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Abstract. For an absolutely unramified extension L/Qp with imperfect residue field, we define
and study Wach modules in the setting of (φ, Γ)-modules for L. Our main result establishes a direct
equivalence between the category of lattices inside crystalline representations of the absolute Galois
group of L and the category of integral Wach modules for L. Moreover, we provide a direct relation
between a rational Wach module equipped with the Nygaard filtration and the filtered φ-module of its
associated crystalline representation.

1. Introduction
In classical p-adic Hodge theory, Fontaine introduced and developed the idea of studying a p-adic rep-
resentation of the absolute Galois group of Qp (and its extensions) via semilinear algebraic objects
attached to the representation. More concretely, for an extension F/Qp with perfect residue field and
absolute Galois group GF , in [Fon90], Fontaine showed that the category of Zp-representations of GF is
equivalent to the category of étale (φ, ΓF )-modules, where ΓF is an open subgroup of Z×

p (see §1.1). On
the other hand, to understand p-adic representations coming from geometry, Fontaine defined several
classes of representations such as crystalline, semistable, etc. in [Fon82]. Putting the two point of views
together, Fontaine asked the following natural question: is it possible to describe crystalline represen-
tations of GF in terms of (φ, ΓF )-modules? For an unramified extension F/Qp, Fontaine studied this
question in [Fon90], and introduced the notion of finite crystalline-height representations (représenta-
tions de cr-hauteur finie) of GF , which was further developed by Wach [Wac96; Wac97], Colmez [Col99]
and Berger [Ber04]. More precisely, [Ber04] showed that the category of GF -stable Zp-lattices of p-adic
crystalline representations is equivalent to the category of Wach modules, where a Wach module is a
certain integral lattice inside the étale (φ, ΓF )-module associated to the representation (see §1.1).

The two point of views of Fontaine admit natural generalisations to a relative base, i.e. formally étale
algebras over a formal torus. In particular, relative étale (φ, Γ)-modules were studied by Andreatta
[And06] and relative p-adic crystalline representations were studied by Faltings [Fal89] and Brinon
[Bri08]. In [Abh21], we introduced and studied the notion of relative Wach modules for an absolutely
unramified (at p) relative base. However, compared to the classical case, the results of [Abh21] are
restrictive, i.e. we only show that relative Wach modules give rise to lattices inside relative crystalline
representations; the converse is the following difficult open question: can one functorially associate a
relative Wach module to a Zp-lattice inside a relative crystalline representation?

In this article, we resolve the open question for the imperfect residue field case (see Theorem 1.1)
and we use the result thus obtained, in a subsequent work [Abh23a], to resolve the open question in the
relative case. More concretely, for a complete discrete valuation field L/Qp with imperfect residue field,
[And06] developed the theory of étale (φ, ΓL)-modules, where ΓL is an open subgroup of Zp(1)d ⋊ Z×

p ,
and [Bri06] developed the theory of p-adic crystalline representations of of GL, the absolute Galois
group of L. However, for absolutely unramified L/Qp, the theory of Wach modules for L was missing
from the picture. So, in this article, we define Wach modules for L and prove our first main result:

Theorem 1.1 (Corollary 4.2). The category of GL-stable Zp-lattices inside p-adic crystalline represen-
tations of GL is equivalent to the category of Wach modules for L.
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As mentioned above, the difficult part of Theorem 1.1 is to functorially associate a Wach module
to any GL-stable Zp-lattice T inside a p-adic crystalline representation of GL. To resolve this, let us
note that using the classical theory of [Ber04] in the perfect residue field case, one can associate to T
a φ-module N over the base ring of Wach modules for L. However, equipping N with a natural action
of ΓL is highly non-trivial, where the difficulty arises because ΓL is quite large compared to ΓF from
the classical case. The heart of this article constitutes a direct construction of the natural action of ΓL

on N (see §1.2.3 for details). Let us remark that the analogous theory of Breuil–Kisin modules in the
imperfect residue field case was studied by Brinon and Trihan [BT08]. However, the theory of loc. cit.
is different from the theory of Wach modules, in particular, the construction of the action of ΓL does
not feature in [BT08].

Besides being natural generalisations of classical results to the relative case, the usefulness of relative
Wach modules stems from its applications in the computation of p-adic vanishing cycles using syntomic
complexes. Indeed, to generalise the computation of p-adic vanishing cycles by Colmez and Nizioł
[CN17] to the case of crystalline coefficients, in [Abh23b], crucial inputs were the results on relative
Wach modules from [Abh21]. However, as mentioned above, the results of [Abh21], and therefore, of
[Abh23b] only work for certain crystalline coefficients. In order to generalise the results of [CN17] to
all crystalline coefficients, we need the more general result on relative Wach modules from [Abh23a,
Theorem 1.7], for which Theorem 1.1 is a crucial input. Furthermore, in op. cit. we provide an interesting
application of Theorem 1.1, in particular, we give a new criteria for checking the crystallinity of relative
p-adic representations (see [Abh23a, Theorem 1.9 & Corollary 1.10]).

An additional motivation for considering Wach modules is to construct a deformation of the functor
Dcris from classical p-adic Hodge theory (see [Fon90, §B.2.3]). This construction was carried out in
the Fontaine-Laffaille range by Wach [Wac97, Theoreme 3], and more generally, by Berger [Ber04,
Théorème III.4.4]. In this article, our second main result provides a generalisation of loc. cit. to the
imperfect residue field case (see Theorem 1.8). Let us remark that the general idea of deformations of
crystalline and de Rham cohomologies has led to exciting new developments in integral p-adic Hodge
theory via the introduction and development of prismatic cohomology [Sch17; BMS18; BMS19; BS22].

Finally, note that recent developments in the theory of prismatic F -crystals [BS23; DLMS22; GR22]
provide a new approach to the classification of lattices inside crystalline representations. While the
prismatic point of view is an exciting development, in the current paper, we employ techniques from
the theory of (φ, Γ)-modules to obtain our results. This is due to the fact that, in our approach, the
construction of Wach modules for L and the proof of Theorem 1.1 and Theorem 1.8, are explicit and
direct, which could be advantageous for “arithmetic” applications. In §1.2.4 we will provide more details
on relations of our results in this article to other works. In the rest of this section, we will describe the
results mentioned above in more detail. We begin by recalling the main classical result.

1.1. The classical case. Let p be a fixed prime number and let κ denote a perfect field of
characteristic p; set OF := W (κ) to be the ring of p-typical Witt vectors with coefficients in κ and
F := Frac(OF ). Let F denote a fixed algebraic closure of F , let Cp := F̂ denote the p-adic completion,
and GF := Gal(F/F ) the absolute Galois group of F . Moreover, let F∞ := ∪nF (µpn) with ΓF :=
Gal(F∞/F ) ∼−→ Z×

p and HF := Gal(F/F∞). Furthermore, let F ♭
∞ denote the tilt of F∞ (see §1.3) and

fix ε := (1, ζp, ζp2 , . . .) in O♭
F∞ , and µ := [ε]− 1 and [p]q := φ(µ)/µ in Ainf(OF∞) := W (O♭

F∞), the ring
of p-typical Witt vectors with coefficients in O♭

F∞ .
In [Fon90] Fontaine estalished a categorical equivalence between Zp-representations of GF and

étale (φ, ΓF )-modules over a certain period ring AF := OF JµK[1/µ]∧ ⊂ W (F ♭
∞), where ∧ denotes

the p-adic completion, and AF is stable under the (φ, ΓF )-action on W (F ♭
∞). For a fixed finite

free Zp-representation T of GF , the associated finite free étale (φ, ΓF )-module over AF is given as
DF (T ) := (A ⊗Zp T )HF , where A ⊂ W (C♭

p) is the maximal unramified extension of AF inside
W (C♭

p). In loc. cit., Fontaine conjectured that if V := T [1/p] is crystalline then there exists a lat-
tice inside DF (V ) := DF (T )[1/p] over which the action of ΓF admits a simpler form. Denote by
A+

F := OF JµK ⊂ AF , which is stable under the (φ, ΓF )-action, and note the following:

Definition 1.2. Let a, b ∈ Z with b ≥ a. A Wach module over A+
F with weights in the interval [a, b] is

a finite free A+
F -module N equipped with a continuous and semilinear action of ΓF such that,
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(1) The action of ΓF on N/µN is trivial.

(2) There is a Frobenius-semilinear operator φ : N [1/µ] → N [1/φ(µ)] commuting with the action
of ΓF such that φ(µbN) ⊂ µbN and the map (1 ⊗ φ) : φ∗(µbN) := A+

F ⊗φ,A+
F

µbN → µbN is
injective and its cokernel is killed by [p]b−a

q .

Denote the category of Wach modules over A+
F as (φ, ΓF )-Mod[p]q

A+
F

with morphisms between objects
being A+

F -linear, ΓF -equivariant and φ-equivariant (after inverting µ) morphisms. Let Repcris
Zp

(GF ) de-
note the category of Zp-lattices inside p-adic crystalline representations of GF . To any T in Repcris

Zp
(GF )

using [Wac96] and [Col99], Berger functorially attaches a Wach module NF (T ) over A+
F in [Ber04].

The main result in the arithmetic case is as follows (see [Ber04]):

Theorem 1.3. The Wach module functor induces an equivalence of ⊗-catgeories

Repcris
Zp

(GF ) ∼−→ (φ, ΓF )-Mod[p]q
A+

F

T 7−→ NF (T ),

with a quasi-inverse ⊗-functor given as N 7→
(
W (C♭

p)⊗A+
F

N
)φ=1.

1.2. The imperfect residue field case. Let d ∈ N and X1, X2, . . . , Xd be indeterminates
and let OL□ := (OF [X±1

1 , . . . , X±d
d ](p))∧, where ∧ denotes the p-adic completion. It is a complete

discrete valuation ring with uniformiser p, imperfect residue field κ(X1, . . . , Xd) and fraction field
L□ := OL□ [1/p]. Let OL denote a finite étale extension of OL□ such that it is a complete discrete
valuation ring with uniformiser p, imperfect residue field a finite étale extension of κ(X1, . . . , Xd) and
fraction field L := OL[1/p]. Let GL denote the absolute Galois group of L for a fixed algebraic closure
L/L; let ΓL

∼−→ Zp(1)d ⋊ Z×
p denote the Galois group of L∞ over L where L∞ is the fraction field

of OL∞ obtained by adjoining to OL all p-power roots of unity and all p-power roots of Xi for all
1 ≤ i ≤ d (see §2). In this setting, we have the theory of crystalline representations of GL [Bri06] and
étale (φ, Γ)-modules [And06]. However, the theory of Wach modules for L, i.e. a description of the
p-adic crystalline representations GL in terms of (φ, ΓL)-modules, was missing from the picture. The
main goal of this article is to complete this picture, which we discuss next.

1.2.1. Wach modules. For 1 ≤ i ≤ d, let us set X♭
i := (Xi, X

1/p
i , . . .) in O♭

L∞ and take [X♭
i ] in

Ainf(OL∞) = W (O♭
L∞) to be the Teichmüller representative of X♭

i . Let A+
L denote the unique finite

étale extension (along the finite étale map OL□ → OL) of the (p, µ)-adic completion of the localisation
OF JµK

[
[X♭

1]±1, . . . , [X♭
d]±1]

(p,µ). The ring A+
L is equipped with a Frobenius endomorphism φ and a

continuous action of ΓL (see §1.3 and §2.1).

Definition 1.4. Let a, b ∈ Z with b ≥ a. A Wach module over A+
L with weights in the interval [a, b]

is a finite free A+
L -module N equipped with a continuous and semilinear action of ΓL satisfying the

following assumptions:

(1) The action of ΓL on N/µN is trivial.

(2) There is a Frobenius-semilinear operator φ : N [1/µ]→ N [1/φ(µ)] commuting with the action of
ΓL such that φ(µbN) ⊂ µbN and the map (1⊗φ) : φ∗(µbN) := A+

L⊗φ,A+
L

µbN → µbN is injective
and its cokernel is killed by [p]b−a

q .

Say that N is effective if one can take b = 0 and a ≤ 0. Denote the category of Wach modules over A+
L

as (φ, Γ)-Mod[p]q
A+

L

with morphisms between objects being A+
L -linear, ΓL-equivariant and φ-equivariant

(after inverting µ) morphisms.
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Set AL := A+
L [1/µ]∧ as the p-adic completion, equipped with a Frobenius endomorphism φ and a

continuous action of ΓL. Let T be a finite free Zp-module equipped with a continuous action of GL,
and note that one can functorially attach to T a finite free étale (φ, ΓL)-module DL(T ) over AL of rank
= rkZpT equipped with a Frobenius-semilinear operator φ and a semilinear and continuous action of
ΓL. In fact, the preceding functor induces an equivalence between finite free Zp-representations of GL

and finite free étale (φ, ΓL)-modules over AL (see §2.2).

Remark 1.5. The category of Wach modules over A+
L can be realized as a full subcategory of étale

(φ, Γ)-modules over AL (see Proposition 3.3).

1.2.2. Main results. Let Repcris
Zp

(GL) denote the category of Zp-lattices inside p-adic crystalline
representations of GL. The main result of this article, i.e. Theorem 1.1, can be stated more precisely
as follows:

Theorem 1.6 (Corollary 4.2). The Wach module functor induces an equivalence of ⊗-categories

Repcris
Zp

(GL) ∼−→ (φ, Γ)-Mod[p]q
A+

L

T 7−→ NL(T ),

with a quasi-inverse given as N 7→ TL(N) :=
(
W

(
C♭

L

)
⊗A+

L
N

)φ=1, where CL := L̂.

Our strategy for the proof of Theorem 1.6 will be described in §1.2.3.

Remark 1.7. In Theorem 1.6, we do not expect the functor NL to be exact (see [CD11, Example 7.1]
for an example in the arithmetic case). However, after inverting p, the Wach module functor induces
an exact equivalence of ⊗-categories Repcris

Qp
(GL) ∼−→ (φ, Γ)-Mod[p]q

B+
L

via V 7→ NL(V ), with an exact

quasi-inverse ⊗-functor given as M 7→ VL(M) :=
(
W (C♭

L)⊗A+
L

M
)φ=1 (see Corollary 4.3).

As indicated earlier, the proof of Theorem 1.6 is based on techniques in the theory of (φ, Γ)-modules.
One of the advantages of using this approach is that it enables us to establish several comparison results
between objects appearing in the p-adic Hodge theory over L (see Proposition 3.14, Proposition 4.21,
Corollary 4.22 and Corollary 3.16). In order to keep the introduction light, we only mention one of the
comparison results here and refer the reader to the main body of this article for the rest.

Let N be a Wach module over A+
L . We equip N with a Nygaard filtration defined as FilkN :=

{x ∈ N such that φ(x) ∈ [p]kq N}. Then we note that (N/µN)[1/p] is a φ-module over L, since [p]q =
p mod µA+

L , and N/µN is equipped with a filtration Filk(N/µN) given as the image of FilkN under the
surjection N ↠ N/µN . We equip (N/µN)[1/p] with the induced filtration, in particular, it is a filtered
φ-module over L. Moreover, let V := TL(N)[1/p] denote the associated crystalline representation of
GL from Theorem 1.6. Then we can functorially associate to V a filtered (φ, ∂)-module over L denoted
ODcris,L(V ) (see §2.3), and show the following:

Theorem 1.8 (Corollary 3.16). Let N be a Wach module over A+
L and V := TL(N)[1/p] the associated

crystalline representation from Theorem 1.6. Then we have (N/µN)[1/p] ∼−→ ODcris,L(V ) as filtered
φ-modules over L.

The proof of Theorem 1.8 is obtained by utilising the computations done in the proof of Theorem
3.12, more specifically, using Proposition 3.14.

Remark 1.9. Based on the expectation put forth in [Abh21, Remark 4.48], it is reasonable to expect
that the L-vector space (N/µN)[1/p] may be equipped with a connection by defining a q-connection
on N using the action of geometric part of ΓL, i.e. Γ′

L (see §2), and inducing a connection via N
q 7→1−−−→

N/µN . Moreover, the isomorphism (N/µN)[1/p] ∼−→ ODcris,L(V ) in Theorem 1.8 should be further
compatible with connections. These expectations will be verified in [Abh23a].
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1.2.3. Strategy for the proof of Theorem 1.6. To prove the theorem, starting with a Zp-lattice
T inside a p-adic crystalline representation of GL, we first use the result in the perfect residue field
case (see Theorem 1.3) and its compatibility with the results of [Kis06; KR09] (see §4.2) to construct
a finite free module Nrig,L(V ) (associated to V = T [1/p]), over the ring of functions of the open
unit disk over L (denoted B+

rig,L), such that Nrig,L(V ) satisfies a Frobenius finite [p]q-height condition.
However, proving the existence of a non-trivial action of ΓL on Nrig,L(V ) is a difficult question and
it does not follow from the classical theory because ΓL

∼−→ Zp(1)d ⋊ Z×
p , whereas we have ΓF

∼−→ Z×
p

in the classical case. To resolve this issue, our innovation is to use the Galois action on V and its
crystallinity to explicitly show that Nrig,L(V ) is equipped with an action of ΓL (see Proposition 4.19).
Furthermore, we show that our construction is compatible with the theory of (overconvergent) étale
(φ, ΓL)-modules from [And06; AB08], establishing the naturality of the action of ΓL on Nrig,L(V ) (see
§4.4). Next, we set NL(V ) := Nrig,L(V ) ∩D†

L(V ) ⊂ D†
rig,L(V ) as a module over B+

L = A+
L [1/p], where

D†
L(V ) is the overconvergent étale (φ, ΓL)-module associated to V and D†

rig,L(V ) is the (φ, ΓL)-module
over the Robba ring, of slope 0 and associated to V (see §2.2 and Definition 4.24). Finally, we set
NL(T ) := NL(V ) ∩ DL(T ) ⊂ DL(V ) as an A+

L -module and show that it satisfies the axioms of
Definition 1.4 (see the proof of Theorem 4.1 in §4.5). In the opposite direction, starting with a Wach
module N over A+

L , we use ideas developed in [Abh21] to show that TL(N)[1/p] is crystalline (see
Theorem 3.12).

