Γ′
S , π

−rD
(0,v/p]+
ϖ (T (r))

)

 .
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Lemma 6.12. The morphism of complexes τ≤rK
(
ψ,ΓS , N (0,v]+

ϖ (T (r))
)
→ τ≤rK

(
ψ,ΓS , N (0,v/p]+

ϖ (T (r))
)
,

induced by the inclusions N (0,v]+
ϖ (T (r)) ⊂ N (0,v/p]+

ϖ (T (r)) and ψ(N (0,v/p]+
ϖ (T (r))) ⊂ π−rD

(0,v/p]+
ϖ (T (r)),

is a pr+2s-quasi-isomorphism.

Proof. As the map in the claim is injective on each term, we need to show that the cokernel complex is
killed by pr+2s. For k ∈ N and k ≤ r, in the cokernel complex, we have maps

ψ − 1 : πk−rN (0,v/p]+
ϖ (T )/πk−rFilr−kN (0,v]+

ϖ (T )→ π−rD(0,v/p]+
ϖ (T )/ψ(πk−rN (0,v/p]+

ϖ (T )), (6.7)

and to prove the claim it is enough to show that (6.7) is pr+2s-bijective (the twist (r) has disappeared
because ψ acts trivially on it). First, we will show the pr+s-surjectivity. Recall that we have πsD+(T ) ⊂
N(T ) ⊂ D+(T ) (see [Abh21, Corollary 4.11]), and by extending scalars to A(0,v/p]+

R,ϖ and dividing out by
πr, we see that πs−rD(0,v/p]+

ϖ (T ) ⊂ π−rN
(0,v/p]+
ϖ (T ). So, it follows that π−rD

(0,v/p]+
ϖ (T )/πk−rN

(0,v/p]+
ϖ (T )

is killed by πk+s, and since π divides p in A(0,v/p]+
R,ϖ (see Lemma 2.20 for v = p − 1), therefore, we get

that the preceding quotient is killed by pk+s. Note that the quotient π−rD
(0,v/p]+
ϖ (T )/πk−rN

(0,v/p]+
ϖ (T )

surjects onto the cokernel of (6.7). Hence, for k ≤ r, we see that the cokernel of (6.7) is killed by pr+s
(this also shows that the truncation in degree ≤ r is necessary in order to bound the power of p).

Next, to show the ps-injectivity of (6.7), let x ∈ N (0,v/p]+
ϖ (T ) such that there is a y ∈ N (0,v/p]+

ϖ (T )
satisfying (ψ − 1)(πk−rx) = ψ(πk−ry), or equivalently, we have that x = ξr−kψ(x − y) belongs to
ξr−kψ(N (0,v/p]+

ϖ (T )). Note that ψ(N (0,v/p]+
ϖ (T )) ⊂ ψ(D(0,v/p]+

ϖ (T )) ⊂ D
(0,v]+
ϖ , so we see that φ(x) ∈

D
(0,v/p]+
ϖ . Moreover, from the discusson above, we know that the natural inclusion N

(0,v/p]+
ϖ (T ) ⊂

D
(0,v/p]+
ϖ (T ) is ps-surjective. Therefore, it follows that φ(psx) = psφ(x) is in N (0,v/p]+

ϖ (T ), in particular,
we see that ψ(φ(psx)) = ψ(psqr−k(x−y)), i.e. φ(psx)−qr−kps(x−y) is in (N (0,v/p]+

ϖ (T ))ψ=0. From the de-
scription of (N (0,v/p]+

ϖ (T ))ψ=0 before Lemma 6.9, we can write φ(psx) = psqr−k(x−y)+
∑
α ̸=0 φ(xα)[X♭]α,

for some xα ∈ N (0,v]+
ϖ (T ). In particular, we see that φ(psx) is in N

(0,v/p]+
ϖ (T ) and from Lemma 6.9 we

get that psx is in N (0,v]+
ϖ (T ). Furthermore, as we have that ψ(N (0,v/p]+

ϖ (T )) ⊂ D(0,v]+
ϖ (T ), therefore, we

see that psx is in N (0,v]+
ϖ (T ) ∩ ξr−kD(0,v]+

ϖ (T ) ⊂ N (0,v]+
ϖ (T ) ∩

(
Filr−kA(0,v]+

R
⊗Zp V

)
⊂ Filr−kN (0,v]+

ϖ (T ),
where the last inclusion follows from the definition of the filtration on N (0,v]+

ϖ (T ) in (3.5). In particular,
we have shown that psπk−rx belongs to πk−rFilk−rN

(0,v]+
ϖ (T ), and hence, (6.7) is ps-injective. This

allows us to conclude.

From the discussion before Lemma 6.12, recall that we have inclusions ψ
(
π−rD

(0,v/p]+
ϖ (T (r))

)
⊂

π−r
1 D

(0,v]+
ϖ (T (r)) ⊂ π−rD

(0,v/p]+
ϖ (T (r)). So using the constuctions in §4, we define the complex:

Kos
(
ψ,ΓS , D(0,v/p]+

ϖ (T (r))
)

:=


Kos

(
Γ′
S , π

−rD
(0,v/p]+
ϖ (T (r))

) ψ−1 //

τ0
��

Kos
(
Γ′
S , π

−rD
(0,v/p]+
ϖ (T (r))

)
τ0
��

Kosc
(
Γ′
S , π

−rD
(0,v/p]+
ϖ (T (r))

) ψ−1 // Kosc
(
Γ′
S , π

−rD
(0,v/p]+
ϖ (T (r))

)

 .

Lemma 6.13. The morphism of complexes τ≤rK
(
ψ,ΓS , N (0,v/p]+

ϖ (T (r))
)
→ τ≤rKos

(
ψ,ΓS , D(0,v/p]+

ϖ (T (r))
)
,

induced by the inclusion N
(0,v/p]+
ϖ (T (r)) ⊂ π−rD

(0,v/p]+
ϖ (T (r)), is a pr+s-quasi-isomorphism.

Proof. Note that for the map of truncated complexes, the cokernel complex consists of A(0,v/p]+
R,ϖ -modules,

given as π−rD
(0,v/p]+
ϖ (T (r))/πkN (0,v/p]+

ϖ (T (r)), for k ≤ r. Recall that we have πsD+(T ) ⊂ N(T ) ⊂
D+(T ) (see [Abh21, Corollary 4.11]), and by extending scalars to A(0,v/p]+

R,ϖ , dividing out by πr and
twisting by Zp(r), we see that πs−rD(0,v/p]+

ϖ (T (r)) ⊂ N
(0,v/p]+
ϖ (T (r)). So, it follows that the quotient

π−rD
(0,v/p]+
ϖ (T (r))/πkN (0,v/p]+

ϖ (T (r)) is killed by πk+s, and since π divides p in A(0,v/p]+
R,ϖ (see Lemma

2.20 for v = p− 1), therefore, we get that the preceding quotient is killed by pk+s. As k ≤ r, hence, we
conclude that the cokernel complex is pr+s-acyclic.
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6.6. Change of the disk of convergence. In this subsection, we will relate complexes in previous
subsections to the Koszul complex computing continuous GS-cohomology of T (r). Recall that in §2.4.5,
we defined an operator ψ : Dϖ(T (r))→ Dϖ(T (r)) as a left inverse of φ. Using this operator, we define
the following complex:

Kos
(
ψ,ΓS , Dϖ(T (r))

)
:=


Kos

(
Γ′
S , Dϖ(T (r))

) ψ−1 //

τ0
��

Kos
(
Γ′
S , Dϖ(T (r))

)
τ0
��

Kosc
(
Γ′
S , Dϖ(T (r))

) ψ−1 // Kosc
(
Γ′
S , Dϖ(T (r))

)

 .

Lemma 6.14. The natural morphism of complexes Kos
(
ψ,ΓS , D(0,v/p]+

ϖ (T (r))
)
→ Kos

(
ψ,ΓS , Dϖ(T (r))

)
,

induced by the inclusion π−rD
(0,v/p]+
ϖ (T (r)) ⊂ Dϖ(T (r)), is a quasi-isomorphism.

Proof. The map in the claim is injective on each term, so we examine the cokernel complex. Write
Dϖ(T (r)) = D

(0,v/p]+
ϖ (T (r))[1/πm]∧, where ∧ denotes the p-adic completion. By Lemma 2.15, we have

that ψ
(
A(0,v/p]+
R,ϖ

)
= A(0,v]+

R,ϖ ⊂ A(0,v/p]+
R,ϖ , and for ℓ = pm−1 note that by Lemma 2.20 (iii), we have that

π−pℓ
m π is a unit in A(0,v/p]+

R,ϖ . So, for k ≥ 1, we get that ψ
(
π−pkℓr
m A(0,v/p]+

R,ϖ

)
⊂ π−pk−1ℓr

m A(0,v/p]+
R,ϖ (see

Proposition 2.17). Moreover, recall that we have ψ
(
D

(0,v/p]+
ϖ (T (r))

)
⊂ D

(0,v/p]+
ϖ (T (r)). Coupling this

with the observation above, we get that ψ
(
π−pkℓr
m D

(0,v/p]+
ϖ (T (r))

)
⊂ π−pk−1ℓr

m D
(0,v/p]+
ϖ (T (r)). Therefore,

it follows that the natural map

ψ : Dϖ(T (r))/π−rD(0,v/p]+
ϖ (T (r)) −→ Dϖ(T (r))/π−rD(0,v/p]+

ϖ (T (r)),

is (pointwise) topologically nilpotent and 1 − ψ is bijective over this quotient. So, we obtain that the
following complexes are acyclic:[

Kos
(
Γ′
S , Dϖ(T (r))/π−rD(0,v/p]+

ϖ (T (r))
) ψ−1−−−→ Kos

(
Γ′
S , Dϖ(T (r))/π−rD(0,v/p]+

ϖ (T (r))
)]
,[

Kosc
(
Γ′
S , Dϖ(T (r))/π−rD(0,v/p]+

ϖ (T (r))
) ψ−1−−−→ Kosc

(
Γ′
S , Dϖ(T (r))/π−rD(0,v/p]+

ϖ (T (r))
)]
.

Hence, we conclude that the cokernel complex of the map in the claim is acyclic.

Recall that we have the complex Kos
(
φ,ΓS , Dϖ(T (r))

)
from Definition 4.11 and we make the following

claim:

Proposition 6.15. The natural morphism of complexes Kos
(
φ,ΓS , Dϖ(T (r))

)
−→ Kos

(
ψ,ΓS , Dϖ(T (r))

)
,

induced by the identity on the first column and ψ on the second column, is a quasi-isomorphism.

Proof. Notice that the map ψ is surjective on Dϖ(T (r)), so the cokernel complex is 0. To obtain
the acylicity of the kernel complex, we need to show that the complex

[
Kos

(
Γ′
S , Dϖ(T (r))ψ=0) τ0−−→

Kos
(
Γ′
S , Dϖ(T (r))ψ=0)]

is acyclic. To show our claim, we will analyze the module Dϖ(T (r))ψ=0. Let
{e1, . . . , eh} denote an A+

R-basis N(T ) and set fi = ei ⊗ ϵ⊗r, for each 1 ≤ i ≤ h and where ϵ⊗r is a
Zp-basis of Zp(r). Since we have that AR ⊗A+

R
N(T )(r) ∼−→ D(T )(r) = D(T (r)), therefore, it follows

that {f1, . . . , fh} is an AR-basis of D(T (r)). Furthermore, as Dϖ(T (r)) = AR,ϖ ⊗AR D(T (r)) is an
étale (φ,ΓR)-module over AR,ϖ, so we see that {φ(f1), . . . , φ(fh)} is an AR,ϖ-basis of Dϖ(T (r)). In
this basis, we have that z =

∑h
j=1 zjφ(fj) is in Dϖ(T (r))ψ=0 if and only if zj is in Aψ=0

R,ϖ , for each
1 ≤ j ≤ h. Indeed, ψ(z) = 0 if and only if

∑h
j=1 ψ(zjφ(fj)) =

∑h
j=1 ψ(zj)fj = 0, and since fj are linearly

independent over AR,ϖ, therefore, we see that ψ(z) = 0 if and only if ψ(zj) = 0, for all 1 ≤ j ≤ h.
Next, from Proposition 2.17, we have a decomposition Aψ=0

R,ϖ = ⊕αφ
(
AR,ϖ

)
[X♭]α, where [X♭]α =

(1+πm)α0 [X♭
1]α0 · · · [X♭

d]αd and α = (α0, . . . , αd) is a (d+1)-tuple with αi ∈ {0, . . . , p−1}. Therefore, we
get that

(
Dϖ(T (r))

)ψ=0 =
( ∑h

i=1 AR,ϖfj
)ψ=0 = ⊕α ̸=0

∑h
i=1 φ

(
AR,ϖfj

)
[X♭]α. Note that the last term

identifies with ⊕α ̸=0
∑h
i=1 φ(Dϖ(T ))(r)[X♭]α. So, we obtain that the kernel complex of the map in the

claim is isomorphic to the following complex:⊕
α ̸=0

[
Kos

(
Γ′
S , φ

(
Dϖ(T )

)
(r)[X♭]α

) τ0 // Kosc
(
Γ′
S , φ

(
Dϖ(T )

)
(r)[X♭]α

) ]
. (6.8)
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Lemma 6.16. The complex described in (6.8) is acyclic.