1.2.4. Relation to other works. Our first main result, Theorem 1.6, is a direct generalisation
of Theorem 1.3 from [Wac96; Col99; Ber04]. As indicated in §1.2.3, starting with a crystalline
Zp-representation T of GL, the construction of a finite [p]q-height module NL(T ) uses classical Wach
modules and its compatibility with the results of [Kis06; KR09]. However, equipping NL(T ) with a
natural action of ΓL is highly non-trivial, in particular, it does not follow from previous works and
constitutes the heart of this article. For the converse, starting with a Wach module N over A+

L , we use
ideas from [Abh21] to show that TL(N)[1/p] is crystalline. Moreover, as mentioned earlier, the results
on Wach modules in the current paper are different from the theory of Breuil–Kisin modules in the
imperfect residue field case studied in [BT08].

Now, let us note that using the unpublished results of Tsuji in [Tsu] and the use of [BT08] in
[DLMS22], it can be seen that the current paper is a crucial input to the construction of relative Wach
modules in [Abh23a]. Moreover, recent developments in the theory of prismatic F -crystals [BS23;
DLMS22; GR22], would suggest that there is a categorical equivalence between the category of Wach
modules over A+

L and the category of prismatic F -crystals on the absolute prismatic site (Spf OL)∆.
At this point, let us remark that unlike the case of Breuil–Kisin modules from [DLMS22], obtaining
the aforementioned equivalence directly is a difficult question, in particular, it is highly non-trivial
to directly show that the natural functor from prismatic F -crystals to Wach modules is essentially
surjective. This point will be explored in another work [Abh24] and the current article is independent
of the results in the prismatic theory.

As indicated previously, the motivation for interpreting a Wach module as a q-de Rham complex
and as q-deformation of crystalline cohomology, i.e. ODcris, comes from [Fon90, §B.2.3] and [Ber04,
Théorème III.4.4]. Our second main result, Theorem 1.8, is an important step towards verifying such
expectations. In addition, we note that our proof of Theorem 1.8 is entirely independent to that of loc.
cit., thus providing an alternative proof (as well as a generalisation) of the important classical result
in loc. cit. Furthermore, in Proposition 4.19 and Corollary 4.22 (see Remark 4.23), we generalise some
results of [Ber02] and [Ber04] to obtain comparison results between Wach modules, overconvergent
étale (φ, ΓL)-modules and filtered (φ, ∂)-modules associated to p-adic crystalline representations. In
particular, for a p-adic crystalline representation V of GL, we prove a comparison isomorphism between
the associated (φ, ΓL)-module over the Robba ring and the scalar extension of ODcris,L(V ) to the Robba
ring, where we use the connection on ODcris(V ) to equip the scalar extension with an action of ΓL (see
§4.3 and Remark 4.23).

Finally, let us remark that using the theory of Breuil–Kisin modules in the imperfect residue field
case from [BT08], in [Gao20] Gao studied lattices inside crystalline (more generally, semistable) rep-
resentations using Breuil–Kisin GL-modules. However, the objects of loc. cit. are very different from
Wach modules considered in this paper. More specifically, Breuil–Kisin GL-modules are defined using
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the “Kummer tower” and admit an action of the big Galois group GL. In contrast, Wach modules are
defined using the “cyclotomic tower”, as in the theory of étale (φ, Γ)-modules, and admit an action of
ΓL, which is much smaller than GL. Moreover, [Gao20] only proves a full faithfulness result, whereas
Theorem 1.6 proves a categorical equivalence which was a difficult open question.

1.3. Setup and notations. We will work under the convention that 0 ∈ N, the set of natural
numbers. Let p be a fixed prime number, κ a perfect field of characteristic p, OF := W (κ) the ring of
p-typical Witt vectors with coefficients in κ and F := OF [1/p], the fraction field of W . In particular,
F is an unramified extension of Qp with ring of integers OF . Let F be a fixed algebraic closure of F so
that its residue field, denoted as κ, is an algebraic closure of κ. Further, we denote by GF := Gal(F/F ),
the absolute Galois group of F .

We fix d ∈ N and let X1, X2, . . . , Xd be indeterminates. Set R□ to be p-adic completion of
OF [X±1

1 , . . . , X±1
d ] . Let φ : R□ → R□ denote a morphism extending the natural Frobenius on OF by

setting φ(Xi) = Xp
i for all 1 ≤ i ≤ d. The endomorphism φ of R□ is flat by [Bri08, Lemma 7.1.5]

and faithfully flat since φ(m) ⊂ m for any maximal ideal m ⊂ R□. Moreover, it is finite of degree pd

using Nakayama Lemma and the fact that φ modulo p is evidently of degree pd. Let OL□ := (R□
(p))

∧,
where ∧ denotes the p-adic completion. It is a complete discrete valuation ring with uniformiser p,
imperfect residue field κ(X1, . . . , Xd) and fraction field L□ := OL□ [1/p]. The Frobenius on R□ extends
to a unique finite and faithfuly flat of degree pd Frobenius endomorphism φ : OL□ → OL□ lifting the
absolute Frobenius on OL□/pOL□ .

Let OL denote a finite étale extension of OL□ such that it is a domain. Then OL is a complete discrete
valuation ring with uniformiser p, imperfect residue field a finite étale extension of κ(X1, . . . , Xd) and
fraction field L := OL[1/p]. Fix an algebraic closure L/L and let GL := Gal(L/L) denote the absolute
Galois group. The Frobenius on OL□ extends to a unique finite and faithfuly flat of degree pd Frobenius
endomorphism φ : OL → OL lifting the absolute Frobenius on OL/pOL (see [CN17, Proposition 2.1]).
For k ∈ N, let Ωk

OL
denote the p-adic completion of module of k-differentials of OL relative to Z. Then

we have Ω1
OL

= ⊕d
i=1OLdlogXi and Ωk

OL
= ∧k

OL
Ω1

OL
.

Next, let OK be one of OF∞ , OL∞ , OF or OL and K := Frac(OK). Then the tilt of OK is defined
as O♭

K := limφ OK/p and the tilt of K is defined as K♭ := Frac(O♭
K) (see [Fon77, Chapitre V, §1.4]).

Finally, let A be a Zp-algebra equipped with a Frobenius endomorphism φ lifting the absolute Frobenius
on A/p, then for any A-module M we write φ∗(M) := A⊗φ,A M .

1.4. Outline of the paper. This article consists of three main sections. In §2 we collect relevant
results on p-adic Hodge theory in the imperfect residue field case. In §2.1 we define several period
rings, in particular, we recall crystalline period rings, (φ, Γ)-module theory rings, overconvergent rings
and Robba rings and prove several important technical results to be used in our main proofs in §4.
In §2.2 we quickly recall the relation between p-adic representations and (φ, Γ)-module theory over
the period rings described in the previous section. In §2.3 we focus on crystalline representations
and prove some results relating Galois action on a crystalline representation to its associated filtered
(φ, ∂)-module. The goal of §3 is to define Wach modules in the imperfect residue field case and study
the associated Zp-representations of GL. In §3.1 we give the definition of Wach modules and relate it
to étale (φ, Γ)-modules (see Proposition 3.3). Then given a Wach module, we functorially attach to it a
Zp-representation of GL and in §3.2 we show that these are related to finite [p]q-height representations
studied in [Abh21]. Finally, in §3.3 we show that the Zp-representation of GL, associated to a Wach
module, is a lattice inside a p-adic crystalline representation of GL (see Theorem 3.12) and prove the
filtered isomorphism claimed in Theorem 1.8. In §4 we prove our main result, i.e. Theorem 1.6. In
§4.1 we collect important properties of classical Wach modules, i.e. the perfect residue field case. In
§4.2 we use ideas from [Kis06; KR09] to construct a finite [p]q-height module on the open unit disk
over L. On the module thus obtained, we use results of §2.3 to construct an action of ΓL and study its
properties in §4.3. Then in §4.4 we check that our construction is compatible with the theory of étale
(φ, ΓL)-modules. Finally, in §4.5 we construct the promised Wach module and prove Theorem 1.6.
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the course of this project, reading a previous version of the article carefully and suggesting several
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research is supported by JSPS KAKENHI grant numbers 22F22711 and 22KF0094.

2. Period rings and p-adic representations
We will use the setup and notations from §1.3. Recall that OL is a finite étale algebra over OL□ . Set
L∞ := ∪d

i=1L(µp∞ , X
1/p∞

i ) and for 1 ≤ i ≤ d, we fix X♭
i := (Xi, X

1/p
i , X

1/p2

i , . . .) ∈ O♭
L∞ . Then we have

the following Galois groups (see [Hyo86, §1.1] for details):

GL := Gal(L/L), HL := Gal(L/L∞), ΓL := GL/HL = Gal(L∞/L) ∼−→ Zp(1)d ⋊ Z×
p ,

Γ′
L := Gal(L∞/L(µp∞)) ∼−→ Zp(1)d, Gal(L(µp∞)/L) = ΓL/Γ′

L
∼−→ Z×

p .

Let OL̆ := (∪d
i=1OL[X1/p∞

i ])∧, where ∧ denotes the p-adic completion. The OL-algebra OL̆ is a complete
discrete valuation ring with perfect residue field, uniformiser p and fraction field L̆ := OL̆[1/p]. The
Witt vector Frobenius on OL̆ is given by the Frobenius on OL described in §1.3 and setting φ(X1/pn

i ) =
X

1/pn−1

i for all 1 ≤ i ≤ d and n ∈ N. Let L̆∞ := L̆(µp∞) and let L̆ ⊃ L denote a fixed algebraic closure
of L̆. We have the following Galois groups:

GL̆ := Gal(L̆/L̆) ∼−→ Gal(L/ ∪d
i=1 L(X1/p∞

i )), HL̆ := Gal(L̆/L̆∞) = Gal(L/L∞),

ΓL̆ := GL̆/HL̆ = Gal(L̆∞/L̆) ∼−→ Gal(L∞/ ∪d
i=1 L(X1/p∞

i )) ∼−→ Gal(L(µp∞)/L) ∼−→ Z×
p .

From the description above note that GL̆ can be identified with a subgroup of GL, HL̆
∼−→ HL and ΓL̆

can be identified with a quotient of ΓL.

2.1. Period rings. In this subsection we will quickly recall and fix notations for the period rings
to be used in the rest of this section. For details refer to [And06], [Bri06] and [Ohk13].

2.1.1. Crystalline period rings. Let Ainf(OL∞) := W (O♭
L∞) and Ainf(OL) := W (O♭

L
) admitting

the Frobenius on Witt vectors and continuous GL-action (for the weak topology). We fix µ := ε − 1,
where ε := (1, ζp, ζp2 , . . .) ∈ O♭

F∞ and let µ := [ε]− 1, ξ := µ/φ−1(µ) ∈ Ainf(OF∞). For g ∈ GL, we have
g(1 + µ) = (1 + µ)χ(g) where χ is the p-adic cyclotomic character. Moreover, we have a GL-equivariant
surjection θ : Ainf(OL) → OCL

where CL := L̂ and Ker θ = ξAinf(OL). The map θ further induces a
ΓL-equivariant surjection θ : Ainf(OL∞)→ O

L̂∞
.

Recall that for 1 ≤ i ≤ d, we fixed X♭
i = (Xi, X

1/p
i , X

1/p2

i , . . .) ∈ OL∞ and we take {γ0, γ1, . . . , γd}
to be topological generators of ΓL such that {γ1, . . . , γd} are topological generators of Γ′

L and γ0 is a
topological generator of ΓL/Γ′

L and γj(X♭
i ) = εX♭

i if i = j and X♭
i otherwise. Let us also fix Teichmüller

lifts [X♭
i ] ∈ Ainf(OL∞). We set Acris(OL∞) := Ainf(OL∞)⟨ξk/k!, k ∈ N⟩. Let t := log(1 + µ) ∈

Acris(OF∞) and set B+
cris(OL∞) := Acris(OL∞)[1/p] and Bcris(OL∞) := B+

cris(OL∞)[1/t]. For g ∈ GL,
we have g(t) = χ(g)t. Furthermore, one can define period rings OAcris(OL∞), OB+

cris(OL∞) and
OBcris(OL∞). These rings are equipped with a Frobenius endomorphism φ and a continuous ΓL-action,
and the former two rings OAcris(OL∞) and OB+

cris(OL∞) are further equipped with an appropriate
extension of the map θ. Rings with a subscript “cris” are equipped with a decreasing filtration and rings
with a prefix “O” are further equipped with an integrable connection satisfying Griffiths transversality
with respect to the filtration (see [Abh21, §2.2] for definitions over R with similar notations). One
can define variations of these rings over L which are further equipped with GL-action. Moreover, from
[MT20, Lemma 4.32] note that Acris(OL∞) = Acris(OL)HL and B+

cris(OL∞) = B+
cris(OL)HL .

We have two OL-algebra structures on OAcris(OL∞): a canonical structure coming from the defi-
nition of OAcris(OL∞); a non-canonical (φ, ΓL̆)-equivariant structure OL → OAcris(OL∞) given by the
map x 7→

∑
k∈Nd

∏d
i=1 ∂ki

i (x)
∏d

i=1([X♭
i ]−Xi)[ki], in particular, Xi 7→ [X♭

i ].
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2.1.2. Rings of (φ, Γ)-modules. For detailed explanations of objects defined in this subsubsection,
see [And06]. Recall that OL□ is a complete discrete valuation ring with uniformiser p imperfect residue
field and OL is a finite étale OL□-algebra. Let us se A+

L□ to be the (p, µ)-adic completion of the
localisation OF JµK

[
[X♭

1]±1, . . . , [X♭
d]±1]

(p,µ). We have a natural embedding A+
L□ ⊂ Ainf(OL∞) and A+

L□

is stable under the Witt vector Frobenius and ΓL-action on Ainf(OL∞); we equip A+
L□ with induced

structures. Moreover, we have an embedding ι : OL□ → A+
L□ via the map Xi 7→ [X♭

i ] and it extends
to an isomorphism of rings OL□JµK ∼−→ A+

L□ . Equip OL□JµK with finite and faithfully flat of degree
pd+1 Frobenius endomorphism using the Frobenius on OL□ and setting φ(µ) = (1 + µ)p − 1. Then the
embedding ι and the isomorphism OL□JµK ∼−→ A+

L□ are Frobenius-equivariant.
Let A+

L denote the (p, µ)-adic completion of the unique extension of the embedding A+
L□ →

Ainf(OL∞) along the finite étale map OL□ → OL (see [CN17, Proposition 2.1]). We have a natural
embedding A+

L ⊂ Ainf(OL∞) and A+
L is stable under the induced Frobenius and ΓL-action. More-

over, the embedding ι : OL□ → A+
L□ ⊂ A+

L and the isomorphism OL□JµK ∼−→ A+
L□ ⊂ A+

L extend
to a unique embedding ι : OL → A+

L and an isomorphism of rings OLJµK ∼−→ A+
L . Equip OLJµK

with finite and faithfully flat of degree pd+1 Frobenius endomorphism using the Frobenius on OL and
setting φ(µ) = (1 + µ)p− 1. Then the embedding ι and the isomorphism OLJµK ∼−→ A+

L are Frobenius-
equivariant. In particular, the Frobenius φ : A+

L → A+
L is finite and faithfully flat of degree pd+1.

Let uα := (1 + µ)α0 [X♭
1]α1 · · · [X♭

d]αd where α = (α0, α1, . . . , αd) ∈ {0, 1, . . . , p − 1}[0,d] then we have
φ∗(A+

L ) := A+
L ⊗φ,A+

L
A+

L
∼−→ ⊕αφ(A+

L )uα.

Let CL := L̂, Ã := W
(
C♭

L

)
and B̃ := Ã[1/p] admitting the Frobenius on Witt vectors and con-

tinuous GL-action (for the weak topology). Set AL := A+
L [1/µ]∧ equipped with induced Frobenius

endomorphism and continuous ΓL-action. Note that AL is a complete discrete valuation ring with
maximal ideal pAL, residue field (OL/p)((µ)) and fraction field BL := AL[1/p]. Similar to above,
φ : AL → AL is finite and faithfully flat of degree pd+1 and we have φ∗(AL) := AL ⊗φ,AL AL

∼−→
⊕αφ(AL)uα = (⊕αφ(A+

L )uα)⊗φ(A+
L ) φ(AL) ∼←− A+

L ⊗φ,A+
L

AL. Furthermore, we have a natural Frobe-
nius and ΓL-equivariant embedding AL ⊂ ÃHL . Let A denote the p-adic completion of the maximal
unramified extension of AL inside Ã and set B := A[1/p] ⊂ B̃, i.e. A is the ring of integers of B.
The rings A and B are stable under induced Frobenius and GL-action and we have AL = AHL and
BL = BHL stable under induced Frobenius and residual ΓL-action.

2.1.3. Overconvergent rings. We begin by definining the ring of overconvergent coefficients stable
under Frobenius and GL-action (see [CC98] and [AB08]) Denote the natural valuation on O♭

L
by υ♭

extending the valuation on O♭
F

. Let r > 0 and let α ∈ O♭
F

such that υ♭(α) = pr/(p− 1). Set

Ã†,r :=
{ ∑

k∈N

pk[xk] ∈ Ã such that υ♭(xk) + pr
p−1k → +∞ as k → +∞

}
.

The GL-action and Frobenius φ on Ã induce commuting actions of GL and φ on Ã†,r such that
φ(Ã†,r) = Ã†,pr. Define the ring of overconvergent coefficients as Ã† := ∪r∈Q>0Ã†,r ⊂ Ã equipped with
induced Frobenius and GL-action. Moreover, inside Ã we take A†,r

L := AL∩ Ã†,r and A†,r := A∩ Ã†,r.
Define A†

L := AL∩A†
L = ∪r∈Q>0A†,r

L and A† := A∩Ã† = ∪r∈Q>0A†,r equipped with induced Frobenius
endomorphism and GL-action from respective actions on Ã; we have A†

L = (A†)HL . Upon inverting
p in the definitions above one obtains Qp-algebras inside B̃, i.e. set B̃†,r := Ã†,r[1/p], B̃† := Ã†[1/p],
B†,r := A†,r[1/p], B† := A†[1/p], equipped with induced Frobenius and GL-action. Moreover, set
B̃†,r

L := (B̃†,r)HL , B̃†
L := (B̃†)HL , B†,r

L := (B†,r)HL = A†,r
L [1/p] and B†

L := (B†)HL = A†
L[1/p] equipped

with induced Frobenius and residual ΓL-action.

2.1.4. Analytic rings. In this subsection, we will define the Robba ring over L following [Ked05,
§2] and [Ohk15, §1]. However, we will use the notations of [Ber02, §2] in the perfect residue field case
(see [Ohk15, §1.10] for compatibility between different notations). Define

B̃†
rig := ∪r≥0 ∩s≥r

(
Ainf(OL)⟨ p

[µ]r , [µ]s
p ⟩

[1
p

])
.
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The ring B̃†
rig can also be defined as ∪r∈Q>0B̃†,r

rig where B̃†,r
rig denotes the Fréchet completion of B̃†,r =

Ã†,r[1/p] for a certain family of valuations (see [Ked05, §2] and [Ohk15, §1.6]). The Frobenius and
GL-action on B̃†,r respectively induce Frobenius and GL-action on B̃†,r

rig which extend to respective
actions on B̃†

rig. In particular, we have a Frobenius and GL-equivariant inclusion B̃† ⊂ B̃†
rig (see

[Ohk15, §1.6 & §1.10]). Set
B̃+

rig := ∩n∈Nφn(B+
cris(OL))

equipped with an induced Frobenius endomorphism and GL-action from the respective actions on
B+

cris(OL). Description of rings in [Ber02, Lemme 2.5, Exemple 2.8 & §2.3] directly extend to our
situation as the aforementioned results do not depend on structure of the residue field of base ring
OL. Therefore, from loc. cit. it follows that B̃+

rig ⊂ B̃†
rig compatible with Frobenius and GL-action.

Moreover, we set B̃†,r
rig,L := (B̃†,r

rig)HL , B̃†
rig,L := (B̃†

rig)HL and B̃+
rig,L := (B̃+

rig)HL ⊂ B̃†
rig,L equipped with

induced Frobenius endomorphism and residual ΓL-action.

Remark 2.1. Note that the definition B̃†
rig and B̃+

rig as rings does not depend on L, in particular,
one may define these rings using Ainf(O

L̆
) and equip them with a Frobenius endomorphism compatible

with the Frobenius endomorphism defined above.

Lemma 2.2. We have (B̃†
rig)φ=1 = (B̃+

rig)φ=1 = Qp.

Proof. Using Remark 2.1, note that the Frobenius invariant elements can be computed using results in
the perfect residue field case. In particular, (B̃†

rig)φ=1 = (B̃+
rig)φ=1 = Qp, where the first equality follows

from [Ber04, Proposition I.4.1] and the second equality from [Col02, Proposition 8.15].

Recall that from §2.1.2 we have a Frobenius-equivariant embedding ι : OL → A+
L . From [Ohk15,

§1.6] the ring A†,r
L has the following description:

A†,r
L

∼−→
{ ∑

k∈Z

ι(ak)µk such that ak ∈ OL and for any p−1/r ≤ ρ < 1, lim
k→−∞

|ak|ρk = 0
}

.

We have B†,r
L = A†,r

L [1/p] and we set

B†,r
rig,L :=

{ ∑
k∈Z

ι(ak)µk such that ak ∈ L and for any p−1/r ≤ ρ < 1, lim
k→±∞

|ak|ρk = 0
}

.

The ring B†,r
rig,L can also be defined as Fréchet completion of B†,r

L for a family of valuations induced
by the inclusion B†,r

L ⊂ B̃†,r (see [Ked05, §2] and [Ohk15, §1.6]). Define the Robba ring over L as
B†

rig,L := ∪r≥0B†,r
rig,L. The Frobenius and GL-action on B†,r

L induce respective Frobenius and GL-action
on B†,r

rig,L which extend to respective actions on B†
rig,L (also see [Ohk15, §4.3] where Ohkubo constructs

the differential action of Lie ΓL; one may also obtain the action of ΓL by exponentiating the action of
Lie ΓL). From the preceding discussion, we have a Frobenius and ΓL-equivariant injection B†

L ⊂ B†
rig,L

and the former ring B†
L is also known as the bounded Robba ring. Furthermore, note that B†,r

L ⊂ B̃†,r
L =

(B̃†,r)HL ⊂ B̃†,r
rig,L, where the last term can also be described as the Fréchet completion of the middle

term for a family of valuations induced by the inclusion B̃†,r
L ⊂ B̃†,r (see [Ked05, §2] and [Ohk15, §1.6]).

To summarize, for r ∈ Q>0 we have the following commutative diagram with injective arrows:

B†,r B̃†,r

B†,r
L B̃†,r

L B̃†,r
rig

B†,r
rig,L B̃†,r

rig,L,
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where in the second row, two rings on the left are obtained from the rings in first row by taking
HL-invariants and the rightmost ring in second row is obtained as Fréchet completion of the rightmost
ring in first row. The bottom row is obtained as Fréchet completion of two rings on the left in the
second row. These inclusions are compatible with Frobenius and ΓL-action and these compatibilities
are preserved after passing to respective Fréchet completions. In particular, we have a Frobenius and
ΓL-equivariant embedding B†

rig,L ⊂ B̃†
rig,L.

Definition 2.3. Define B+
rig,L := B†

rig,L ∩ B̃+
rig,L ⊂ B̃†

rig,L, equipped with induced Frobenius endomor-
phism and ΓL-action.

Lemma 2.4. The ring B+
rig,L can be identified with the ring of convergent power series over the open

unit disk in one variable over L, i.e.

B+
rig,L

∼−→
{ ∑

k∈N

ι(ak)µk such that ak ∈ L and for any 0 ≤ ρ < 1, lim
k→+∞

|ak|ρk = 0
}

,

Proof. Let x ∈ B+
rig,L ⊂ B†

rig,L. Using the explicit description of B†,r
rig,L and B†,r

L for r ∈ Q>0, we can write
x = x+ + x− with x+ convergent on the open unit disk over L and x− ∈ B†

L, in particular, x+ ∈ B̃+
rig.

Moreover, using Remark 2.1 and [Ber02, Lemma 2.18, Corollaire 2.28], we have an exact sequence
0→ Binf(OL)→ B̃†,r ⊕ B̃+

rig → B̃†,r
rig → 0, where Binf(OL) = Ainf(OL)[1/p]. So x ∈ B+

rig,L ⊂ B̃+
rig if and

only if x− ∈ Binf(OL) ∩B†
L = Binf(OL∞) ∩B†

L = B+
L , where we have used Ainf(OL)HL = Ainf(OL∞)

(see [And06, Proposition 7.2]). Hence, x converges on the open unit disk over L. The other inclusion
is obvious.

Remark 2.5. The topology on B+
rig,L can be described as follows: Let D(L, ρ) denote the closed disk

of radius 0 < ρ < 1 over L and let O(D(L, ρ)) denote the ring of analytic functions, i.e. power series
converging on the closed disk D(L, ρ). Then O(D(L, ρ)) is equipped with a topology induced by the
supremum norm ∥x∥ρ := supx∈D(L,ρ) |f(x)| < +∞. We have B+

rig,L = limρ O(D(L, ρ)) ⊂ LJµK and we
equip it with the topology induced by the Fréchet limit of the topology on O(D(L, ρ)) induced by the
supremum norm, i.e. the topology on B+

rig,L can be described by uniform convergence on D(L, ρ) for
ρ→ 1−.

Lemma 2.6. The natural map B+
L → B+

rig,L is faithfully flat.

Proof. Note that B+
L is a principal ideal domain and B+

rig,L is a domain, so the map in claim is flat.
To show that it is faithfully flat, it is enough to show that for any maximal ideal m ⊂ B+

L we have
mB+

rig,L ̸= B+
rig,L. Note that if m ⊂ B+

L is a maximal ideal, then m = (f) where f is an irreducible
distinguished polynomial in the sense of [Lan90, Chapter 5, §2]. Since any f as above admits a zero
over the open unit disk, it follows f is not a unit in B+

rig,L. Hence, mB+
rig,L ̸= B+

rig,L.

Remark 2.7. From §1.3 recall that φ : L → L is finite of degree pd and we also have φ(µ) =
(1 + µ)p − 1. Therefore, from the explicit description of B+

rig,L in Lemma 2.4 it follows that the
Frobenius endomorphism φ : B+

rig,L → B+
rig,L is finite and faithfully flat of degree pd+1.

2.1.5. Period rings for L̆. Definitions above may be adopted almost verbatim to define corre-
sponding period rings for L̆, in particular, one recovers definitions of period rings in [Fon90], [CC98]
and [Ber02], in particular, one obtain period rings A+

L̆
, AL̆, A†

L̆
, B+

rig,L̆
and B†

rig,L̆
equipped with a

Frobenius endomorphism φ and ΓL̆-action. Note that we have a natural identification A+
L̆

∼−→ OL̆JµK
where the right hand side is equipped with a finite and faithfully flat of degree p Frobenius endomor-
phism using the natural Frobenius on OL̆ and setting φ(µ) = (1 + µ)p − 1 and a ΓL̆-action given as
g(µ) = (1+µ)χ(g)−1 for g ∈ ΓL̆. Moreover, the preceding isomorphism naturally extends to a Frobenius
and ΓL̆-equivariant isomorphism AL̆

∼−→ OL̆JµK[1/µ]∧, where ∧ denotes the p-adic completion.
Recall that the Frobenius-equivariant embedding OL → OL̆ is faithfully flat and it naturally extends

to a Frobenius and ΓL̆-equivariant faithfully flat embedding OLJµK → OL̆JµK. Using Frobenius and
ΓL̆-equivariant isomorphisms A+

L
∼−→ OLJµK and AL̆

∼−→ OL̆JµK we get a Frobenius and ΓL̆-equivariant
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faithfully flat embedding A+
L → A+

L̆
sending [X♭

i ] 7→ Xi. This further extends to a Frobenius and
ΓL̆-equivariant faithfully flat embedding AL → AL̆.

We can equip Ainf(OL∞) with a non-canonical OL-algebra structure by first defining an injection
OL□ → Ainf(OL∞) via the map Xi 7→ [X♭

i ] and extending it uniquely along the finite étale map OL□ →
OL, to an injection OL → Ainf(OL∞) (see [CN17, Proposition 2.1]). Note that the preceding maps
are Frobenius-equivariant but not ΓL-equivariant. The OL-algebra structure on Ainf(OL∞) naturally
extends to a Frobenius-equivariant OL̆-algebra structure by sending X

1/pn

i 7→ [(X1/pn

i )♭] for all 1 ≤ i ≤ d
and n ∈ N. We can further extend this to a Frobenius and ΓL̆-equivariant embedding A+

L̆
= OL̆JµK→

Ainf(OL∞).
Using the embeddings described above and following the definitions of various period rings discussed

so far, we obtain a commutative diagram with injective arrows where the top horizontal arrows are
Frobenius and ΓL-equivariant and the rest are Frobenius and ΓL̆-equivariant:

B̃+
rig,L B+

rig,L B†
rig,L B̃†

rig,L

B+
rig,L̆

B†
rig,L̆

.

Remark 2.8. Similar to Lemma 2.4 we have

B+
rig,L̆

∼−→
{ ∑

k∈N

akµk such that ak ∈ L̆ and for any 0 ≤ ρ < 1, lim
k→+∞

|ak|ρk = 0
}

.

The ring B+
rig,L̆

is equipped with a Fréchet topology similar to Remark 2.5. Moreover, since φ : L̆
∼−→ L̆

and φ(µ) = (1 + µ)p− 1, the Frobenius endomorphism on B+
rig,L̆

is finite and faithfully flat of degree p.

Lemma 2.9. The rings B+
rig,L and B+

rig,L̆
are Bézout domains and B+

rig,L → B+
rig,L̆

is flat.

Proof. The first claim follows from [Ber02, Proposition 4.12]. Note that loc. cit. assumes the residue
field of discrete valuation base field (L and L̆ in our case) to be perfect, however the proof of loc. cit.
only depends on [Laz62] and [Hel43] which are independent of this assumption. For the second claim,
note that we can write B+

rig,L̆
= colimi∈I Mi, where I is the directed index set of finitely generated

B+
rig,L-submodules of B+

rig,L̆
. Since B+

rig,L̆
is a domain, Mi is torsion-free for each i ∈ I. Now recall that

finitely generated torsion-free modules over a Bézout domain are finite projective (see [CE99, Chapter
VII, Proposition 4.1] noting that Bézout domains are a special case of Prüfer domains), and therefore
finite free by [Ked04, Proposition 2.5]. Moreover, directed colimit of finite free modules over a ring is
flat (see [Sta23, Tag 058G]). Hence, it follows that B+

rig,L → B+
rig,L̆

is flat.

Lemma 2.10. The element t/µ = (log(1 + µ))/µ =
∏

n∈N(φn([p]q)/p) converges in B+
rig,L ⊂ B+

rig,L̆
.

Moreover, (t/µ)B+
rig,L̆
∩B+

rig,L = (t/µ)B+
rig,L.

Proof. The first claim follows from [Ber04, Exemple I.3.3] and [Laz62, Remarque 4.12]. For the second
claim let x =

∑
k∈N xkµk ∈ B+

rig,L with xk ∈ L and let y =
∑

k∈N ykµk ∈ B+
rig,L̆

with yk ∈ L̆ such that
ty/µ = x. Write t/µ =

∑
k∈N akµk with ak ∈ Qp. Then we have (

∑
k∈N akµk)(

∑
k∈N ykµk) =

∑
k∈N xkµk.

We will show that yk ∈ L for all k ∈ N using induction. Note that a0y0 = x0 ∈ L so y0 = x0/a0 ∈ L.
Let n ∈ N and assume yk ∈ L for every k ≤ n. Then we have

∑n+1
k=0 akyn+1−k = xn+1 ∈ L and

by inductive assumption we get yn+1 = (xn+1
∑n

k=0 akyn+1−k)/a0 ∈ L. Hence, y ∈ B+
rig,L implying

(t/µ)B+
rig,L̆
∩B+

rig,L = (t/µ)B+
rig,L.

Lemma 2.11. We have (t/µ)B̃+
rig,L ∩B+

rig,L̆
= (t/µ)B+

rig,L̆
, therefore (t/µ)B̃+

rig,L ∩B+
rig,L = (t/µ)B+

rig,L

from Lemma 2.10.

Proof. Let us first note that for each n ∈ N≥1 we have the following diagram:

https://stacks.math.columbia.edu/tag/058G
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0 B+
rig,L̆

B+
rig,L̆

L̆(ζpn) 0

0 B̃+
rig B̃+

rig CL 0,

φn−1([p]q) µ7→ζpn −1

ϕL̆

φn−1([p]q) θ◦φ−n

where left and middle vertical arrows are natural inclusions, the right vertical arrow is ϕL̆ : L̆(ζpn) ∼−→
L̆(ζpn) ⊂ CL given as

∑e−1
k=0 akζk

pn 7→
∑e−1

k=0 φ−n
L̆

(ak)ζk
pn with e = [L̆(ζpn) : L̆] and φL̆ : L̆

∼−→ L̆ and
θ : B̃+

rig ⊂ B+
cris(OL)→ CL from §2.1.1. The top row is obviously exact and the bottom row is exact by

[Ber02, Proposition 2.11, Proposition 2.12 & Remarque 2.14]. All vertical maps are injective and hence
we obtain that φn([p]q)B̃+

rig∩B+
rig,L̆

= φn([p]q)B+
rig,L̆

for all n ∈ N, in particular, φn([p]q)B̃+
rig,L∩B+

rig,L̆
=

φn([p]q)B+
rig,L̆

.
Let x ∈ (t/µ)B̃+

rig,L ∩B+
rig,L̆

and write x = ty/µ for some y ∈ B̃+
rig,L. We will show that y ∈ B+

rig,L̆

by showing that it converges over each closed disk D(L̆, ρ) for 0 < ρ < 1. Fix some 0 < ρ < 1 and
from Lemma 2.10 we write t/µ =

∏
n∈N(φn([p]q)/p) = υ

∏m
n=1(φn([p]q)/p) for a unit υ ∈ O(D(L̆, ρ))×

and m ∈ N depending on ρ. Then we have y0 = x = ([p]q/p)y1 for some y1 ∈ B̃+
rig,L ∩ (p/[p]q)B+

rig,L̆
=

B+
rig,L̆

. Repeating this for 1 ≤ n ≤ m we obtain yn ∈ B+
rig,L̆

such that yn = φn([p]q/p)yn+1 for some
yn+1 ∈ B̃+

rig,L ∩ φn(p/[p]q)B+
rig,L̆

= B+
rig,L̆

. In particular, we have y = υ−1ym+1 ∈ O(D(L̆, ρ)). Since
B+

rig,L̆
= limρ O(D(L̆, ρ)) we get that y ∈ B+

rig,L̆
.

2.1.6. φ-modules over certain period rings. Let φ-ModB†
rig,L

denote the category of finite free

modules over B†
rig,L equipped with an isomorphism 1⊗φ : φ∗M

∼−→M and morphisms between objects
are B†

rig,L-linear maps compatible with 1⊗φ on both sides; denote by φ-Mod0
B†

rig,L

the full subcategory
of objects that are pure of slope 0 in the sense of [Ked04, §6.3]. Similarly, one can define the category
φ-ModB†

L
and denote by φ-Mod0

B†
L

the full subcategory of objects that are pure of slope 0 (as φ-modules
over a discretely valued field).

Let Eff-φ-Mod[p]q
A+

L

denote the category of effective and finite [p]q-height A+
L -modules, i.e. finite

free A+
L -module N equipped with a Frobenius-semilinear endomorphism φ : N → N such that the

map 1 ⊗ φ : φ∗(N) → N is injective and its cokernel is killed by a finite power of [p]q; denote by
Eff-φ-Mod[p]q

A+
L

⊗ Qp the associated isogeny category. Similarly, define Eff-φ-Mod[p]q
B+

rig,L

as the category

of effective and finite [p]q-height B+
rig,L-modules and Eff-φ-Mod[p]q ,0

B+
rig,L

as the full subcategory of objects

that are pure of slope 0, i.e. M such B†
rig,L ⊗B+

rig,L
M is pure of slope 0.

Lemma 2.12. (1) There is a natural equivalence of categories φ-Mod0
B†

L

∼−→ φ-Mod0
B†

rig,L

induced by

the functor M 7→M ⊗B†
L

B†
rig,L.