Proof. The proof follows in a manner similar to Lemma 6.11, where one notes that it is enough to
show the claim modulo p, and for the latter, one uses the fact that Dϖ(T )/p = (N+

ϖ(T )/p)[1/πm], for
N+
ϖ(T ) = A+

R,ϖ ⊗A+
R

N(T ). We omit the details to avoid repetition.

Using Lemma 6.16, we conclude that the natural morphism of complexes, in the claim of Proposition
6.15, is a quasi-isomorphism.

Proof of Proposition 6.1. Recall that s is the height of the representation T and r is the twist (see As-
sumption 5.1). Note that from Proposition 6.4, we have a natural p4r-quasi-isomorphism of complexes
Kos

(
φ, ∂A,FilrN [u,v]

ϖ (T )
)
≃ K

(
φ,Lie ΓS , N [u,v]

ϖ (T (r))
)
. Then, in Proposition 6.5, we replace the in-

finitesimal action of ΓS with the continuous action of ΓS and obtain a natural isomorphism of complexes
K

(
φ,Lie ΓS , N [u,v]

ϖ (T (r))
)
≃ K

(
φ,ΓS , N [u,v]

ϖ (T (r))
)
. Furthermore, in Proposition 6.6, we switch from

analytic coefficients rings to overconvergent coefficient rings to obtain a natural p3r-quasi-isomorphism
of complexes K

(
φ,ΓS , N [u,v]

ϖ (T (r))
)
≃ K

(
φ,ΓS , N (0,v]+

ϖ (T (r))
)
. Next, in Proposition 6.8 and Lemma

6.12 and Lemma 6.13, we change the overconvergence radius to obtain a p3r+3s+2-quasi-isomorphism
of complexes τ≤rK

(
φ,ΓS , N (0,v]+

ϖ (T (r))
)
≃ τ≤rKos

(
ψ,ΓS , D(0,v/p]+

ϖ (T (r))
)
, where τ≤ denotes the canon-

ical truncation. Finally, in Lemma 6.14 and Proposition 6.15 we change the disk of convergence to
obtain natural quasi-isomorphisms of complexes Kos

(
ψ,ΓS , D(0,v/p]+

ϖ (T (r))
)
≃ Kos

(
ψ,ΓS , Dϖ(T (r))

)
≃

Kos
(
φ,ΓS , Dϖ(T (r))

)
. Combining these statements, we get the claim of Proposition 6.1 with N =

10r + 3s+ 2.

6.7. Comparison with the Fontaine-Messing period map. The aim of this subsection is
to show that the comparison map from Syn(S,M, r) to RΓcont(GS , (T (r))), in Theorem 5.5, coincides
with the Fontaine-Messing period map. We will follow the strategy of Colmez-Nizioł (see [CN17, §4.7]).
Recall that we have S = R[ϖ], S = R ⊂ FrR and S∞ = R∞ ⊂ FrR. Note that by Definition 2.24, we
have rings E⋆

S
:= E⋆

R
, for ⋆ ∈ {PD, [u], [u, v]}, equipped with a Frobenius, a filtration and an action of

GS ◁ GR.
Let us recall that T is a positive finite q-height Zp-representation of GR as in Assumption 5.1 and

V = T [1/p]. Note that by tensoring the fundamental exact sequence in (2.2) with T , we get the following
pr-exact sequence,

0 −→ T (r)′ −→ FilrAcris(S)⊗Zp T
pr−φ−−−−→ Acris(S)⊗Zp T −→ 0. (6.9)

Next, from Assumption 5.1 we have a finite free R-module M ⊂ ODcris(V ) such that M [1/p] =
ODcris(V ). Moreover, we have a natural injective map OAPD

R,ϖ ⊗R M → OAPD
R,ϖ ⊗A+

R
N(T ), compat-

ible with the respective Frobenii, filtrations, APD
R,ϖ-linear connections and actions of ΓR. Additionally,

by definition, we have a natural inclusion A+ ⊗A+
R

N(T ) ⊂ A+ ⊗Zp T , compatible with the respective
Frobenii and actions of GR. Extending scalars to OAcris(S) in both the maps and composing them, we
obtain the top horizontal arrow in the following diagram:

OAcris(S)⊗RM OAcris(S)⊗Zp T

OBcris(S)⊗R ODcris(V ) OBcris(S)⊗Qp V,
∼

(6.10)

where the vertical arrows are natural inclusions and the lower horizontal arrow is a natural isomor-
phism (since V is crystalline), compatible with the respective Frobenii, filtrations, actions of GR and
Bcris(S)-linear connections satisfying Griffiths transversality with respect to the filtrations (see [Bri08,
Proposition 8.4.3]). The diagram commutes by definition (see [Abh21, §4.5] for a similar diagram), and
it follows that the top horizontal arrow is injective. Now, recall that the filtration on the bottom left
object is given by the tensor product filtration (see Remark 2.34) and the filtration on the bottom right
object is induced by the natural filtration on OBcris(S). As the filtration on the objects in the top
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row are induced from the filtration on the objects in the bottom row of their respective columns (see
the discussion before Lemma 2.38 for the top left corner), therefore, it follows that the filtration on
OAcris(S)⊗RM matches with the indued filtration from OAcris(S)⊗Zp T .

Now, we consider the following commutative diagram:

EPD
S,n

Acris(S)n ⊗OF,n
R+
ϖ,n Sn

RPD
ϖ,n

R+
ϖ,n Sn,

where the subscript n denotes the reduction modulo pn, the bottom horizontal arrow is induced by
X0 7→ ϖ and the top horizontal arrow is the extension of the θ-map by the bottom horizontal arrow.