(2) There is an exact equivalence of ⊗-categories Eff-φ-Mod[p]q
A+

L

⊗ Qp
∼−→ Eff-φ-Mod[p]q ,0

B+
rig,L

induced by

the functor N 7→ N ⊗A+
L

B+
rig,L.

Proof. The claim in (1) follows from [Ked05, Theorem 6.3.3]. The equivalence of ⊗-categories in (2)
follows from (1), [Kis06, Lemma 1.3.13] and [Ked04, Proposition 6.5], and the exactness follows since
B+

L → B+
rig,L is faithfully flat by Lemma 2.6. Note that in [Kis06] Kisin assumes the residue field of

the discrete valuation base field (L in our case) to be perfect. However, the proof of [Kis06, Lemma
1.3.13] depends only on [Ked04, Proposition 6.5] and [Ked05, Theorem 6.3.3] which are independent
of the structure of the residue field. In particular, the proof of [Kis06, Lemma 1.3.13] applies almost
verbatim to our case. We recall the quasi-inverse functor from loc. cit. to be used in the sequel (see
§4.5).
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Let M+
rig be a finite height effective B+

rig,L-module pure of slope 0, then M †
rig := B†

rig,L ⊗B+
rig,L

M+
rig

is pure of slope 0 and (1) implies that there exists a finite free B†
L-module M † pure of slope 0 such

that B†
rig,L ⊗B†

L
M † ∼−→ M †

rig
∼←− B†

rig,L ⊗B+
rig,L

M+
rig. Choose a B†

L-basis of M † and a B+
rig,L-basis

of M+
rig. The composite of the isomorphisms above is given by a matrix with values in B†

rig,L. By
[Ked04, Proposition 6.5], after modifying the chosen bases, we may assume the matrix to be identity,
in particular, M † and M+

rig are spanned by a common basis. Let M denote the B+
L -span of this basis.

Since B+
L = B+

rig,L ∩B†
L ⊂ B†

rig,L, we obtain that M := M+
rig ∩M † ⊂M †

rig and B+
rig,L ⊗B+

L
M

∼−→M+
rig

and B†
L ⊗B+

L
M

∼−→M †. Moreover, M † is pure of slope 0, so there exists an A†
L-lattice M †

0 ⊂M †. Let
M ′

0 := M ∩M †
0 ⊂ M † and set M0 := (A†

L ⊗A+
L

M ′
0) ∩M ′

0[1/p] ⊂ M †. Using [Kis06, Lemma 1.3.13]
and the discussion above, M0 ⊂ M is a finite free φ-stable A+

L -submodule such that cokernel of the
injective map 1⊗ φ : φ∗(M0)→M0 is killed by some finite power of [p]q.

Remark 2.13. Let M be a finite free B+
rig,L-module and N ⊂M a B+

rig,L-submodule. Then N is finite
free if and only if it is finitely generated if and only if it is a closed submodule of M . Equivalences
in the preceding statement essentially follow from [Kis06, Lemma 1.1.4]. Note that Kisin assumes the
residue field of the discrete valuation base field (L in our case) to be perfect. However, the proof of loc.
cit. depends on results of [Laz62, §7-§8], [Ked04, Lemma 2.4] and [Ber02, Proposition 4.12 & Lemme
4.13], where the proof of latter depends on [Laz62] and [Hel43]. Relevant results of [Laz62], [Ked04]
and [Hel43] are independent of the structure of the residue field of L. Hence, we get the claim by using
the proof of [Kis06, Lemma 1.1.4] almost verbatim.

We note some useful facts about A+
L -modules.

Lemma 2.14. Let OK := OF , OL or OL̆ and let A := OKJµK equipped with a Frobenius endorphism
extending the Frobenius on OK by φ(µ) = (1+µ)p−1. Let N be a finitely generated A-module equipped
with a Frobenius-semilinear endomorphism such that 1⊗ φ : φ∗(N)[1/[p]q] ∼−→ N [1/[p]q]. Then N [1/p]
is finite free over A[1/p] .

Proof. The proof is essentially the same as [BMS18, Proposition 4.3]. Let J denote the smallest non-zero
Fitting ideal of N over A. Set K := OK [1/p] and A = A/J . From loc. cit. the claim can be reduced to
checking that A[1/p] = 0. Note that the Frobenius endomorphism on A and finite height condition on
N are different from loc. cit. Therefore, we need some modifications in the arguments of loc. cit.; we us
point out the differences in terms of their notations. Fix an algebraic closure K of K and consider the
finite set Z := Spec (A[1/p])(K) of K-valued points of A[1/p]. Let Z ′ := {x ∈ m such that (1+x)p−1 ∈
Z}, where m ⊂ OK is the maximal ideal. Then from the equality (A/J)[1/[p]q] = (A/φ(J))[1/[p]q] we
get that Z ∩ U = Z ′ ∩ U where U := m− {ζp − 1, . . . , ζp−1

p − 1}. All the arguments from loc. cit. then
easily adapt to give an isomorphism K[µ]/(µr) ∼−→ K[µ]/(φ(µ)r) where K = OK [1/p]. But then we
get that (φ(µ)/µ)r is a unit in K[µ], whereas φ(µ)/µ ∈ K[µ] is an irreducible polynomial. Hence, we
must have r = 0 and thus (A/J)[1/p] = 0, proving the claim.

Remark 2.15. Let N be a finitely generated torsion-free A+
L -module. Then D = AL⊗A+

L
N is a finite

free AL-module and N ⊂ D an A+
L -submodule. Moreover, the A+

L -module N ′ = N [1/p] ∩D is finite
free. The claim essentially follows from [Fon90, Proposition B.1.2.4]. Note that Fontaine assumes the
residue field of the discrete valuation base field (L in our case) to be perfect. However, the proof of
[Fon90, Proposition B.1.2.4] only depends on [Lan90, Chapter 5, Theorem 3.1] which is independent of
the structure of residue field of L. Therefore, one can adpat Fontaine’s proof verbatim to show that N ′

is finite free.

Let N be a finite free A+
L̆

-module. Say that N is effective and of finite [p]q-height if N is equipped
with a Frobenius-semilinear endomorphism φ such that the natural map 1⊗φ : φ∗(N)→ N is injective
and its cokernel is killed by some finite power of [p]q.

Let DL̆ be a finite free étale φ-module over AL̆. Let S(DL̆) denote the set of finitely generated
A+

L̆
-submodules M ⊂ DL̆ such that M is stable under induced φ from DL̆ and cokernel of the injective

map 1⊗φ : φ∗(M)→M is killed by some finite power of [p]q. In [Fon90, §B.1.5.5], Fontaine functorially
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attached to DL̆ an A+
L̆

-submodule j+
∗ (DL̆) := ∪M∈S(DL̆)M ⊂ DL̆ (Fontaine uses the notation jq

∗ to
denote the functor j+

∗ ; we change notations to avoid obvious confusion).

Lemma 2.16. The A+
L̆

-module j+
∗ (DL̆) is free of rank ≤ rkAL̆

DL̆. Moreover, if N is an effective
A+

L̆
-module of finite [p]q-height, then cokernel of the injective map N → j+

∗ (AL̆ ⊗A+
L̆

N) is killed by
some finite power of µ.

Proof. The first claim is shown in [Fon90, §B.1.5.5]. For the second claim note that N is finite free over
A+

L̆
and of finite [p]q-height, therefore it is p-étale in the sense of [Fon90, §B.1.3.1] by the equivalence

shown in [Fon90, Proposition B.1.3.3]. In particular, we get that DL̆ := AL̆⊗A+
L̆

N is an étale φ-module
and N ∈ S(DL̆). Now from [Fon90, Proposition B.1.5.6] it follows that cokernel of the injective map
N → j+

∗ (DL̆) is killed by some finite power of µ.

2.2. p-adic representations and (φ, Γ)-modules. Let T be a finite free Zp-representation of
GL. From theory of (φ, ΓL)-modules (see [Fon90] and [And06]) one can functorially associate to T a
finite free étale (φ, ΓL)-module DL(T ) := (A⊗Zp T )HL over AL of rank = rkZpT , i.e. DL(T ) is equipped
with a Forbenius-semilinear endomorphism φ and a semilinear and continuous action of ΓL commuting
with φ and such that the natural map 1⊗ φ : φ∗(DL(T ))→ DL(T ) is an isomorphism. Moreover, we
have D̃L(T ) := (Ã⊗ZpT )HL

∼−→ ÃHL⊗ALDL(T ). Furthermore, by the theory overconvergence of p-adic
and Zp-representations (see [CC98] and [AB08]) one can functorially associate to T a finite free étale
(φ, ΓL)-module D†

L(T ) := (A† ⊗Zp T )HL over A†
L of rank = rkZpT and such that AL ⊗A†

L
D†

L(T ) ∼−→
DL(T ). We have natural isomorphisms

A⊗AL DL(T ) ∼−→ A⊗Zp T, A† ⊗A†
L

D†
L(T ) ∼−→ A† ⊗Zp T, (2.1)

comaptible with (φ, ΓL)-actions. More generally, the constructions described above are functorial and
induce equivalence of categories

RepZp
(GL) ∼−→ (φ, ΓL)-Modét

AL

∼←− (φ, ΓL)-Modét
A†

L

. (2.2)

Similar statements are also true for p-adic representations of GL. For a p-adic representation V of GL,
set D†

rig,L(V ) := B†
rig,L ⊗B†

L
D†

L(V ) which is the unique finite free (φ, ΓL)-module over B†
rig,L of rank

= dimQp V and pure of slope 0 functorially attached to V (see [Ber02], [Ked05] and [Ohk15]). Moreover,
the preceding functor induces an equivalence of categories between p-adic representations of GL and
finite free (φ, ΓL)-modules over B†

rig,L which are pure of slope 0 (see [Ohk15, Lemma 4.5.7]) and we
have a natural (φ, GL)-equivariant isomorphism

B̃†
rig ⊗B†

rig,L
D†

rig,L(V ) ∼−→ B̃†
rig ⊗Qp V. (2.3)

Remark 2.17. We have variations of the results mentioned above for p-adic (resp. Zp-representations)
of GL̆ as well (see [Fon90], [CC98] and [Ber02] for details).

Finally, let V be a p-adic representation of GL and T ⊂ V a GL-stable Zp-lattice. Since GL̆ is a
subgroup of GL, therefore by restriction V is a p-adic representation of GL̆ and T ⊂ V a GL̆-stable
Zp-lattice. Furthermore, we have a ΓL̆-equivariant embedding AL ⊂ AL̆ (via the map [X♭

i ] 7→ Xi)
and thus we have isomorphisms of étale (φ, ΓL̆)-modules DL̆(T ) ∼−→ AL̆ ⊗AL DL(T ) and D̃L̆(T ) :=
(Ã⊗Zp T )HL̆

∼−→ ÃHL̆ ⊗AL̆
DL̆(T ). Similar statements are also true for V .

2.3. Crystalline representations. Let Repcris
Qp

(GL) denote the category of p-adic crystalline
representations of GL (see [Bri06, §3.3]) and let MFwa

L (φ, ∂) denote the category of weakly admissible
filtered (φ, ∂)-modules over L (see [Bri06, Définition 4.21]). Then the following functor induces an exact
equivalence of ⊗-categories:

Repcris
Qp

(GL) ∼−→ MFwa
L (φ, ∂)

V 7−→ ODcris,L(V ) := (OBcris(OL)⊗Qp V )GL ,
(2.4)
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with an exact quasi-inverse given as D 7→ OVcris,L(D) := (Fil0(OBcris(OL)⊗L D))∂=0,φ=1 (see [Bri06,
Corollaire 4.37]). In particular, if V is a p-adic crystalline representation of GL then ODcris,L(V ) is
a rank = dimQp V weakly admissible filtered (φ, ∂)-module over L. Moreover, as a representation of
GL̆ one can attach to V a rank = dimQp V filtered φ-module over L̆, denoted as Dcris,L̆(V ). Then
from [BT08, Proposition 4.14] and the map OBcris(OL) ↠ Bcris(OL) sending Xi 7→ [X♭

i ] we obtain an
isomorphism of filtered φ-modules over L̆

L̆⊗L ODcris,L(V ) ∼−→ Dcris,L̆(V ). (2.5)

The representation V is said to be positive if all its Hodge-Tate weights are ≤ 0 and in this case we
have ODcris,L(V ) = (OB+

cris(OL)⊗Qp V )GL . We equip Bcris(OL) with a (φ, GL̆)-equivariant L-algebra
structure via the composition L → OBcris(OL) ↠ Bcris(OL) where the first map is the non-canonical
L-algebra structure on OBcris(OL) (see §2.1.1).

Lemma 2.18. There exists a natural Bcris(OL)-linear and Frobenius-equivariant isomorphism

Bcris(OL)⊗Qp V
∼−→ (OBcris(OL)⊗L ODcris,L(V ))∂=0 ∼−→ Bcris(OL)⊗L ODcris,L(V ),

induced by the surjective map OBcris(OL) ↠ Bcris(OL) given by Xi 7→ [X♭
i ] for 1 ≤ i ≤ d.

Proof. Let JOBcris(OL) := p-adic closure of the ideal ([X♭
1]−X1, . . . , [X♭

d]−Xd) ⊂ OBcris(OL). Then
we have a projection,

OBcris(OL)⊗L ODcris(V ) −→ Bcris(OL)⊗L ODcris(V ), (2.6)

via the map Xi 7→ [X♭
i ] with kernel given as JOBcris(OL) ⊗L ODcris(V ). Moreover, using the non-

canonical L-algebra structure on OBcris(OL), we have an L-linear map ODcris,L(V )→ OBcris(OL)⊗L

ODcris,L(V ) given as x 7→
∑

k∈Nd

∏d
i=1 ∂ki

i (x)
∏d

i=1([X♭
i ] −Xi)[ki], where we write

∏d
i=1 ∂ki

i (x) = ∂k1
1 ◦

· · · ◦ ∂kd
d (x) for notational convenience. The map above extends Bcris(OL)-linearly to a map

Bcris(OL)⊗L ODcris,L(V ) −→ OBcris(OL)⊗L ODcris,L(V ),

a⊗ x 7−→ a⊗
∑

k∈Nd

d∏
i=1

∂ki
i (x)

d∏
i=1

([X♭
i ]−Xi)[ki],

(2.7)

and it provides a section to the projection given above. In particular, we obtain a Bcris(OL)-linear
direct sum decomposition

OBcris(OL)⊗L ODcris,L(V ) = (JOBcris(OL)⊗L ODcris,L(V ))⊕ (Bcris(OL)⊗L ODcris,L(V )).

Note that the image of the section (2.7) lies in (OBcris(OL) ⊗L ODcris,L(V ))∂=0. Moreover, since V

is crystalline, we have OBcris(OL) ⊗L ODcris,L(V ) ∼−→ OBcris(OL) ⊗L V , and it is easy to see that
(JOBcris(OL) ⊗L ODcris,L(V ))∂=0 = 0. Therefore, from the direct sum decomposition it follows that
we have (OBcris(OL)⊗L ODcris,L(V ))∂=0 ∼−→ Bcris(OL)⊗L ODcris,L(V ). Note that (2.6) and (2.7) are
evidently compatible with Frobenius on either side, therefore the isomorphism in the claim is compatible
with Frobenius. Hence, we get the claim.

Remark 2.19. Using the Bcris(OL)-linear map in (2.7) we equip Bcris(OL) ⊗L ODcris,L(V ) with a
GL-action by transport of structure. In particular, the action of g ∈ GL on a ⊗ x ∈ Bcris(OL) ⊗L

ODcris,L(V ) is given by the formula g(a⊗ x) = g(a)⊗
∑

k∈Nd

∏d
i=1 ∂ki

i (x)
∏d

i=1(g([X♭
i ])− [X♭

i ])[ki].

Remark 2.20. Using the description in Remark 2.19 we have that B+
cris(OL) ⊗L ODcris,L(V ) ⊂

Bcris(OL)⊗LODcris,L(V ) is stable under the action of GL as well. Moreover, we note that the HL-action
on ODcris,L(V ) in the tensor product Bcris(OL)⊗LODcris,L(V ) is trivial and B+

cris(OL)HL = B+
cris(OL∞)

by [MT20, Lemma 4.32]. Therefore, we get that

(B+
cris(OL)⊗L ODcris,L(V ))HL = B+

cris(OL∞)⊗L ODcris,L(V ). (2.8)

We equip B+
cris(OL∞)⊗L ODcris,L(V ) with the residual ΓL-action.
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Lemma 2.21. For x ∈ ODcris,L(V ) and g ∈ ΓL, the series
∑

k∈Nd

∏d
i=1 ∂ki

i (x)
∏d

i=1(g([X♭
i ])− [X♭

i ])[ki]

converges in B+
rig,L⊗L ODcris,L(V ). In particular, B+

rig,L⊗L ODcris,L(V ) ⊂ B+
cris(OL∞)⊗L ODcris,L(V )

is stable under ΓL-action.

Proof. Let {γ0, γ1, . . . , γd} be topological generators of ΓL as in §2.1.1, in particular, γj([Xi]♭) = (1 +
µ)[X♭

i ] if i = j and 0 otherwise. For γj , simplifying the sum in the claim, we can rewrite it as the
sum

∑
k∈Nd µ[kj ][X♭

j ]
∏d

i=1 ∂ki
i (x). Recall that the connection ∂ on ODcris,L(V ) is p-adically quasi-

nilpotent, i.e. there exists an OL-lattice M ⊂ ODcris(V ) stable under ∂ such that ∂ is nilpotent modulo
p. In particular, we have ∂ : M → M ⊗ Ω1

OL
. Let {e1, . . . , eh} denote an OL-basis of M . Then

we may check on the chosen basis that φ(M) ⊂ p−rM for some fixed r ∈ N. Moreover, recall that
we have L ⊗φ,L ODcris,L(V ) ∼−→ ODcris,L(V ), so we may write x =

∑h
j=1 ajφ(ej) for aj ∈ L. Since

∂i(φ(ej)) = pφ(∂i(ej)) for all 1 ≤ i ≤ d and 1 ≤ j ≤ n, we get that

∑
k∈Nd

µ[kj ][X♭
j ]

d∏
i=1

∂ki
i (φ(ei)) = p−dr

∑
k∈Nd

µ[kj ][X♭
i ]

d∏
i=1

pkiprφ(∂ki
i (ei)),

converges in B+
rig,L ⊗L ODcris,L(V ). Therefore, using Leibniz rule we are reduced to showing that the

sum
∑

k∈Nd µ[kj ][X♭
j ]

∏d
i=1 ∂ki

i (a) converges in B+
rig,L for any a ∈ L. This follows easily since we have

∂k
i (Xn

i )/k! = 0 for n < k, ∂k
i (Xn

i )/k! =
(n

k

)
Xn−k

i for n ≥ k and ∂k
i (X−n

i )/k! = (−1)k
(n+k−1

k

)
X

−(n+k)
i

for n ∈ N. Hence, the lemma is proved.

Lemma 2.22. The action of ΓL on B+
rig,L ⊗L ODcris,L(V ) is trvial modulo µ.

Proof. Note that g(µ) = (1 + µ)χ(g) − 1 for g ∈ ΓL and χ the p-adic cyclotomic character. Using
Lemma 2.21 and for g ∈ ΓL and a⊗ x ∈ B+

rig,L[µ/t]⊗L ODcris,L(V ), this action is given by the formula
g(a⊗ x) = g(a)⊗

∑
k∈Nd

∏x
i=1 ∂ki

i (x)
∏d

i=1(g([X♭
i ])− [X♭

i ])[ki]. Note that

(g − 1)(a⊗ x) = ((g − 1)a)⊗ x + g(a)⊗ ((g − 1)x), (2.9)

where g(x) is given by the series in Lemma 2.21. So, (g−1)x =
∑

k∈Nd
+

∏x
i=1 ∂ki

i (x)
∏d

i=1((g−1)[X♭
i ])[ki],

where Nd
+ = Nd \ {(0, 0, . . . , 0)}. Using the explicit description of B+

rig,L in Lemma 2.4 note that
(g − 1)B+

rig,L ⊂ µB+
rig,L and from the proof of Lemma 2.21 note that (g − 1)[X♭

i ] ∈ µB+
L . Therefore, an

argument similar to the proof of Lemma 2.21 shows that (g− 1)x converges in µB+
rig,L⊗L ODcris,L(V ).

So from (2.9) it follows that (g − 1)(a⊗ x) ∈ µB+
rig,L ⊗L ODcris,L(V ).

3. Wach modules

In this section we will describe Wach modules in the imperfect residue field case and finite [p]q-height
representations of GL and relate them to crystalline representations. Our definition is a direct and
natural generalisation of Wach modules in the perfect residue field case (see [Ber04, Définition III.4.1]).

3.1. Wach modules over A+
L . Inside Ainf(OF∞) fix q := [ε], µ := [ε]−1 = q−1 and [p]q := ξ̃ :=

φ(µ)/µ.

Definition 3.1. Let a, b ∈ Z with b ≥ a. A Wach module over A+
L with weights in the interval [a, b]

is a finite free A+
L -module N equipped with a continuous and semilinear action of ΓL satisfying the

following assumptions:

(1) The action of ΓL on N/µN is trivial.

(2) There is a Frobenius-semilinear operator φ : N [1/µ]→ N [1/φ(µ)] commuting with the action of
ΓL such that φ(µbN) ⊂ µbN and cokernel of the induced injective map (1⊗φ) : φ∗(µbN)→ µbN
is killed by [p]b−a

q .
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Define the [p]q-height of N to be the largest value of −a for a ∈ Z as above. Say that N is effective if
one can take b = 0 and a ≤ 0. A Wach module over B+

L is a finitely generated module M equipped
with a Frobenius-semilinear operator φ : M [1/µ]→M [1/φ(µ)] commuting with the action of ΓL such
that there exists a φ-stable (after inverting µ) and ΓL-stable A+

L -submodule N ⊂ M with N a Wach
module over A+

L (equipped with induced (φ, ΓL)-action) and N [1/p] = M .

Denote the category of Wach modules over A+
L as (φ, Γ)-Mod[p]q

A+
L

with morphisms between objects
being A+

L -linear ΓL-equivariant and φ-equivariant morphisms (after inverting µ).

Definition 3.2. Let N be a Wach module over A+
L . Define a decreasing filtration on N called the

Nygaard filtration, for k ∈ Z, as

FilkN := {x ∈ N such that φ(x) ∈ [p]kq N}.

From the definition it is clear that N is effective if and only if Fil0N = N . Similarly, we can define a
Nygaard filtration on M := N [1/p] and it satisfies FilkM = (FilkN)[1/p].

Extending scalars along A+
L → AL induces a functor (φ, Γ)-Mod[p]q

A+
L

→ (φ, Γ)-Modét
AL

and we make
the following claim:

Proposition 3.3. The following natural functor is fully faithful:

(φ, Γ)-Mod[p]q
A+

L

−→ (φ, Γ)-Modét
AL

N 7−→ AL ⊗A+
L

N.

Proof. We need to show that for Wach modules N and N ′, we have a bijection

Hom
(φ,Γ)-Mod[p]q

A+
L

(N, N ′) ∼−→ Hom(φ,Γ)-Modét
AL

(AL ⊗A+
L

N, AL ⊗A+
L

N ′) (3.1)

Note that A+
L → AL = A+

L [1/µ]∧ is injective, in particular, the map in (3.1) is injective. To check that
(3.1) is surjective let DL = AL⊗A+

L
N , D′

L = AL⊗A+
L

N ′ and take an AL-linear and (φ, ΓL)-equivariant
map f : DL → D′

L. Base changing f along the embedding AL → AL̆ (see §2.1.5) we obtain an
AL̆-linear and (φ, ΓL̆)-equivariant map fL̆ : DL̆ → D′

L̆
. Using the definition and notation preceding

Lemma 2.16 we further obtain an A+
L̆

-linear and (φ, ΓL̆)-equivariant map fL̆ : j+
∗ (DL̆)→ j+

∗ (D′
L̆

) where
we abuse notations by writing fL̆ instead of j+

∗ (fL̆). From Lemma 2.16 note that for some s ∈ N and
NL̆ := A+

L̆
⊗A+

L
N , we have µsNL̆ ⊂ j+

∗ (DL̆) and its cokernel is killed by some finite power of µ. Hence,
NL̆[1/µ] ∼−→ j+

∗ (DL̆)[1/µ]. Similarly, one can also show that N ′
L̆

[1/µ] ∼−→ j+
∗ (D′

L̆
)[1/µ].

Now from the map fL̆ : j+
∗ (DL̆)→ j+

∗ (D′
L̆

) we obtain an induced ΓL̆-equivariant map fL̆ : NL̆[1/µ] =
j+

∗ (D′
L̆

)[1/µ] → j+
∗ (D′

L̆
)[1/µ] = N ′

L̆
[1/µ] and from Lemma 3.4 we get that fL̆(NL̆) ⊂ N ′

L̆
. It is easy to

see that N := NL̆∩DL ⊂ DL̆ and N ′ := N ′
L̆
∩D′

L ⊂ D′
L̆

, so we conclude that f(N) = fL̆(NL̆)∩f(DL) ⊂
N ′

L̆
∩D′

L = N ′. This proves the surjectivity of (3.1).

Lemma 3.4. Let N and N ′ be Wach modules over A+
L̆

and let f : N [1/µ]→ N ′[1/µ] be an A+
L̆

-linear
and ΓL̆-equivariant map. Then f(N) ⊂ N ′.

Proof. The proof is similar to the proof of [Abh21, Lemma 5.31]. Assume f(N) ⊂ µ−kN ′ for some
k ∈ N and consider the reduction of f modulo µ, which is again ΓL̆-equivariant. By definition we
have that ΓL̆ acts trivially over N/µN , whereas µ−kN ′/µ−k+1N ′ ∼−→ N ′/µN ′(−k), i.e. the action
of ΓL̆ on µ−kN ′/µ−k+1N ′ is given by χ−k where χ is the p-adic cyclotomic character, in particular,
(µ−kN ′/µ−k+1N ′)ΓL̆ = 0. Since f is ΓL̆-equivariant, we must have k = 0, i.e. f(N) ⊂ N ′.

Analogous to above, one can define categories (φ, Γ)-Mod[p]q
B+

L

and (φ, Γ)-Modét
BL

and a functor from
the former to latter by extending scalars along B+

L → BL. Then passing to associated isogeny catgeories
in Proposition 3.3 we get the following:
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Corollary 3.5. The natural functor (φ, Γ)-Mod[p]q
B+

L

→ (φ, Γ)-Modét
BL

is fully faithful.

Composing the functor in Proposition 3.3 with the equivalence in (2.2), we obtain a fully faithful
functor

TL : (φ, Γ)-Mod[p]q
A+

L

−→ RepZp
(GL)

N 7−→
(
A⊗A+

L
N

)φ=1 ∼−→
(
W (C♭

L)⊗A+
L

N
)φ=1

.
(3.2)

Lemma 3.6. Let N be Wach module of [p]q-height s and let T := TL(N). Then we have a GL-equivariant
isomorphism

A+[1/µ]⊗A+
L

N
∼−→ A+[1/µ]⊗Zp T. (3.3)

Moreover, if N is effective, then we have GL-equivariant inclusions µs(A+ ⊗Zp T ) ⊂ A+ ⊗A+
L

N ⊂
A+ ⊗Zp T .

Proof. For r ∈ N large enough, the Wach module µrN(−r) is always effective and we have that
TL(µrN(−r)) = TL(N)(−r) (the twist (−r) denotes a Tate twist on which ΓL acts via χ−r where χ
is the p-adic cyclotomic character). Therefore, it is enough to show both the claims for effective Wach
modules. So assume N is effective. Since N is finite free over A+

L , using Definition 3.1 (2) and tensor
product Frobenius we obtain an isomorphism φ : Ainf(OL)[1/ξ] ⊗A+

L
N

∼−→ Ainf(OL)[1/ξ̃] ⊗A+
L

N . So
from [MT20, Proposition 6.15] we get GL-equivariant inclusions

µs(Ainf(OL)⊗Zp T ) ⊂ Ainf(OL)⊗A+
L

N ⊂ Ainf(OL)⊗Zp T ⊂ Ã⊗A+
L

N.

Moreover, from (2.1) we have A⊗A+
L

N
∼−→ A⊗Zp T . Therefore, taking the following intersection inside

Ã⊗A+
L

N
∼−→ Ã⊗Zp T we obtain GL-equivariant inclusions:

µs(Ainf(OL) ∩A)⊗Zp T ⊂ (Ainf(OL) ∩A)⊗A+
L

N ⊂ (Ainf(OL) ∩A)⊗Zp T.

Since A+ = Ainf(OL) ∩ A we get that the natural map in (3.3) is bijective and µs(A+ ⊗Zp T ) ⊂
A+ ⊗A+

L
N ⊂ A+ ⊗Zp T (for N effective), as desired.

3.2. Finite [p]q-height representations. In this subsection we generalise the definition of finite
[p]q-height representations from [Abh21, Definition 4.9] in the imperfect residue field case. Let T be a
finite free Zp-representation of GL, V := T [1/p] and set D+

L (T ) := (A+⊗Zp T )HL be the (φ, ΓL)-module
over A+

L associated to T and let D+
L (V ) := D+

L (T )[1/p] be the (φ, ΓL)-module over B+
L associated to

V .

Definition 3.7. A finite [p]q-height Zp-representation of GL is a finite free Zp-module T admitting a
linear and continuous action of GL such that there exists a finite free A+

L -submodule NL(T ) ⊂ DL(T )
satisfying the following:

(1) NL(T ) is a Wach module in the sense of Definition 3.1.

(2) We have AL ⊗A+
L

NL(T ) ∼−→ DL(T ).

Set the [p]q-height of T to be the [p]q-height of NL(T ). Say T is positive if NL(T ) is effective.
A finite [p]q-height p-adic representation of GL is a finite dimensional Qp-vector space admitting a

linear and continuous action of GL such that there exists a GL-stable Zp-lattice T ⊂ V with T of finite
[p]q-height. We set NL(V ) = NL(T )[1/p] satisfying analogous properties. Set [p]q-height of V to be
the [p]q-height of T . Say V is positive if NL(V ) is effective.

Remark 3.8. For T a finite [p]q-height Zp-representation of GL and r ∈ N. We set NL(T (r)) :=
µ−rNL(T )(r), in particular, property of being finite [p]q-height is invariant under Tate twists.

Lemma 3.9. Let T be a finite [p]q-height Zp-representation of GL. Then,
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(1) If T is positive then µsD+
L (T ) ⊂ NL(T ) ⊂ D+

L (T ).

(2) The A+
L -module NL(T ) is unique.

Proof. Since AL ⊗A+
L

NL(T ) ∼−→ DL(T ) and this scalar extension is fully faithful by Proposition
3.3, we obtain that TL(NL(T )) ∼−→ T as representations of GL (here TL is the functor defined in
(3.2)). This also implies that Lemma 3.6 holds for NL(T ), so taking HL-invariants there we obtain
µsD+

L (T ) ⊂ NL(T ) ⊂ D+
L (T ) which shows (1). The claim in (2) follows from Proposition 3.3, or using

an argument similar to [Abh21, Proposition 4.13].

Remark 3.10. Let V be a finite [p]q-height p-adic representation of GL and T ⊂ V a finite [p]q-height
GL-stable Zp-lattice. Then we have NL(V ) = NL(T )[1/p] and from Lemma 3.9 we get that if V is
positive then µsD+

L (V ) ⊂ NL(V ) ⊂ D+
L (V ). Moreover, from Corollary 3.5 (or [Abh21, Proposition

4.13]) it follows that NL(V ) is unique, in particular, it is independent of choice of the lattice T by
. Alternatively, note that since we have NL(V (r)) = µ−rNL(V )(r), without loss of generality we
may assume that V is positive and T ′ ⊂ V another finite [p]q-height GL-stable Zp-lattice. Then
µsD+

L (V ) ⊂ NL(T ′)[1/p] ⊂ D+
L (V ) and using the argument in the proof of [Abh21, Proposition 4.13]

almost verbatim gives NL(V ) = NL(T )[1/p] ∼−→ NL(T ′)[1/p] compatible with (φ, ΓL)-action.

Remark 3.11. From the definition of finite [p]q-height representations, Lemma 3.9 and the fully faithful
functor in (3.2) it follows that the data of a finite [p]q-height representation is equivalent to the data of
a Wach module.

3.3. Wach modules are crystalline. The goal of this subsection is to prove Theorem 3.12 and
Corollary 3.16. To prove our results we need certain period rings similar to [Abh21, §4.3.1] which
we denote as APD

L,ϖ and OAPD
L,ϖ below. We define these as follows: let ϖ = ζp − 1 and set A+

L,ϖ :=
A+

L [φ−1(µ)] ⊂ Ainf(OL∞). Restricting the map θ on Ainf(OL∞) (see §2.1.1) to A+
L,ϖ we get a surjection

θ : A+
L,ϖ ↠ OL[ϖ]. Define APD

L,ϖ to be the p-adic completion of the divided power envelope of the map
θ with respect to Ker θ. Moreover, consider the surjective map θL : OL ⊗Z A+

L,ϖ ↠ OL[ϖ] given as
x ⊗ y 7→ xθ(y). Define OAPD

L,ϖ to be the p-adic completion of the divided power envelope of the map
θL with respect to Ker θL. Similar to [Abh21, §4.3.1] one can show that APD

L,ϖ ⊂ Acris(OL∞) and
OAPD

L,ϖ ⊂ OAcris(OL∞) stable under Frobenius and ΓL-action on latter. We equip APD
L,ϖ and OAPD

L,ϖ

with induced structures, in particular, a filtration (same as filtration by divided powers of Ker θ and
Ker θL respectively, see [Abh21, Remark 4.23]) and a connection ∂A on OAPD

L,ϖ satisfying Griffiths
transversality and such that (OAPD

L,ϖ)∂A=0 = APD
L,ϖ. Similar to [Abh23a, Remark 3.26], it is easy to

see that the rings APD
L,ϖ and OAPD

L,ϖ are flat over A+
L . Moreover, from the argument in loc. cit., it also

follows that FilkOAPD
L,ϖ is flat over A+

L , for each k ∈ N.

Theorem 3.12. Let N be a Wach module over A+
L then V := TL(N)[1/p] is a p-adic crystalline

representation of GL.

Proof. For r ∈ N large enough, the Wach module µrN(−r) is always effective and we have that
TL(µrN(−r)) = TL(N)(−r) (the twist (−r) denotes a Tate twist on which ΓL acts via χ−r where
χ is the p-adic cyclotomic character). Therefore, it is enough to show the claim for effective Wach
modules. So assume N is effective. Note that N is free over A+

L and TL(N) is a finite [p]q-height
Zp-representation of GL in the sense of Definition 3.7 (see Remark 3.11). Then the results of [Abh21,
§4.3-§4.5] can be adapted to the case of base ring OL almost verbatim since all objects appearing in
loc. cit. admit a natural variation for OL. In particular, proofs of [Abh21, Theorem 4.25, Proposition
4.28] can be adapted to get that V = TL(N)[1/p] is a crystalline representation of GL.

Set DL := (OAPD
L,ϖ ⊗A+

L
N [1/p])ΓL ⊂ ODcris,L(V ), then from Proposition 3.14 it follows that

DL is a finite L-vector space of dimension = rkA+
L

N equipped with a tensor product Frobenius and a
connection induced from the connection on OAPD

L,ϖ satisfying Griffiths transversality with respect to the
filtration defined as FilkDL :=

( ∑
i+j=k FiliOAPD

L,ϖ ⊗A+
L

FiljN [1/p]
)ΓL , where N [1/p] is equipped with



Crystalline representations and Wach modules 20

Nygaard filtration of Definition 3.2. Moreover, from Proposition 3.14 we have a natural isomorphism
OAPD

L,ϖ ⊗OL
DL

∼−→ OAPD
L,ϖ ⊗A+

L
N [1/p]. Now consider the following diagram:

OBcris(OL)⊗L DL OBcris(OL)⊗A+
L

N [1/p]

OBcris(OL)⊗L ODcris,L(V ) OBcris(OL)⊗Qp V,

(3.6)
∼

(3.7) (3.3) ≀ (3.4)

where the left vertical arrow is extension of the inclusion DL ⊂ ODcris,L(V ) from (3.7) along L →
OBcris(OL), the top horizontal arrow is extension of the isomorphism in Proposition 3.14 along the
natural map OAPD

L,ϖ[1/p] → OBcris(OL), the right vertical arrow is extension of the isomorphism
(3.3) in Lemma 3.6 along A+[1/µ] → OBcris(OL) and the bottom horizontal arrow is the natural
injective map (see [Bri06, Proposition 3.22]). Commutativity and compatibility of the diagram with
(φ, GL)-action and connection follows from (3.7). Bijectivity of the top horizontal arrow and the right
vertical arrow imply that the left vertical arrow and the bottom horizontal arrow are bijective as well.
Hence, V is a crystalline representation of GL.