Using the rings discussed above, we will define the local Fontaine-Messing period map. Set ΩEPD
S,n

:=

EPD
S,n
⊗R+

ϖ,n
ΩR+

ϖ,n
, ∆PD := EPD

S
⊗R M and ∆PD

n = ∆PD/pn equipped with the induced filtration,
Frobenius, GS-action and Acris(S)n-linear integrable connection ∂ satisfying Griffiths transversailty with
respect to the filtration. In particular, for r ∈ Z, we have the following filtered de Rham complex,

FilrD•
S,M,n

: Filr∆PD
n → Filr−1∆PD

n ⊗R+
ϖ,n

Ω1
R+

ϖ,n
→ Filr−2∆PD

n ⊗R+
ϖ,n

Ω2
R+

ϖ,n
→ · · · .

Let us note that by extending the diagram (6.10) along the natural inclusion OAcris(S) ⊂ EPD
S

(see
Remark 2.27), we obtain an EPD

S
-linear injective map EPD

S
⊗R M → EPD

S
⊗Zp T compatible with the

respective Frobenii, filtrations, Acris(S)-linear connections and actions of GR. Then, for each r ∈ Z, by
reducing the induced map on the r-th filtered part, modulo pn, and taking horizontal sections for the
Acris(S)n-linear connections, we obtain a natural map,

(Filr∆PD
n )∂=0 = (Filr(EPD

S,n
⊗RM))∂=0 −→ (FilrEPD

S,n
⊗Zp T )∂=0 = FilrAcris(S)n ⊗Zp T. (6.11)

In particular, from the discussion above and the filtered Poincaré Lemma 3.22, we get a natural map,

FilrD•
S,M,n

∼←− (Filr∆PD
n )∂=0 −→ FilrAcris(S)n ⊗Zp T. (6.12)

Notation. For a GS-module D, let C(GS , D) denote the complex of continuous cochains of GS with
values in D.

Definition 6.17. Define the syntomic complex with coefficients in M as,

Syn(S,M, r)n :=
[
FilrD•

S,M,n

pr−p•φ−−−−−→ D•
S,M,n

]
. (6.13)

Define the Fontaine-Messing period map,

α̃FM
r,n,S : Syn(S,M, r)n −→ C(GS , T/pn(r)′), (6.14)

as the composition

Syn(S,M, r)n =
[
FilrD•

S,M,n
pr−p•φ−−−−−→ D•

S,M,n

]
−→ C

(
GS ,

[
FilrD•

S,M,n

pr−p•φ−−−−−→ D•
S,M,n

])
−→

−→ C
(
GS ,

[
FilrAcris(S)n ⊗ T

pr−φ−−−→ Acris(S)n ⊗ T
]) ∼←− C

(
GS , T/p

n(r)′),

where the second right arrow is induced by (6.12) and the only left arrow is a pr-quasi-isomorphism as
noted in (6.9).
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Remark 6.18. The definition of the Fontaine-Messing period map in (6.14) can also be given for R:
we use the ring OAcris(R) instead of EPD

S
and set ∆PD = OAcris(R) ⊗R M . Then the map in (6.12)

gets replaced by FilrD•
R,M,n

∼−→ FilrAcris(R)n ⊗ T (where the filtered de Rham complex is obtained
similar to modulo pn version of the complex FilrD•

R,M in (5.3)). The definition of Syn(R,M, r)n follows
naturally and since the fundamental exact sequence is GR-equivariant, we obtain the Fontaine-Messing
period map,

α̃FM
r,n,R : Syn(R,M, r)n −→ C(GR, T/pn(r)′).

Theorem 6.19. The map α̃FM
r,n,S in (6.14) is pN(T,e,r)-equal to αLaz

r,n from Theorem 5.5.

Proof. The p-power equality of the two maps follows from the diagram below (where we only show the
p-adic version to simplify notations). The objects and morphisms are described after the diagram. Note
that we have K∂,φ(FrMPD

ϖ ) = Syn(S,M, r) and the map α̃FM
r,S is obtained by composing the arrows in

the top row (note that CG(T (r)) is pr-isomorphic to CG(T (r)′)). Furthermore, the map αLaz
r is obtained

by composing the maps in the outer left vertical, bottom horizontal and right vertical boundary. The
isomorphisms in the diagram indicate a p-power quasi-isomorphism between complexes. Finally, a simple
diagram chase gives us the claim.

K∂,φ(FrMPD
ϖ ) CG(K∂,φ(Fr∆PD)) CG(Kφ(Fr∆PD,∂)) CG(Kφ(FrTAcris))

K∂,φ(FrM [u,v]
ϖ ) CG(K∂,φ(Fr∆[u,v])) CG(Kφ(Fr∆[u,v],∂)) CG(T (r))

K∂,φ,∂A
(Fr∆[u,v]

ϖ ) CG(Kφ(FrTA[u,v])) CG(Kφ(TAS(r)))

Kφ,∂A
(FrN [u,v]

ϖ ) CΓ(Kφ(DR∞(r)))

Kφ,Lie Γ(FrN [u,v]
ϖ ) Kφ,Γ(FrN [u,v]

ϖ ) CΓ(Kφ(Dϖ(r)))

Kφ,Lie Γ(N [u,v]
ϖ (r)) Kφ,Γ(N [u,v]

ϖ (r)) Kφ,Γ(N (0,v]+
ϖ (r)) Kφ,Γ(Dϖ(r)).

τ≤r≀

∼
PL

≀ PL

∼
PL

∼
FES

≀ FES

≀ AS

≀ PL

t•τ≤r ≀

≀

∼
Laz

≀

≀ tr

∼
Laz

tr

∼
can

∼

≀

In the diagram, we take ∆PD = EPD
S
⊗R M , ∆PD,∂ = (∆PD)∂=0, TAcris = Acris(S) ⊗Zp T , ∆[u,v] =

E
[u,v]
S
⊗R M , ∆[u,v],∂ = (∆[u,v])∂=0, TA[u,v] = A[u,v]

S
⊗Zp T , ∆[u,v]

ϖ = E
[u,v]
R,ϖ ⊗R M (see Definition 2.24),

TAS(r) = AS ⊗Zp T (r), Dϖ(r) = Dϖ(T (r)), N⋆
ϖ(r) = N⋆

ϖ(T (r)) and DR∞(r) = AS∞ ⊗AR,ϖ Dϖ(r).
Moreover, G = GS , Γ = ΓS with CG and CΓ denoting the complex of continuous cochains for G and
Γ, respectively. The letter “K” denotes the Koszul complex with subscripts: ∂ denotes the operators
((1 + X0) ∂

∂X0
, . . . , Xd

∂
∂Xd

), the subscript Γ denotes the operators (γ0 − 1, . . . , γd − 1) for our choice of
topological generators of Γ, the subscript Lie Γ denotes the operators (∇0, . . . ,∇d), with ∇i = log γi
and the subscript ∂A denotes ((1 +X0) ∂

∂X0
, X1

∂
∂X1

, . . . , Xd
∂

∂Xd
) as operators on A[u,v]

R and E[u,v]
R via the

isomorphism ιcycl : R[u,v]
ϖ

∼−→ A[u,v]
R,ϖ . The letter “K” denotes a certain subcomplex of the Koszul complex

(see §6.2, §6.3, §6.4, §6.5).
Next, let us describe the maps between the rows. FES denotes a map coming from the fundamental

exact sequences in (2.2) and (2.5). AS denotes a map originating from the Artin-Schreier theory in (2.4).
PL denotes maps coming from the filtered Poincaré Lemma of §2.8. In the first column, going from the
first row to the second row is induced by the inclusion RPD

ϖ ⊂ R[u,v]
ϖ . The leftmost slanted vertical map

from the third to the second row is induced by the inclusion E
[u,v]
R,ϖ ⊂ E

[u,v]
S

. From the second to the
third row, the map in the third column is induced similar to (6.11). The leftmost vertical map from
the second to the third row is the content of Lemma 5.24 and the leftmost vertical map from the fourth
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to the third row is the content of Lemma 5.25; the composition being the content of Proposition 5.28.
The rightmost vertical map from the fourth to the third row is the inflation map from ΓS to GS , using
the inclusion AS∞ ⊂ AS (one could use almost étale descent to obtain the quasi-isomorphism) and the
rightmost vertical map from the fifth to the fourth row uses the inclusion AR,ϖ ⊂ AS∞ (the quasi-
isomorphism is obtained by decompletion techniques). The leftmost vertical arrow from the fourth to
the fifth row is given by multplication by suitable powers of t as in Lemma 6.2 and the rightmost vertical
arrow from the sixth to the fifth row is the comparison between the complex computing the continuous
cohomology of ΓS and the Koszul complex as in §4.2. The inclusions A+

R,ϖ ⊂ Ainf(S) ⊂ A[u,v]
S

and
Ainf(S)⊗A+

R
N(T ) ⊂ Ainf(S)⊗Zp T induce the slanted vertical arrow from the fifth to the third row.

Finally, let us describe the maps between the columns. The top two maps from the first to the second
column are induced by the respective inclusions RPD

ϖ ⊂ EPD
S

and R
[u,v]
ϖ ⊂ E[u,v]

S
. The bottom two maps

Laz between the first and the second column are Lazard isomorphisms discussed in §6.2. The bottom
map from the third to the second column is induced canonically from the inclusion A(0,v]+

R,ϖ ⊂ A[u,v]
R,ϖ .

From the third to the fourth column, the top horizontal map is induced similar to (6.11) and the bottom
horizontal map is induced by the inclusion A(0,v]+

R,ϖ ⊂ AR,ϖ (see §6.5 and §6.6).

Corollary 6.20. The morphism of complexes α̃FM
r,n,R in Remark 6.18 is a pN(p,r,s)-quasi-isomorphism.

Proof. Let m = 2, i.e. K = F (ζp2 − 1) and e = p(p − 1). Then, over S = OK ⊗OF
R we know that the

local Fontaine-Messing period map α̃FM
r,n,S is pN -isomorphic to the Lazard map αLaz

r,n from Theorem 6.19.
Moreover, the Lazard map αLaz

r,n is a pN -quasi-isomorphism by Theorem 5.5. As we fixed m, therefore, it
follows that N = 2n(T, e) + 14r+ 7s+ 2 only depends on p, r and s (see §6.1 for the explicit constant).
Next, to descend to R, we note that the Fontaine-Messing period map is G = Gal(F (ζp2)/F )-equivariant,
i.e. the following diagram commutes:

Syn(R,M, r)n C(GR, T/pn(r)′)

RΓ(G,Syn(S,M, r)n) RΓ(G,C(GS , T/pn(r)′)),

α̃FM
r,n,R

≀
α̃FM

r,n,S

where the right vertical map is a quasi-isomorphism. So, from the Galois descent argument in Lemma
6.21 (for e = p(p− 1)), it follows that the left vertical arrow is a p4r+3p(p−1)-quasi-isomorphism. Hence,
we obtain that the morphism of complexes α̃FM

r,n,R in Remark 6.18 is a pN(p,r,s)-quasi-isomorphism, for
N(p, r, s) = 2N + 4r + 3p(p− 1).

6.8. Galois descent. Let e = [K : F ] = pm−1(p − 1), G = Gal(K/F ) and S = OK ⊗OF
R. For

notational convenience, we will use crystalline and syntomic complexes as in §7.2. We view the R-module
M in Assumption 5.1 as an object in CR(R/OF ,Fil, φ), i.e. a filtered crystal equipped with Frobenius
(see Remark 7.3 and Definition 7.4).

Lemma 6.21. The following natural map is a p4r+3e-quasi-isomorphism

RΓsyn(R,M, r) −→ RΓ(G,RΓsyn(S,M, r)).

Proof. The claim can be shown by closely following the proof of [CN17, Lemma 5.9]. We omit the
details.

7. Crystals and syntomic cohomology

7.1. Filtered Frobenius crystals. Let κ be a perfect field of characteristic p, set OF = W (κ)
and F = FrOF . Furthermore, let K be a finite extension of F such that K ∩F ur = F and let OK denote
its ring of integers.
Notation. In §7 and 8 we will use letters X,Y,Z, etc. to denote schemes as well as p-adic formal schemes.