Remark 3.13. In diagram (3.4), taking the GL-fixed part of the left vertical arrow we get that

DL
∼−→ ODcris,L(V ) (3.5)

compatible with Frobenius and connection. Moreover, since the bottom horizontal arrow of the diagram
(3.4) is compatible with filtrations (see [Bri06, Proposition 3.35]), an argument similar to the proof of
[Abh21, Proposition 4.49] shows that the isomorphism in (3.5) is compatible with filtrations, where we
consider the Hodge filtration on ODcris,L(V ).

Following result was used in the proof of Theorem 3.12:

Proposition 3.14. Let N be an effective Wach module over A+
L , then DL :=

(
OAPD

L,ϖ ⊗A+
L

N [1/p]
)ΓL

is a finite L-vector space of dimension = rkA+
L

N equipped with Frobenius, filtration and a connection
satisfying Griffiths transversality with respect to the filtration. Moreover, we have a natural comparison
isomorphism

OAPD
L,ϖ ⊗OL

DL
∼−→ OAPD

L,ϖ ⊗A+
L

N [1/p], (3.6)

compatible with Frobenius, filtration, connection and ΓL-action.

Proof. We will adapt the proof of [Abh21, Proposition 4.28]. Following [Abh21, §4.4.1], for n ∈ N

define a p-adically complete ring SPD
n := A+

L ⟨
µ
pn , µ2

2!p2n , . . . , µk

k!pkn , . . .
〉
. The p-adically completed divided

power ring SPD
n is equipped with a continuous action of ΓL and we have a Frobenius homomorphism

φ : SPD
n → SPD

n−1, in particular, φn(SPD
n ) ⊂ SPD

0 ⊂ APD
L,ϖ, where the latter inclusion is obvious. The

reader should note that in [Abh21, §4.4.1] we consider a further completion of SPD
n with respect to

certain filtration by PD-ideals, denoted ŜPD
n in loc. cit. However, such a completion is not strictly

necessary and all proofs of loc. cit. can be carried out without it. In particular, many good properties
of ŜPD

n restrict to good properties on SPD
n as well (for example, (φ, ΓL)-action above).

Now consider the OF -linear homomorphism of rings ι : OL → SPD
n sending Xj 7→ [X♭

j ] for 1 ≤ j ≤ d.
Using ι define an OF -linear morphism of rings f : OL ⊗OF

SPD
n → SPD

n via a ⊗ b 7→ ι(a)b. Let OSPD
n

denote the p-adic completion of the divided power envelope of OL⊗OF
SPD

n with respect to Ker f . The
divided power ring OSPD

n is equipped with a continuous action of ΓL, an integrable connection and
we have a Frobenius φ : OSPD

n → OSPD
n−1, in particular, φn(OSPD

n ) ⊂ OAPD
L,ϖ. Moreover, we have

OL = (OSPD
n )ΓL and with Vj := Xj⊗1

1⊗[X♭
j ] for 1 ≤ j ≤ d, we have p-adically closed divided power ideals

J [i]OSPD
n :=

〈
µ[k0]

pnk0

d∏
j=1

(1− Vj)[kj ], k = (k0, k1, . . . , kd) ∈ Nd+1 such that
d∑

j=0
kj ≥ i

〉
.
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Equip OSPD
n ⊗A+

L
N with tensor product filtration, tensor product Frobenius and an integrable connec-

tion induced from the connection on OSPD
n . Then Dn :=

(
OSPD

n ⊗A+
L

N [1/p]
)ΓL is an L-vector space

equipped with an integrable connection and we have a Frobenius morphism φ : Dn → Dn−1. In partic-
ular, φn(Dn) ⊂ DL =

(
OAPD

L,ϖ⊗A+
L

N [1/p]
)ΓL ⊂

(
OAcris(OL)⊗A+

L
N [1/p]

)GL , where the last inclusion
follows since OAPD

L,ϖ ⊂ OAcris(OL∞) = OAcris(OL)HL (see [MT20, Corollary 4.34]). Let T := TL(N)
be the associated finite free Zp-representation of GL and V := T [1/p], then we have

DL ⊂
(
OB+

cris(OL)⊗B+
L

N [1/p]
)GL ⊂

(
OBcris(OL)⊗B+

L
N [1/p]

)GL

∼−→
(
OBcris(OL)⊗Qp V

)GL = ODcris,L(V ),
(3.7)

where the isomorphism follows by taking GL-fixed elements of extension along A+[1/µ]→ OBcris(OL)
of the isomorphism in Lemma 3.6. Recall that φn(Dn) ⊂ DL, or equivalently, the L-linear map
1⊗ φn : L⊗φn,L Dn → DL is injective, we get that L⊗φn,L Dn is a finite dimensional L-vector space.
Moreover, φ is finite free over L, so it follows that Dn is a finite dimensional L-vector space equipped
with an integrable connection. Furthermore, for n ≥ 1 similar to the proof of [Abh21, Lemmas 4.32 &
4.36], one can show that log γi =

∑
k∈N(−1)k (γi−1)k+1

k+1 converge as a series of operators on OSPD
m ⊗A+

L
N ,

where {γ0, γ1, . . . , γd} are topological generators of ΓL (see §2.1).

Lemma 3.15. Let m ≥ 1 (let m ≥ 2 if p = 2), then we have a ΓL-equivariant isomorphism via the
natural map a⊗ b⊗ x 7→ ab⊗ x:

OSPD
m ⊗OL

Dm
∼−→ OSPD

m ⊗A+
L

N [1/p]. (3.8)

Proof. Compatibility of (3.8) with ΓL-action is obvious from the definitions, so we only need to
check that it is bijective. We will first show that (3.8) is injective. Note that we have an injective
ring homomorphism OSPD

m [1/p] φm

−−−→ OAPD
L,ϖ[1/p] → OBcris(OL). Since Dm is a finite dimensional

L-vector space, we get that the following map is injective

OSPD
m ⊗OL

Dm = OSPD
m [1/p]⊗L Dm −→ OBcris(OL)⊗φm,L Dm. (3.9)

Recall that V = T [1/p] and consider the following composition

OBcris(OL)⊗φm,L Dm
1⊗φm

−−−−−→ OBcris(OL)⊗L DL −→ OBcris(OL)⊗L ODcris,L(V ), (3.10)

where the first map is injective because 1⊗ φm : L⊗φm,L Dm → DL is injective and injectivity of the
second map follows from (3.7), in particular, (3.10) is injective. Furthermore, similiar to (3.9), note
that N [1/p] is a finite free B+

L -module, so it follows that the map OSPD
m ⊗A+

L
N [1/p] = OSPD

m [1/p]⊗B+
L

N [1/p] → OBcris(OL) ⊗φm,B+
L

N [1/p] is injective. Also, recall that we have an isomorphism 1 ⊗ φ :
B+

L ⊗φ,B+
L

N [1/p, 1/[p]q] ∼−→ N [1/p, 1/[p]q]. So OBcris(OL)⊗φm,B+
L

N [1/p] ∼−→ OBcris(OL)⊗B+
L

N [1/p],
since [p]q is invertible in OBcris(OL). Combining the preceding two observations, we get that the
following composition is injective:

OSPD
m ⊗A+

L
N [1/p] −→ OBcris(OL)⊗φm,B+

L
N [1/p] 1⊗φm

−−−−−→
∼

OBcris(OL)⊗B+
L

N [1/p]. (3.11)

Now consider the following diagram

OSPD
m ⊗OL

Dm OBcris(OL)⊗φm,L Dm OBcris(OL)⊗R ODcris,L(V )

OSPD
m ⊗A+

L
N [1/p] OBcris(OL)⊗B+

L
N [1/p] OBcris(OL)⊗Qp V,

(3.9)

(3.8)

(3.10)

(3.11)

where the right vertical arrow is the natural injective map (see [Bri06, Proposition 3.22]) and the bottom
right horizontal map is extension of the isomorohism in Lemma 3.6 along A+[1/µ]→ OBcris(OL). The
diagram commutes by definition and it follows that the left vertical arrow, i.e. (3.8) is injective.
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Now let us check the surjectivity of the map (3.8). Define the following operators on ONPD
m :=

OSPD
m ⊗A+

L
N [1/p]:

∂i :=
{
−(log γ0)/t for i = 0,
(log γi)/(tVi) for 1 ≤ i ≤ d,

where Vi = Xi⊗1
1⊗[X♭

i ] for 1 ≤ i ≤ d (see [Abh21, §4.4.2]). Using the fact that for g ∈ ΓL and x ∈
OSPD

m ⊗A+
L

N we have (g − 1)(ax) = (g − 1)a · x + g(a)(g − 1)x and from the equality log(γi) =
limn→+∞(γpn

i − 1)/pn, it is easy to see that ∂i satisfy the Leibniz rule for all 0 ≤ i ≤ d. In particular,
the operator ∂ : ONPD

m → ONPD
m ⊗OSPD

m
Ω1
OSPD

m /OL
given as x 7→ ∂0(x)dt +

∑d
i=1 ∂i(x)d[X♭

i ] defines a
connection on ONPD

m . The connection ∂ is integrable since the operators ∂i commute with each other
(see [Abh21, Lemma 4.38]) and using the finite [p]q-height property of N it is easy to show that ∂ is
p-adically quasi-nilpotent as well (see [Abh21, Lemma 4.39]).

For x ∈ N [1/p], similar to the proof of [Abh21, Lemma 4.39 & Lemma 4.41], it follows that the
following sum converges in Dm = (ONPD

m )ΓL = (ONPD
m )∂=0:

y =
∑

k∈Nd+1

∂k0
0 ◦ ∂k1

1 ◦ · · · ◦ ∂kd
d (x) t[k0]

pmk0 (1− V1)[k1] · · · (1− Vd)[kd]. (3.12)

By choosing a basis of N and using the formula in (3.12) on basis elements, we can define a linear
transformation α on the finite free OSPD

m [1/p]-module ONPD
m . Now similar to the proof of [Abh21,

Lemma 4.43] it can easily be deduced that for some large enough N ∈ N we can write pN det α ∈
1 + J [1]OSPD

m , i.e. det α is a unit in OSPD
m [1/p] and α defines an automorphism of ONPD

m . Finally, as
the formula in (3.12) converges in Dm, it follows that the map OSPD

m ⊗OL
Dm → OSPD

m ⊗A+
L

N [1/p] is
surjective. Hence, (3.8) is bijective.

Note that DL is an L-vector space equipped with tensor product Frobenius, a filtration given as
FilkDL :=

( ∑
i+j=k FiliOAPD

L,ϖ⊗A+
L

FiljN [1/p]
)ΓL , where N [1/p] is equipped with the Nygaard filtration

of Definition 3.2. The preceding filtration is well-defined, i.e. FilkDL is a sub vector space of DL, for
each k ∈ N. Indeed, it is enough to check that FiliOAPD

L,ϖ ⊗A+
L

FiljN [1/p] is an OAPD
L,ϖ-submodule

of OAPD
L,ϖ ⊗A+

L
N [1/p], for each i, j ∈ N. This easily follows from the fact that the OAPD

L,ϖ-linear
composition FiliOAPD

L,ϖ ⊗A+
L

FiljN [1/p]→ FiliOAPD
L,ϖ ⊗A+

L
N [1/p]→ OAPD

L,ϖ ⊗A+
L

N [1/p] is injective,
where the first arrow is obtained by tensoring the A+

L -linear inclusion FiljN [1/p] → N [1/p] with the
flat A+

L -module FiliOAPD
L,ϖ and the second arrow is obtained by tensoring the A+

L -linear inclusion
FiliOAPD

L,ϖ → OAPD
L,ϖ with the flat A+

L -module N [1/p]. Moreover, DL is equipped with an integrable
connection induced from the connection on OAPD

L,ϖ satisfying Griffiths transversality with respect to
the filtration since the the same is true for the connection on OAPD

L,ϖ. Now consider the following
diagram:

OAPD
L,ϖ ⊗OL,φm Dm OAPD

L,ϖ ⊗OL
DL

OAPD
L,ϖ ⊗A+

L ,φm N [1/p] OAPD
L,ϖ ⊗A+

L
N [1/p],

1⊗φm

(3.8) ≀ (3.6)

∼

(3.13)

where the left vertical arrow is extension of the isomorphism (3.8) in Lemma 3.15 along φm : OSPD
m →

OAPD
L,ϖ and the bottom horizontal isomorphism follows from an argument similar to [Abh21, Lemma

4.46]. By description of the arrows it follows that the diagram is commutative and (φ, ΓL)-equivariant.
Taking ΓL-invariants for the composition of left vertical and bottom horizontal isomorphisms gives an
L-linear isomorphism OL⊗OL,φm Dm

∼−→ DL. So it follows that the top horizontal arrow in the diagram
(3.13) is bijective as well. The preceding observation together with the bijectivity of left vertical and
bottom horizontal arrows imply that the right vertical arrow is bijective as well, in particular, the com-
parison in (3.6) is an isomorphism compatible with Frobenius, connection and ΓL-action. Compatibilty
of (3.6) with filtrations follows from an argument similar to [Abh21, Corollary 4.54] (using the filtration
compatible isomorphism (3.5) in Remark 3.5). This concludes our proof.
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There exists another relation between the Wach module N and ODcris,L(V ). Let us equip N with
a Nygaard filtration as in Definition 3.2. Then we note that (N/µN)[1/p] is a φ-module over L since
[p]q = p mod µN and N/µN is equipped with a filtration Filk(N/µN) given as the image of FilkN
under the surjection N ↠ N/µN . We equip (N/µN)[1/p] with induced filtration, in particular, it is a
filtered φ-module over L.

Corollary 3.16. Let N be a Wach module over A+
L and V := TL(N)[1/p] the associated crystalline

representation from Theorem 3.12. Then we have (N/µN)[1/p] ∼−→ ODcris,L(V ) as filtered φ-modules
over L.

Proof. For r ∈ N large enough, the Wach module µrN(−r) is always effective and we have that
TL(µrN(−r)) = TL(N)(−r) (the twist (−r) denotes a Tate twist on which ΓL acts via χ−r where
χ is the p-adic cyclotomic character). Therefore, it is enough to show the claim for effective Wach
modules. So assume N is effective and set M := N [1/p] equipped with induced Frobenius, ΓL-action and
Nygaard filtration. Note that the L-vector space M/µ is equipped with a Frobenius-semilinear operator
φ induced from M such that 1⊗φ : φ∗(M/µ) ∼−→M/µ since [p]q = p mod µ. The filtration Filk(M/µ)
is the image of FilkM under the surjective map M ↠ M/µ. From the discussion before Theorem
3.12 recall that we have a period ring OAPD

R,ϖ ⊂ OAcris(OL∞) equipped with a Frobenius, filtration,
connection and ΓL-action. Moreover, from Theorem 3.12 we have DL = (OAPD

L,ϖ ⊗A+
L

NL(V ))ΓL

equipped with a Frobenius, filtration and connection such that DL
∼−→ ODcris(V ) compatible with

supplementary structures (see (3.5)). Consider the following diagram with exact rows:

0 µM M M/µ 0

0 (Fil1OAPD
L,ϖ)⊗A+

L
M OAPD

L,ϖ ⊗A+
L

M L(ζp)⊗L M/µ 0

0 (Fil1OAPD
L,ϖ)⊗OL

DL OAPD
L,ϖ ⊗OL

DL L(ζp)⊗L DL 0.

≀ ≀ (3.6) ≀

Note that (Fil1OAPD
L,ϖ ⊗A+

L
M) ∩M = (Fil1OAPD

L,ϖ ∩A+
L ) ⊗A+

L
M = µM , so the vertical maps from

first to second row are natural inclusions and the second row is exact. Moreover, the middle vertical
arrow from second to third row is the isomorphism (3.6) in Proposition 3.14, from which it can easily be
shown that the left vertical arrow is also an isomorphism and therefore the right vertical arrow is also
an isomorphism. Taking Gal(L(ζp)/L)-invariants of the right arrow gives M/µ

∼←− DL
∼−→ ODcris,L(V )

where the last isomorphism is compatible with Frobenius, filtration and connection as mentioned in the
proof of Theorem 3.12 (see (3.5)).

Note that the isomorphism DL
∼−→ M/µ is compatible with Frobenius and we need to check the

compatibility between respective filtrations. In the diagram above, the middle term of the second row
is equipped with tensor product filtration so the image of Filk(OAPD

L,ϖ ⊗A+
L

M) under the surjective
map from second to third term is given as L(ζp) ⊗L Filk(M/µ). Similarly, the middle term of the
third row is equipped with tensor product filtration so the image of Filk(OAPD

L,ϖ ⊗OL
DL) under the

surjective map from second to third term is given as L(ζp)⊗L FilkDL. Since the isomorphism (3.6) in
Proposition 3.14 is compatible with filtrations, we get L(ζp)⊗L FilkDL

∼−→ L(ζp)⊗L Filk(M/µ). Taking
Gal(L(ζp)/L)-invariants in the preceding isomorphism gives FilkDL

∼−→ Filk(M/µ). This concludes our
proof.

4. Crystalline implies finite height
The goal of this section is to prove the following claim:

Theorem 4.1. Let T be a finite free Zp-representation of GL such that V := T [1/p] is a p-adic
crystalline representation of GL. Then there exists a unique Wach module NL(T ) over A+

L satisfying
Definition 3.7. In other words, T is of finite [p]q-height.
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Before carrying out the proof of Theorem 4.1, we note the following corollaries: let Repcris
Zp

(GL)
denote the category of Zp-lattices inside p-adic crystalline representations of GL. Then combining
Theorem 3.12 and Theorem 4.1 and [Abh21, Proposition 4.14] (for compatibility with tensor products),
we obtain the following:

Corollary 4.2. The Wach module functor induces an equivalence of ⊗-catgeories

Repcris
Zp

(GL) ∼−→ (φ, Γ)-Mod[p]q
A+

L

T 7−→ NL(T ),

with a quasi-inverse ⊗-functor given as N 7→ TL(N) :=
(
W (C♭

L)⊗A+
L

N
)φ=1.