Syntomic complex and p-adic nearby cycles 54

Let X be a (p-adic formal) scheme over OK with X its (rigid) generic fiber and Xκ its special fiber. Set
Σ = SpecOF (resp. Σ = SpfOF ) and for n ∈ N, let Xn = X⊗Zp Z/pn and Σn = Spec(OF /pn). Consider
the big (étale) crystalline site CRIS(Xn/Σn) with the PD-ideal (p(OF /pn), [ ]) and the category of crystals
of OXn/Σn

-modules (see [Ber74, §III.4.2], [BBM82, §1.1.18, §1.1.19], [Bau92, Corollary 1.15, Proposition
1.17]). Set CR(Xn/Σn) to be the full subcategory of finite locally free crystals. The homomorphisms
Xn → Xn+1 and Σn → Σn+1 induce a pullback functor i∗n,n+1 : CR(Xn+1/Σn+1) → CR(Xn/Σn). Simi-
larly, define the crystalline site CRIS(X1/Σn) and the category of finite locally free crystals CR(X1/Σn).
Note that the natural pullback functor i∗n : CR(Xn/Σn) → CR(X1/Σn) induces an equivalence of cate-
gories by [Ber74, Chapitre IV, Théorèm 1.4.1].
Definition 7.1. A finite locally free crystal on CRIS(X/Σ) is the data F = (Fn)n≥1, where Fn is an
object of CR(Xn/Σn) and we have isomorphisms i∗n,n+1(Fn+1) ∼−→ Fn. A morphism between two crystals
F and G on CRIS(X/Σ) is a collection of morphisms Fn → Gn, for each n ≥ 1, compatible with the
pullback isomorphisms. Denote the category of such objects by CR(X/Σ). A finite locally free crystal
on CRIS(X1/Σ) is defined similarly and the pullback functor i∗ : CR(X/Σ) → CR(X1/Σ) induces an
equivalence of categories.

Consider the category of filtered crystals on CRIS(X/Σ) in the sense of [Tsu20, Definition 16] (for
relation between this category and Ogus’ book [Ogu94], see [Tsu20, Remark 19]). Take CR(Xn/Σn,Fil)
to be the full subcategory of finite locally free filtered crystals on CRIS(Xn/Σn). We have the natural
pullback functor i∗n,n+1 : CR(Xn+1/Σn+1,Fil)→ CR(Xn/Σn,Fil).
Definition 7.2. A finite locally free filtered crystal on CRIS(X/Σ) is the data (Fn)n≥1 in CR(X/Σ,Fil)
such that the isomorphisms i∗n,n+1(Fn+1) ∼−→ Fn are compatible with filtration. A morphism between
two filtered crystals is defined in an obvious way and we denote this category by CR(X/Σ,Fil).
Remark 7.3. Let R = p-adic completion of an étale algebra over OF [X±1

1 , . . . , X±1
d ] and let MIC(R) be

the category of finite projective R-modules equipped with an integrable connection and let MICconv(R) ⊂
MIC(R) denote the full subcategory of modules whose connection is p-adically quasi-nilpotent. Let X =
SpfR, then from [Ber74, Chapitre IV, Théorèm 1.6.5] and [MT20, Lemma 1.9] we obtain an equivalence
of categories CR(X/Σ) ∼−→ MICconv(R). This equivalence restricts to an equivalence CR(X/Σ,Fil) ∼−→
MICconv(R,Fil).

Finally, we will consider crystals equipped with a Frobenius structure. The Frobenius endomorphism
of OF and the absolute Frobenius on X1 induce Frobenius pullbacks F ∗

X1
: CR(X1/Σn) → CR(X1/Σn)

and F ∗
X1

: CR(X1/Σ) → CR(X1/Σ). Recall that we have the natural pullback functor i∗ : CR(X/Σ) →
CR(X1/Σ).
Definition 7.4. A Frobenius structure on a finite locally free crystal F on CRIS(X/Σ) is a morphism φF :
F ∗
X1
i∗F → i∗F such that it becomes an isomorphism in the isogeny category CR(X/Σ)Q. A morphism

between two crystals with Frobenius structure is taken to be a morphism in CR(X/Σ) compatible with
respective Frobenius structures. Denote the category of finite locally free crystals (resp. filtered crystals)
equipped with a Frobenius structure as CR(X/Σ, φ) (resp. CR(X/Σ,Fil, φ)).

7.2. Syntomic complex. Let X be a smooth (p-adic formal) scheme over OK , let Σ = SpecOF
(resp. Σ = SpfOF ) and let F be an object of CR(X/Σ,Fil, φ), i.e. a finite locally free filtered crystal
on CRIS(X/Σ) equipped with a Frobenius structure. In this subsection we will define the syntomic
cohomology of X with coefficients in F .

Let uXn/Σn
: (Xn/Σn)cris → Xn,ét denote the projection from the crystalline topos to the étale topos.

In the following, we regard sheaves on Xn,ét as sheaves on Xκ,ét. For r ≥ 0, we have filtered crystalline
cohomology complexes of F :

RΓcris(X,FilrF)n := RΓ
(
Xn,ét,RuXn/Σn∗FilrFn

)
, RΓcris(X,FilrF) := holimn RΓcris(X,FilrF)n.

Definition 7.5. Define mod pn and completed syntomic complex with coefficients as,

RΓsyn(X,F , r)n :=
[
RΓcris(X,FilrF)n

pr−φ−−−→ RΓcris(X,F)n
]
,

RΓsyn(X,F , r) := holimn RΓsyn(X,F , r)n.

The mapping fibers are taken in the derived ∞-category of abelian groups.
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Remark 7.6. In the derived category D+(Xκ,ét,Z/pn), we have quasi-isomorphisms RΓsyn(X,F , r)n ≃
RΓsyn(X,F , r)⊗LZp

Z/pn and RΓsyn(X,F , r)n ≃ [RΓcris(X,F)n
(pr−φ,can)−−−−−−−→ RΓcris(X,F)n⊕RΓcris(X,F/FilrF)n].

Definition 7.7. Define Fn,ét,X to be étale sheafification of (U → X) 7→ RΓcris(U,F)n and FilrFn,ét,X
to be étale sheafification of (U → X) 7→ RΓcris(U,FilrF)n, for U → X any étale map. Similarly, define
Sn,ét(F , r)X to be the étale sheafification of (U→ X) 7→ RΓsyn(U,F , r)n.

Lemma 7.8. In the setting above, we have Sn,ét(F , r)X =
[
FilrFn,ét,X

pr−φ−−−→ Fn,ét,X
]

and RΓsyn(X,F , r)n =
RΓ(Xκ,ét,Sn,ét(F , r)X).

Remark 7.9. The syntomic cohomology with coefficients can also be described using hypercoverings
from [AGV71, §V.7], for example, see [Tsu96, §2.6] and [Tsu99, §2.1].

Notation. In the rest of this article we will denote mod pn (resp. completed) syntomic complex with
coefficients in F as Sn(F , r)X (resp. S(F , r)X).