Passing to associated isogeny categories, we obtain the following:

Corollary 4.3. The Wach module functor induces an exact equivalence of ⊗-categories Repcris
Qp

(GL) ∼−→
(φ, Γ)-Mod[p]q

B+
L

via V 7→ NL(V ), with an exact quasi-inverse ⊗-functor given as M 7→ VL(M) :=(
W (C♭

L)⊗A+
L

M
)φ=1.

In the rest of this section we will carry out the proof of Theorem 4.1 and Corollary 4.2 by constructing
NL(T ) and show Corollary 4.3 as a consquence. In §4.1 we collect important properties of classical
Wach modules, i.e. the perfect residue field case. In §4.2 we use ideas from [Kis06; KR09] to show
that classical Wach modules are compatible with Kisin-Ren modules, and we further show that in our
setting, a finite [p]q-height module on the open unit disk over L̆ descends to a finite [p]q-height module
on the open unit disk over L, similar to [BT08]. On the module thus obtained, we use results of §2.3 to
construct an action of ΓL and study its properties in §4.3. Then in §4.4 we check that our construction
is compatible with the theory of étale (φ, ΓL)-modules. Finally, in §4.5 we construct the promised Wach
module NL(T ) and prove Theorem 4.1 and Corollary 4.3.

For a p-adic representation of GL, note that the property of being crystalline and of finite [p]q-height
is invariant under twisting the representation by χr for r ∈ N. So from now onwards we will assume
that V is a p-adic positive crystalline representation of GL, i.e. all its Hodge-Tate weights are ≤ 0. We
have T ⊂ V a GL-stable Zp-lattice.

4.1. Classical Wach modules. Recall that GL̆ is a subgroup of GL, so from [BT08, Proposition
4.14] it follows that V is a p-adic positive crystalline representation of GL̆ and T ⊂ V a GL̆-stable
Zp-lattice. Note that L̆ is an unramified extension of Qp with perfect residue field, therefore the
GL̆-representation V is of finite [p]q-height (see [Col99] and [Ber04]). Let the [p]q-height of V be s ∈ N.
One associates to V a finite free (φ, ΓL̆)-module over B+

L̆
of rank = dimQp V called the Wach module

NL̆(V ) and to T a finite free (φ, ΓL̆)-module over A+
L̆

of rank = dimQp V called the Wach module NL̆(T )
(see [Wac96; Wac97; Ber04] and [Abh21, §4.1] for a recollection). Let D̃+

L (T ) := (Ainf(OL) ⊗Zp T )HL

be the (φ, ΓL)-module over Ainf(OL∞) := Ainf(OL)HL (see [And06, Proposition 7.2]) associated to T
and let D̃+

L (V ) := D̃+
L (T )[1/p] over Binf(OL∞) = Binf(OL)HL associated to V .

Lemma 4.4 ([Ber04]). (1) NL̆(T ) = NL̆(V ) ∩DL̆(T ) ⊂ DL̆(V ).

(2) µsAinf(OL) ⊗Zp T ⊂ Ainf(OL) ⊗A+
L̆

NL̆(T ) ⊂ Ainf(OL) ⊗Zp T and taking HL-invariants gives

µsD̃+
L (T ) ⊂ Ainf(OL∞)⊗A+

L̆

NL̆(T ) ⊂ D̃+
L (T ). Similar claims are also true for V .

By properties of Wach modules, we have functorial isomorphisms of étale (φ, ΓL)-modules, where
the second isomorphism in first row follows from [Ber04, Théorème III.3.1]

AL̆ ⊗A+
L̆

NL̆(T ) ∼−→ DL̆(T ) and A†
L̆
⊗A+

L̆

NL̆(T ) ∼−→ D†
L̆

(T ),

BL̆ ⊗B+
L̆

NL̆(V ) ∼−→ DL̆(V ) and B†
L̆
⊗B+

L̆

NL̆(V ) ∼−→ D†
L̆

(V ),

B†
rig,L̆
⊗B+

L̆

NL̆(V ) ∼−→ D†
rig,L̆

(V ).

(4.1)
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Let Nrig,L̆(V ) := B+
rig,L̆
⊗B+

L̆

NL̆(V ) equipped with (diagonally) induced Frobenius-semilinear op-
erator φ and ΓL̆-action. From [Ber04, Proposition II.2.1], recall that we have a natural inclusion
Dcris,L̆(V ) ⊂ Nrig,L̆(V ) which extends B+

rig,L̆
-linearly to a Frobenius and ΓL̆-equivariant inclusion

B+
rig,L̆
⊗L̆ Dcris,L̆(V ) ⊂ Nrig,L̆(V ) such that its cokernel is killed by (t/µ)s ∈ B+

rig,L̆
(see [Ber04, Propo-

sitions II.3.1 & III.2.1]). In particular, we obtain a (φ, ΓL̆)-equivariant isomorphism

B+
rig,L̆

[µ/t]⊗L̆ Dcris,L̆(V ) ∼−→ B+
rig,L̆

[µ/t]⊗B+
L̆

NL̆(V ). (4.2)

Moreover, note that from loc. cit. we have a natural L̆-linear isomorphism of filtered φ-modules
Dcris,L̆(V ) ∼−→ Nrig,L̆(V )/µNrig,L̆(V ) = NL̆(V )/µNL̆(V ) such that the largest Hodge-Tate weight of V

equals s, i.e. the [p]q-height of V . Since t/µ is a unit in B+
cris(OL∞) and B+

rig,L̆
⊂ B̃+

rig,L ⊂ B+
cris(OL∞),

extending scalars in (4.2) gives a B+
cris(OL∞)-linear and (φ, ΓL̆)-equivariant isomorphism

B+
cris(OL∞)⊗L̆ Dcris,L̆(V ) ∼−→ B+

cris(OL∞)⊗B+
L̆

NL̆(V ). (4.3)

Lemma 4.5. The following diagram is commutative and (φ, GL̆)-equivariant:

Bcris(OL)⊗L̆ Dcris,L̆(V ) Bcris(OL)⊗B+
L̆

NL̆(V )

Bcris(OL)⊗Qp V Bcris(OL)⊗Qp V.

∼

≀ ≀

Proof. The left vertical arrow is an isomorphism since V is a crystalline representation of GL̆. The
top vertical arrow is scalar extension of (4.3) along B+

cris(OL∞) → Bcris(OL). Next, from Lemma
4.4 (2) we have a (φ, GL̆)-equivariant isomorphism Ainf(OL)[1/µ] ⊗A+

L̆

NL̆(T ) ∼−→ Ainf(OL)[1/µ] ⊗Zp

T and extending this isomorphism along Ainf(OL)[1/µ] → Bcris(OL) gives the isomorphism in right
vertical arrow. The commutativity of the diagram follows since the top horizontal arrow is also the
Bcris(OL)-linear extension of the natural inclusion Dcris,L̆(V ) ⊂ B+

rig,L̆
⊗B+

L̆

NL̆(V ) ⊂ Bcris(OL) ⊗B+
L̆

NL̆(V ) (see [Ber04, §II.2]).

4.2. Kisin’s construction. Our goal is to construct a Wach module NL(T ) over A+
L . To this

end, we will adapt some ideas from [BT08] and [KR09] generalizing the results of Kisin in [Kis06] to
first construct a finite [p]q-height module over B+

rig,L.
Let E(X) := (1+X)p−1

X ∈ ZpJXK denote the cyclotomic polynomial. We equip ZpJXK with the
cyclotomic Frobenius operator φ given by identity on Zp and setting φ(X) = (1 + X)p − 1 and for
n ∈ N we set En(X) := φn(E(X)). In particular, ζpn+1 − 1 is a simple zero of En(X). For X = µ, we
will write En(X) = ξ̃n for n ∈ N and φ(µ)/µ = ξ̃ = ξ̃0 = E(µ) = [p]q.

Remark 4.6. Define ϕL : B+
rig,L → B+

rig,L as the map given by Frobenius on L and ϕL(µ) = µ, i.e.∑
k∈N ι(ak)µk 7→

∑
k∈N ι(ϕL(ak))µk. Then B+

rig,L is finite free of rank pd over B+
rig,L via the map ϕL,

in particular, flat. Similarly, let ϕL̆ : B+
rig,L̆

→ B+
rig,L̆

denote the map given by Frobenius on L̆ and
ϕL̆(µ) = µ. From §2.1.4 recall that we have an injection B+

rig,L → B+
rig,L̆

which is evidently compatible
with ϕL on left and ϕL̆ on right.

Remark 4.7. We have t/µ ∈ B+
rig,L and we can write t/µ =

∏
n∈N(ξ̃n/p) (see [Ber04, Exemple I.3.3]

and [Laz62, Remarque 4.12]). The zeros of t/µ are ζpn+1 − 1 for all n ∈ N. Moreover, we have
ϕ−n

L (t/µ) = t/µ, therefore the zeros of ϕ−n
L (t/µ) are ζpn+1 − 1 as well.

Now let B̂L̆,n denote the completion of L̆(ζpn+1)⊗L̆ B+
L̆

with respect to the maximal ideal generated
by µ− (ζpn+1 − 1). Moreover, since ζpn+1 − 1 is a simple root of ξ̃n we obtain that (µ− (ζpn+1 − 1)) =
(ξ̃n) ⊂ B̂L̆,n. The local ring B̂L̆,n naturally admits an action of ΓL̆ obtained by the diagonal action of
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ΓL̆ on the tensor product L̆(ζpn+1)⊗L̆B+
L̆

. We put a filtration on B̂L̆,n[1/ξ̃n] as FilrB̂L̆,n

[
1/ξ̃n

]
= ξ̃r

nB̂L̆,n

for r ∈ Z. We have inclusions B+
L̆
⊂ B+

rig,L̆
⊂ B̂L̆,n[1/ξ̃n

]
.

Let DL := ODcris,L(V ) and DL̆ := Dcris,L̆(V ) then using the φ-equivariant injection L → L̆, we
have an isomorphism of filtered φ-modules L̆⊗L DL

∼−→ DL̆ from (2.5). Note that DL (resp. DL̆) is an
effective filtered φ-module over L (resp. over L̆), i.e. Fil0DL = DL (resp. Fil0DL̆ = DL̆) and we have a
φ-equivariant inclusion DL ⊂ DL̆. Consider a map

in : B+
rig,L̆
⊗L̆ DL̆

ϕ−n

L̆
⊗φ−n

D
L̆−−−−−−→ B+

rig,L̆
⊗L̆ DL̆ −→ B̂L̆,n ⊗L̆ DL̆,

where ϕL̆ : B+
rig,L̆

→ B+
rig,L̆

is defined in Remark 4.6 and φDL̆
is the Frobenius-semilinear operator on

DL̆. Since the residue field of L̆ is perfect, the map in is well-defined and it extends to a map

in : B+
rig,L̆

[µ/t]⊗L̆ DL̆ −→ B̂L̆,n[µ/t]⊗L̆ DL̆.

Define a B+
rig,L̆

-module

ML̆(DL̆) :=
{
x ∈ B+

rig,L̆
[µ/t]⊗L̆ DL̆, such that ∀n ∈ N, in(x) ∈ Fil0(B̂L̆,n[1/ξ̃n]⊗L̆ DL̆)

}
,

where B+
rig,L̆

[µ/t]⊗L̆ DL̆ is equipped with tensor product Frobenius and B̂L̆,n

[
1/ξ̃n

]
⊗L̆ DL̆ is equipped

with tensor product filtration. By [Kis06, Lemma 1.2.2] and [KR09, Lemma 2.2.1], the B+
rig,L̆

-module
ML̆(DL̆) is finite free of rank = dimL̆ DL̆ stable under φ and ΓL̆ such that cokernel of the injective
map 1 ⊗ φ : φ∗(ML̆(DL̆)) → ML̆(DL̆) is killed by ξ̃s and the action of ΓL̆ is trivial modulo µ.
Moreover, from [KR09, Lemma 2.2.2] there exists a unique L̆-linear section α : ML̆(DL̆)/µML̆(DL̆)→
ML̆(DL̆)[µ/t] such that the image α(ML̆(DL̆)/µML̆(DL̆)) is ΓL̆-invariant. Furthermore, the section
α is φ-equivariant and it induces an isomorphism

1⊗ α : B+
rig,L̆

[µ/t]⊗L̆ (ML̆(DL̆)/µML̆(DL̆)) ∼−→ML̆(DL̆)[µ/t]. (4.4)

Finally, from [KR09, Proposition 2.2.6] we have a natural isomorphism DL̆
∼−→ ML̆(DL̆)/µML̆(DL̆)

compatible with the respective Frobenii and filtrations and under the isomorphism above the image of
DL̆ coincides with α(ML̆(DL̆)/µML̆(DL̆)).

Next, we note that the B†
rig,L̆

-module B†
rig,L̆
⊗B+

rig,L̆

ML̆(DL̆) is pure of slope 0 using [Kis06, Theorem

1.3.8] and [KR09, Proposition 2.3.3]. Then from [KR09, Corollay 2.4.2] one obtains an A+
L̆

-module NL̆
finite free of rank = dimL̆ DL̆ equipped with a Frobenius-semilinear endomorphism φ and semilinear
and continuous action of ΓL̆ such that cokernel of the injective map 1⊗φ : φ∗(NL̆)→ NL̆ is killed by ξ̃s,
the action of ΓL̆ is trivial modulo µ and B+

rig,L̆
⊗A+

L̆

NL̆
∼−→ML̆(DL̆) compatible with (φ, ΓL̆)-action.

Lemma 4.8. There is a natural B+
rig,L̆

-linear and (φ, ΓL̆)-equivariant isomorphism β : ML̆(DL̆) ∼−→
Nrig,L̆(V ). Moreover, it restricts to a B+

L̆
-linear and (φ, ΓL̆)-equivariant isomorphism β : NL̆[1/p] ∼−→

NL̆(V ).

Proof. Recall that by definition Nrig,L̆(V ) = B+
rig,L̆
⊗B+

L
NL̆(V ), and consider the following diagram:

B+
rig,L̆

[µ/t]⊗L̆ DL̆ Nrig,L̆(V )[µ/t]

B+
rig,L̆

[µ/t]⊗L̆ (ML̆(DL̆)/µ) ML̆(DL̆)[µ/t],

∼

≀

∼
1⊗α

≀ β (4.5)

where the top horizontal arrow is (4.2), the bottom horizontal arrow is (4.4) and the left vertical
arrow follows from DL̆

∼−→ ML̆(DL̆)/µ. For the right vertical arrow β, we consider Nrig,L̆(V ) and
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ML̆(DL̆) as submodules of B+
rig,L̆

[µ/t] ⊗L̆ Dcris,L̆(V ) and construct the map as follows: from [KR09,
Lemma 2.1.2] the action of ΓL̆ on Nrig,L̆(V ) is “Zp-analytic” in the sense of [KR09, §2.1.3] and we
have DL̆

∼−→ Nrig,L̆(V )/µ. So from the equivalence of categories in [KR09, Proposition 2.2.6] and its
proof, it follows that we have an isomorphism β : ML̆(DL̆) ∼−→ ML̆(Nrig,L̆(V )/µ) ∼−→ Nrig,L̆(V ) as
B+

rig,L̆
-submodules of B+

rig,L̆
[µ/t] ⊗L̆ DL̆ compatible with (φ, ΓL̆)-action and whose reduction modulo

µ induces isomorphisms ML̆(DL̆)/µ
∼−→ DL̆

∼−→ Nrig,L̆(V )/µ. Commutativity of the diagram follows
from the uniqueness of f and noting that the composition of left, top and right arrow provides a section
ML̆(DL̆)/µ→ML̆(DL̆)[µ/t] with the same property as α. This shows the first claim. For the second
claim, note that B†

rig,L̆
⊗B+

rig,L̆

ML̆(DL̆) ∼−→ B†
rig,L̆
⊗B+

rig,L̆

Nrig,L̆(V ) is pure of slope 0, so from [KR09,

Corollary 2.4.2] we conclude that the isomorphism β induces an isomorphism β : NL̆[1/p] ∼−→ NL̆(V )
compatible with (φ, ΓL̆)-action.

From (2.5) we have an isomorphism of filtered φ-modules L̆⊗L DL
∼−→ DL̆.

Definition 4.9. Define

ML(DL) :=
{
x ∈ B+

rig,L[µ/t]⊗L DL, such that ∀n ∈ N, in(x) ∈ Fil0
(
B̂L̆,n[1/ξ̃n]⊗L̆ DL̆

)}
=

(
B+

rig,L[µ/t]⊗L DL

)
∩ML̆(DL̆) ⊂ B+

rig,L̆
[µ/t]⊗L̆ DL̆.

From §2.1.5 recall that we have a φ-equivariant injection B+
rig,L → B+

rig,L̆
, therefore by definition

ML(DL) is stable under the induced tensor product Frobenius semilinear-operator φ on B+
rig,L̆

[µ/t]⊗L̆

DL̆. Using Lemma 4.8 and the discussion preceding (4.2) we have φ-equivariant inclusions B+
rig,L̆
⊗L̆

DL̆ ⊂ML̆(DL̆) ⊂ (µ/t)sB+
rig,L̆
⊗L̆ DL̆. Moreover, from Lemma 2.9 recall that B+

rig,L → B+
rig,L̆

is flat and
from Lemma 2.10 we have B+

rig,L∩(t/µ)B+
rig,L̆

= (t/µ)B+
rig,L̆

, or equivalently, B+
rig,L̆
∩B+

rig,L[µ/t] = B+
rig,L.