8. p-adic nearby cycles
In this section, we give some global applications of the computations done in previous sections.

8.1. Fontaine-Laffaille modules. Let R denote the p-adic completion of an étale algebra over
OF [X±1

1 , . . . , X±1
d ], for some d ∈ N, satisfying Assumption 2.1, and let s ∈ N such that s ≤ p − 2. In

§3.4 we defined the category MF[0,s], free(R,Φ, ∂) of free relative Fontaine-Laffaille modules of level [0, s].
Let us now globalise the definition above. Let X be a smooth (p-adic formal) scheme defined over OF .

Consider a covering {Ui}i∈I of X with Ui = SpecAi (resp. Ui = SpfAi) such that the p-adic completions
Âi satisfy Assumption 2.1, for each i ∈ I. We fix lifts of Frobenius modulo p as φi : Âi → Âi.

Remark 8.1. In §3.4 we fixed a lifting φ of the absolute Frobenius on R/p. However, for another lift
φ′ the categories MF[0,s], free(R,Φ, ∂) and MF[0,s], free(R,Φ′, ∂) are naturally equivalent ([Fal89, Theorem
2.3] and [Tsu20, Remark 33]). In particular, there is a well-defined isomorphism αφ,φ′ : φ∗M

∼−→ φ′∗M
compatible with connections.

Definition 8.2. Define MF[0,s], free(X,Φ, ∂) to be the category of finite locally free filtered OX-modules
M equipped with a p-adically quasi-nilpotent integrable connection satisfying Griffiths transverality
with respect to filtration, and such that there exists a covering {Ui}i∈I of X as above with MUi ∈
MF[0,s], free(Âi,Φ, ∂) for all i ∈ I and on Uij the two structures glue well under αφi,φj .

Remark 8.3. Let Σ = SpecOF (resp. Σ = SpfOF ), then the category MF[0,s], free(X,Φ, ∂) is a full
subcategory of CR(X/Σ,Fil, φ) described in Definition 7.4.

Remark 8.4. To any object of MF[0,s], free(X,Φ, ∂), in [Fal89, Theorem 2.6*], Faltings associated a
compatible system of étale sheaves on Sp(Âi[1/p]). These can be expressed in terms of certain finite
étale coverings of X. Extending these by normalization to Spec (Âi), the resulting coverings glue to give
a finite covering of the formal OF -scheme X′ associated to X. For X a formal scheme, note that X = X′,
and this gives us an étale sheaf on the rigid generic fiber X of X, or if X is a scheme this covering
is algebraic and we obtain an étale sheaf on X = X ⊗OF

F . Denote by L the étale Zp-local system
associated to M on the generic fiber X.

8.2. Fontaine-Messing period map. Let Σ = SpecOF (resp. Σ = SpfOF ) and K a finite
extension of F such that K ∩ F ur = F . Take 0 ≤ s ≤ p− 2 and r ≥ s+ 1.

8.2.1. The case of schemes. Let X be a smooth scheme over OF with i : Xκ,ét → Xét and j :
Xét → Xét the natural morphism of sites. Take M ∈ MF[0,s], free(X,Φ, ∂) and let L denote the associated
Zp-local system on the generic fiber X. From [Abh21, §5.3], the OX-module M corresponds to a finite
locally free filtered crystal in CR(X/Σ,Fil, φ) equipped with a Frobenius structure and (by abuse of
notations) we denote this crystal again by M.
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To describe the Fontaine-Messing period map one can almost verbatim adapt the methods from
[Tsu96, §5] and [Tsu99, §3.1]. One first constructs a local version of the map and then uses hypercoverings
to globalise. Below we will describe the technical inputs needed for the construction of Fontaine-Messing
map; for actual construction the reader should refer to loc. cit. We focus on the local setup first, i.e. let
X be an affine smooth scheme over OF . Let Y = X⊗OF

OK and choose an embedding Y ↪→ Z such that
Z is an affine smooth scheme over OF . Then Y can be covered by affine étale Y-schemes U = SpecA
with A = OK ⊗OF

B and B an étale algebra over OF [X±1
1 , . . . , X±1

d ] such that its p-adic completion B̂
satisfies Assumption 2.1. Let Y (resp. U) denote the generic fiber of Y (resp. U), i.e. Y = Y ⊗OK

K
(resp. U = U⊗OK

K).

Remark 8.5. Take A as above and let Ah denote the p-adic henselization of A and set GAh =
Gal

(
Ah[1/p]/Ah[1/p]

)
, where Ah denotes the union of finite Ah-subalgebras S ⊂ Fr Ah such that S[1/p]

is étale over Ah[1/p]. Then by Elkik’s approximation theorem [Elk73, Corollary p. 579], we have a
natural isomorphism of Galois groups GAh ≃ G

Â
. Therefore, any discrete G

Â
-module can be regardeed

as a locally constant sheaf on the étale site of the generic fiber Uh = Uh ⊗OK
K, where Uh = SpecAh.

Remark 8.6. Note that we have henselian versions of the fundamental exact sequences in (2.2) and (6.9),
where one replaces Â by Ah and G

Â
with GAh . In particular, similar to (6.13) one obtains a syntomic

complex Syn(Ah,MU, r)n of discrete GAh-modules which we denote as Sn(M, r)U. Note that from
Remark 8.5 the complex of GAh-modules Sn(M, r)U can be regarded as a complex of locally constant
sheaves on Uhét and we obtain a morphism Γ

(
U, i∗Sn(M, r)Y

)
→ Γ

(
Uh,Sn(M, r)U

)
and a natural map

RΓ(G
Â
, Tcris(MU)/pn(r)) −→ RΓét(Uh,L/pn(r)U ). (8.1)

Using Remark 8.5 and Remark 8.6 together with the Poincaré Lemma 3.22, the fundamental exact
sequence (see (2.2), (6.9) and (6.12)) and (8.1), note that from the construction in [Tsu96, §5] and [Tsu99,
§3.1], one otains a natural morphism in D+(Yét,Z/pn):

Sn(M, r)Y −→ i∗Rj∗L/pn(r)′
Y . (8.2)

Next, let X be a proper and smooth scheme over OF , set Y = X ⊗OF
OK and let Y denote its

generic fiber. To globalise the construction above, one considers an étale hypercovering U• of X and
chooses a morphism of simplicial schemes i• : U• → Z•, such that for each s ∈ N, the morphism is

is an immersion of schemes, Zs is smooth over OF and there exist compatible liftings of Frobenius
FZ• := {FZ•

n
: Z•

n → Z•
n}. Then using the local description above and the theory of hypercoverings, from

the construction in [Tsu96, §5] and [Tsu99, §3.1], we obtain a natural map in D+(Yét,Z/pnZ):

αFM
r,n,Y : Sn(M, r)Y −→ i∗Rj∗L/pn(r)′

Y .

8.2.2. The case of formal schemes. The definition of the Fontaine-Messing period map for p-adic
formal schemes follows in manner similar to that of schemes, with certain key differences which we
point out below. Let X be a smooth p-adic formal scheme over OF and set Y = X ⊗OF

OK . In this
case, an affine étale formal scheme over Y can be covered by affine formal schemes U = SpfS, with
S = OK⊗OF

R and R as in Assumption 2.1. For such local models, we consider the p-adically completed
version of Fontaine-Messing period map described in (8.2). Finally, to obtain the global version, one
proceeds in exactly the same manner as in the case of schemes (with a hypercovering (U•,Z•, FZ•), where
each Us is of the form described above).

Remark 8.7. Note that in the cyclotomic case, i.e. K = F (ζpm), for m ∈ N, the map described
in (8.2) coincides with composition of the map α̃FM

r,n,S described in §6.7 with the quasi-isomorphism
C(GS , T/pn(r)′) ∼−→ RΓét(U,L/pn(r)′) obtained by applyingK(π, 1)-Lemma for p-coefficients (see [Sch13,
Theorem 4.9] and [CN17, §5.4.1]).

8.3. A global result. The aim of this subsection is to prove the following result:
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Theorem 8.8. Let X be a smooth (p-adic formal) scheme over OF and let M be an object of the category
MF[0,s], free(X,Φ, ∂), i.e. a relative Fontaine-Laffaille module of level [0, s] for 0 ≤ s ≤ p−2. Let L denote
the associated Zp-local system on the generic fiber X of X. Then, for r ≥ s+ 1 and 0 ≤ k ≤ r − s− 1,
the Fontaine-Messing period map,

αFM
r,n,X : Hk(

Sn(M, r)X
)
−→ i∗Rkj∗L/pn(r)′

X , (8.3)

is a pN -isomorphism, where N = N(p, r, s) ∈ N depends on p, r and s but not on X or n.

Proof for schemes. By the definition of the Fontaine-Messing period map in §8.2, we see that it is enough
to show the p-power quasi-isomorphism locally (provided the power of p does not depend on the local
model). Let A be an OF -algebra such that its p-adic completion Â satisfies Assumption 2.1, U =
SpecA and M := MU. Note that we have RΓsyn(U,MU, r)n = Syn(Â,M, r)n and RΓsyn(U,MU, r) =
Syn(Â,M, r). The Fontaine-Messing period map,

αFM
r,n,U : RΓsyn(U,MU, r)n −→ RΓét(Uh,L/pn(r)′

Uh),

is the same as the composition of the henselian version of the map α̃FM
r,n with the natural map in

(8.1), C(GAh , T/pn(r)′)→ RΓét(Uh,L/pn(r)′
Uh) (see Remarks 6.18 and 8.7 for the p-adically completed

version). Note that henselian version of the map α̃FM
r,n is obtained by replacing Â by Ah and G

Â
with

GAh . We set Syn(A,M, r) := RΓsyn(U,MU, r). Let k ≤ r − s− 1 and our claim is that the map,

αFM
r,n,A : Hk(Syn(A,M, r)n)

α̃FM
r,n−−−→ Hk(GAh , T/pn(r)′) −→ Hk(Uhét,L/pn(r)′

Uh),

is an isomorphism (up to some power of p). To show the claim, we will pass to the p-adic completion of
A. Let U := Sp

(
Â

[1
p

])
and consider the following commutative diagram:

Hk(Syn(A,M, r)n) Hk(GAh , T/pn(r)′) Hk(Uhét,L/pn(r)′
Uh)

Hk(Syn(Â,M, r)n) Hk(G
Â
, T/pn(r)′) Hk(Uét,L/pn(r)′

U).

α̃FM
r,n,A

≀ ≀
α̃FM

r,n,Â

∼
∼

The middle vertical arrow is an isomorphism because the two Galois groups are equal by Elkik’s ap-
proximation theorem [Elk73, Corollary p. 579] (see Remark 8.5). The right vertical arrow is an isomor-
phism due to Gabber [Gab94, Theorem 1]. The bottom left horizontal arrow is a pN -isomorphism, for
N = N(p, r, s) ∈ N, as shown in the case of formal schemes below (for R = Â), in particular, the top
left horizontal arrow is also a pN -isomorphism. The bottom right horizontal arrow is an isomorphism by
a K(π, 1)-Lemma due to Scholze [Sch13, Theorem 4.9], and therefore, the top right horizontal arrow is
also an isomorphism. Hence, it follows that the composition of the top two horizontal arrows, i.e. αFM

r,n,A

is a pN -isomorphism.

Proof for formal schemes. By the definition of the Fontaine-Messing period map in §8.2, we see that it
is enough to show the p-power quasi-isomorphism locally (provided the power of p does not depend on
the local model). Let R be an OF -algebra satisfying Assumption 2.1, U = SpfR and M := MU. We
have that the Fontaine-Messing period map

αFM
r,n,R : Hk(Syn(R,M, r)n) −→ Hk(GR, T/pn(r)′) ∼−→ Hk(Uét,L/pn(r)′

U ),

is the same as the composition of the map α̃FM
r,n,R (see Remark 6.18 and Remark 8.7) with the natural

isomorphism Hk(GR, T/pn(r)′) ∼−→ Hk(Uét,L/pn(r)′
U ) (see the K(π, 1)-Lemma of [Sch13, Theorem 4.9]).

Finally, to show the isomorphism in degrees 0 ≤ k ≤ r−s−1, we use Corollary 6.20 with Example 5.2
(iii) for Fontaine-Laffaille modules. To compute N = N(p, r, s) ∈ N, we combine the constants obtained
in the proof of Theorem 5.5, Corollary 6.20 (i.e. Lemma 6.21 for e = p(p− 1)) and Example 5.2 (iii) to
obtain that N = 32r + 14s + 3p(p − 1) + 4. In particular, N does not depend on n or the local model
U. This allows us to conclude.
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