So it follows that we have φ-equivariant inclusions

B+
rig,L ⊗L DL ⊂ML(DL) ⊂ (µ/t)sB+

rig,L ⊗L DL. (4.6)

Therefore, similar to (4.2), we obtain a φ-equivariant isomorphism

ML(DL)[µ/t] ∼−→ B+
rig,L[µ/t]⊗L DL, (4.7)

Note that extending scalars of the isomorphism L(ζpn+1) ∼−→ (L(ζpn+1)⊗L B+
rig,L)/(µ− (ζpn+1 − 1))

along L→ L̆, gives L̆(ζpn+1) ∼−→ (L̆(ζpn+1)⊗L̆B+
rig,L)/(µ−(ζpn+1−1)). Let I ⊂ L̆(ζpn+1)⊗LB+

rig,L denote
the maximal ideal generated by µ− (ζpn+1 − 1), and let (L̆(ζpn+1)⊗L B+

rig,L)I denote the localisation at
I. Then the natural map (L̆(ζpn+1)⊗L B+

rig,L)I → B̂L̆,n is obtained as completion of a discrete valuation
ring and we get the following:

Lemma 4.10. The composition of maps B+
rig,L → L̆(ζpn+1)⊗L B+

rig,L → (L̆(ζpn+1)⊗L B+
rig,L)I → B̂L̆,n

is flat for all n ∈ N.

Lemma 4.11. Consider B̂L̆,n as a B+
rig,L-algebra via the composition B+

rig,L → B+
rig,L̆

ϕ−n

L̆−−→ B̂L̆,n.

(1) The homomorphism

B̂L̆,n ⊗B+
rig,L

(B+
rig,L ⊗L DL) −→ B̂L̆,n ⊗L̆ DL̆

∼←− B̂L̆,n ⊗L DL,

induced by in is an isomorphism.

(2) The isomorphism in (1) induces an isomorphism

B̂L̆,n ⊗B+
rig,L

ML(DL) ∼−→
∑
i∈N

ξ̃−i
n B̂L̆,n ⊗L FiliDL
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(3) The φ-equivariant homomorphism B+
rig,L̆

⊗B+
rig,L

ML(DL) → ML̆(DL̆) obtained by extending
B+

rig,L̆
-linearly the φ-equivariant inclusion ML(DL) ⊂ ML̆(DL̆) is an isomorphism. Moreover,

ML(DL) is a finite free B+
rig,L-module of rank = dimL DL.

Proof. The proof follows in a manner similar to [Kis06, Lemma 1.2.1]. For (1), note that using (2.5)
we have DL̆

∼−→ L̆⊗L DL, so we can write

B+
rig,L̆
⊗B+

rig,L
(B+

rig,L ⊗L DL) ∼−→ B+
rig,L̆
⊗L DL

∼−→ B+
rig,L̆
⊗L̆ DL̆.

Moreover, we have ϕ−n
L̆
⊗φ−n

DL̆
: B+

rig,L̆
⊗L̆ DL̆

∼−→ B+
rig,L̆
⊗L̆ DL̆, so extending scalars of the isomorphism

above along ϕ−n
L̆

: B+
rig,L̆
→ B̂L̆,n gives B̂L̆,n ⊗in,B+

rig,L̆

(B+
rig,L̆
⊗L DL) ∼−→ B̂L̆,n ⊗L̆ DL̆.

To show (2), let us write for k ∈ N

ML,k(DL) :=
{
x ∈ B+

rig,L[µ/t]⊗L DL such that ik(x) ∈ Fil0
(
B̂L̆,k[1/ξ̃k]⊗L̆ DL̆

)}
.

Then we have ML(DL) = ∩k∈NML,k(DL) ⊂ B+
rig,L[µ/t] ⊗L DL. By flatness of B̂L̆,n over B+

rig,L (see
Lemma 4.10) and of ϕL : B+

rig,L → B+
rig,L (see Remark 4.6), we get that B̂L̆,n ⊗B+

rig,L
ML(DL) =

∩k∈N
(
B̂L̆,n⊗B+

rig,L
ML,k(DL)

)
⊂ B+

rig,L[µ/t]⊗L DL. To prove our claim, it suffices to show the following
two equalities:

B̂L̆,n ⊗B+
rig,L

ML,n(DL) =
∑
r∈N

ξ̃−r
n B̂L̆,n ⊗L FilrDL,

B̂L̆,n ⊗B+
rig,L

ML,k(DL) = B̂L̆,n[1/ξ̃n]⊗L DL, for k ̸= n.

For the first equality note that we have B̂L̆,n⊗B+
rig,L

ML,n(DL) ⊂
∑

r∈N ξ̃−r
n B̂L̆,n⊗LFilrDL by definition.

For the converse, note that we have ξ̃−1
n = 1

pφn(µ/t)φn+1(t/µ) ∈ Brig,L[µ/t] and ϕ−n
L

(
ξ̃−1

n

)
= ξ̃−1

n . So for
any r ∈ N and ξ̃−r

n a⊗d ∈ ξ̃−r
n B̂L̆,n⊗L FilrDL, we have ξ̃−r

n ⊗φn(d) ∈ML,n(DL) since in(ξ̃−r
n ⊗φn(d)) =

ξ̃−r
n ⊗d ∈ Fil0

(
B̂L̆,n[1/ξ̃n]⊗L̆ DL̆

)
. Therefore, ξ̃−r

n a⊗d = a⊗ in(ξ̃−r
n ⊗φn(d)) ∈ B̂L̆,n⊗B+

rig,L
ML,n(DL).

For the second equality again note that by definition we have B̂L̆,n⊗B+
rig,L

ML,k(DL) ⊂ B̂L̆,n[1/ξ̃n]⊗LDL.

For the converse, note that ξ̃k is a unit in B̂L̆,n since ζpk+1 − 1 is not a root of ξ̃n because n ̸= k. So
for any j, r ∈ N we take ξ̃−r

n ξ̃−j
k a ⊗ d ∈ B̂L̆,n[1/ξ̃n] ⊗L FiljDL. Moreover, ξ̃n is a unit in B̂L̆,k and

ik(ξ̃−r
n ξ̃−j

k ⊗ φk(d)) = ξ̃−r
n ξ̃−j

k ⊗ d ∈ Fil0
(
B̂L̆,k[1/ξ̃k] ⊗L̆ DL̆

)
so we have ξ̃−r

n ξ̃−j
k ⊗ φk(d) ∈ML,k(DL).

Therefore, ξ̃−r
n ξ̃−j

k a⊗ d = a⊗ ik(ξ̃−r
n ξ̃−j

k ⊗ φk(d)) ∈ B̂L̆,n ⊗B+
rig,L

ML,k(DL).
For (3), note that we have inclusions B+

rig,L̆
⊗L DL ⊂ B+

rig,L̆
⊗B+

rig,L
ML(DL) ⊂ ML̆(DL̆) ⊂

(µ/t)sBrig,L̆ ⊗L DL, where the first two inclusions follow since the map B+
rig,L → B+

rig,L̆
is flat (see

Lemma 2.9) and ML(DL) ⊂ (µ/t)sB+
rig,L ⊗L DL from (4.6). So we get that (t/µ)s kills the cokernel of

B+
rig,L̆
⊗B+

rig,L
ML(DL) →ML̆(DL̆). Moreover, note that ML̆(DL̆) ⊂ (µ/t)sB+

rig,L̆
⊗L̆ DL̆ is a closed

submodule by [Kis06, Lemma 1.1.5, Lemma 1.2.2] and since B+
rig,L ⊂ B+

rig,L̆
is a closed subring, we

get that ML(DL) ⊂ (µ/t)sB+
rig,L ⊗L DL is closed and hence finite free by Remark 2.13 and of rank

= dimL DL by the isomorphism shown below.
Let us write B+

rig,L = limρ O(D(L, ρ)) as the limit of ring of analytic functions on closed disks
D(L, ρ) of radius 0 < ρ < 1 (see Remark 2.5); similarly write B+

rig,L̆
= limρ O(D(L̆, ρ)). Since ML(DL)

and ML̆(DL̆) are free, we have ML(DL) ∼−→ limρ(O(D(L, ρ)) ⊗B+
rig,L

ML(DL)) and ML̆(DL̆) ∼−→

limρ(O(D(L̆, ρ))⊗B+
rig,L̆

ML̆(DL̆)). Then to show our claim, it is enough to show that the map

O(D(L̆, ρ))⊗B+
rig,L

ML(DL) −→ O(D(L̆, ρ))⊗B+
rig,L̆

ML̆(DL̆), (4.8)

is a bijection. Note that O(D(L̆, ρ)) is a domain, so injectivity of (4.8) can be checked after passing
to the fraction field of O(D(L̆, ρ)). To check that (4.8) is surjective, let Q denote the cokernel of (4.8)
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and we will show that Q = 0. Note that Q is a finitely generated S := O(D(L̆, ρ))-module killed by
(t/µ)s and S is a principal ideal domain (see [Bos14, Chapter 2, Corollary 10]). So by the structure
theorem of finitely generated modules over S we write Q = ⊕S/ai where ai = (ai) for some nonzero
primary elements ai ∈ S and such that ai|(t/µ)s for each i. Note that √ai is a maximal ideal of S
and Q√

ai
= S/ai, so to get Q = 0 it is enough to show that Q√

ai
= 0. From [Bos14, Chapter 2,

Corollary 13] note that each maximal ideal √ai corresponds to a zero of (t/µ)s, in particular, we are
reduced to showing that Q vanishes at zeros of t/µ. This follows from (2). Hence, we get that (4.8) is
an isomorphism and passing to the limit over ρ we obtain B+

rig,L̆
⊗B+

rig,L
ML(DL) ∼−→ML̆(DL̆).

Lemma 4.12. We have following properties for the B+
rig,L-module ML(DL):

(1) Cokernel of the injective map 1⊗ φ : φ∗(ML(DL))→ML(DL) is killed by [p]sq.

(2) ML(DL) is pure of slope 0, i.e. the B†
rig,L-module B†

rig,L⊗B+
rig,L

ML(DL) is pure of slope 0 in the
sense of [Ked04, §6.3].

Proof. For (1), let us first note the following commutative diagram with exact rows:

0 ML(DL) B+
rig,L[µ/t]⊗L DL Q 0

0 ML̆(DL̆) B+
rig,L̆

[µ/t]⊗L̆ DL̆ B+
rig,L̆
⊗B+

rig,L
Q 0.

All maps are φ-equivariant and vertical maps are injective (see (4.6), Lemma 4.8, Defnition 4.9 and
Lemma 4.11 (3)). From Remark 2.7, Remark 2.8, Lemma 2.10 and Lemma 2.9 recall that the maps
φL : B+

rig,L → B+
rig,L and φL̆ : B+

rig,L̆
→ B+

rig,L̆
are faithfully flat (we write φ with subscripts to avoid

confusion), B+
rig,L → B+

rig,L̆
is flat and B+

rig,L̆
∩B+

rig,L[µ/t] = B+
rig,L. Using Lemma 4.11 (3) and DL̆

∼−→
L̆⊗LDL from (2.5), we get φ∗

L̆
(ML̆(DL̆)) ∼−→ B+

rig,L̆
⊗B+

rig,L
φ∗

L(ML(DL)) and φ∗
L(B+

rig,L[µ/t]⊗LDL) ∼−→

B+
rig,L[µ/t]⊗B+

rig,L
φ∗

L(B+
rig,L⊗L DL) ⊂ B+

rig,L̆
[µ/t]⊗B+

rig,L[µ/t] φ
∗
L(B+

rig,L[µ/t]⊗L DL) ∼−→ φ∗
L̆

(B+
rig,L̆

[µ/t]⊗L̆

DL̆). So from preceding discussion and exactness of both rows in the diagram above, it follows that

φ∗
L(ML(DL)) =

(
B+

rig,L[µ/t]⊗B+
rig,L

φ∗
L(ML(DL))

)
∩

(
B+

rig,L̆
⊗B+

rig,L
φ∗

L(ML(DL))
)

∼−→ φ∗
L

(
B+

rig,L[µ/t]⊗L DL

)
∩ φ∗

L̆
(ML̆(DL̆)) ⊂ φ∗

L̆
(B+

rig,L̆
[µ/t]⊗L̆ DL̆).

Now let x ∈ML(DL) ⊂ML̆(DL̆), then there exists y ∈ φ∗(ML̆(DL̆)) such that (1⊗φ)y = ξ̃sx. Recall
that 1⊗φ : φ∗(DL) ∼−→ DL and φ(µ/t) = (ξ̃µ)/(pt), therefore the cokernel of 1⊗φ : φ∗((µ/t)sB+

rig,L⊗L

DL)→ (µ/t)sB+
rig,L⊗LDL is killed by ξ̃s, in particular, ξ̃sx ∈ (1⊗φ)φ∗((µ/t)sB+

rig,L⊗LDL). Since 1⊗φ

is injective on φ∗((µ/t)sB+
rig,L̆
⊗L̆DL̆), therefore we get that y ∈ φ∗((µ/t)sB+

rig,L⊗LDL)∩φ∗(ML̆(DL̆)) =
φ∗(ML(DL)). In particular, the cokernel of 1⊗ φ : φ∗(ML(DL))→ML(DL) is killed by ξ̃s.

For (2), note that from Lemma 4.11 (3) B+
rig,L̆
⊗B+

rig,L
ML(DL) ∼−→ ML̆(DL̆). Moreover, from

[Ked04, Theorem 6.10] we obtain a slope filtration on B†
rig,L ⊗B+

rig,L
ML(DL) such that base changing

this slope filtration along B†
rig,L → B†

rig,L̆
gives a slope filtration on B†

rig,L̆
⊗B+

rig,L̆

ML̆(DL̆). However,

from [Kis06, Theorem 1.3.8] and [KR09, Proposition 2.3.3] B†
rig,L̆
⊗B+

rig,L̆

ML̆(DL̆) is pure of slope 0.
Therefore, we must have that ML(DL) is pure of slope 0.

4.3. Stability under Galois action. In this subsection we will define and study a finite free slope
0 (φ, ΓL)-module Nrig,L(V ) over B+

rig,L obtained from the B+
rig,L-module in Definition 4.9. From §2.1.4

recall that we have identifications B̃+
rig,L = (B̃+

rig)HL = ∩n∈Nφn(B+
cris(OL∞)) where the last equality

follows since B+
cris(OL∞) = B+

cris(OL)HL (see §2.1.1). Moreover, using the isomorphism in Lemma 2.18
and Remark 2.20 we see that Bcris(OL∞) ⊗L ODcris,L(V ) is equipped with an action of ΓL. We have
B̃+

rig,L ⊗L ODcris,L(V ) ⊂ Bcris(OL∞)⊗L ODcris,L(V ) and we make the following claim:
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Lemma 4.13. The B̃+
rig,L-module B̃+

rig,L ⊗L ODcris,L(V ) is stable under the action of ΓL. For a⊗ x ∈
B̃+

rig,L ⊗L ODcris,L(V ) this action can be explicitly described by the formula

g(a⊗ x) = g(a)⊗
∑

k∈Nd

d∏
i=1

∂ki
i (x)

d∏
i=1

(g([X♭
i ])− [X♭

i ])[ki], for g ∈ ΓL.

Proof. The non-canonical (φ, GL̆)-equivariant L-algebra structure on OB+
cris(OL∞) from §2.1.1 ex-

tends to a (φ, GL̆)-equivariant L̆-algebra structure and it provides (φ, GL̆)-equivariant L-algebra and
L̆-algebra structures on B+

cris(OL∞) via the composition L→ L̆→ OB+
cris(OL∞) ↠ B+

cris(OL∞), where
the last map is the projection map described before Lemma 2.18. Moreover, recall that we have
L⊗φn,L ODcris,L(V ) ∼−→ ODcris,L(V ) for all n ∈ N. So we can write

B+
cris(OL∞)⊗L ODcris,L(V ) ∼−→ B+

cris(OL∞)⊗L̆ Dcris,L̆(V )
∼−→ B+

cris(OL∞)⊗φ−n

L̆
,L̆ (L̆⊗φn

L̆
,L̆ Dcris,L̆(V )).

Applying φn to the isomorphism above gives φn(B+
cris(OL∞) ⊗L ODcris,L(V )) ∼−→ φn(B+

cris(OL∞)) ⊗L

ODcris,L(V ). Note that the Frobenius endomorphism φ on B+
cris(OL∞) ⊗L ODcris(V ) commutes with

the action of ΓL. Therefore, the following is stable under ΓL-action:

∩n∈Nφn(OB+
cris(OL∞)⊗L ODcris,L(V )) = (∩n∈Nφn(OB+

cris(OL∞)))⊗L ODcris,L(V )
= B̃+

rig,L ⊗L ODcris,L(V ).

The second claim follows from Lemma 2.21.

Extending the isomorphism in (4.2) along the map B+
rig,L̆

[µ/t]→ B̃+
rig,L[µ/t] (see §2.1.5), we obtain

an isomorphism B̃+
rig,L[µ/t] ⊗L̆ Dcris,L̆(V ) ∼−→ B̃+

rig,L[µ/t] ⊗B+
L̆

NL̆(V ). Recall that for g ∈ ΓL we have

g(t) = χ(g)t and g(µ) = (1 + µ)χ(g) − 1, where χ is the p-adic cyclotomic character. Now using
Dcris,L̆(V ) = L̆ ⊗L ODcris,L(V ) we get isomorphisms B̃+

rig,L[µ/t] ⊗L ODcris,L(V ) ∼−→ B̃+
rig,L[µ/t] ⊗L̆

Dcris,L̆(V ) ∼−→ B̃+
rig,L[µ/t] ⊗B+

L̆

NL̆(V ) and we equip the last term with a ΓL-action by transport of
structure via this isomorphism. In particular, the preceding discussion induces an action of ΓL over
B̃+

rig,L[µ/t]⊗B+
rig,L̆

Nrig,L̆(V ) = B̃+
rig,L[µ/t]⊗B+

L̆

NL̆(V ). Our first objective is to show that B̃+
rig,L⊗B+

rig,L

Nrig,L̆(V ) ⊂ B̃+
rig,L[µ/t]⊗B+

rig,L
Nrig,L̆(V ) is stable under the action of ΓL. We will do this by embedding

everything into Bcris(OL)⊗Qp V .
Let us fix some elements in Acris(OL∞). For n ∈ N, let n = (p− 1)f(n) + r(n) with r(n), f(n) ∈ N

and 0 ≤ r(n) < p − 1. Set t{n} := tn

f(n)!pf(n) and Λ :=
{ ∑

n∈N ant{n} with an ∈ OF such that an →
0 as n → +∞

}
= OF [t, (tp−1/p)[k], k ∈ N

]∧ where ∧ denotes the p-adic completion. Then we have an
isomorphism of rings

OF [µ, (µp−1/p)[k], k ∈ N]∧ ∼−→ Λ,

via the map µ 7→ exp(t)− 1 with the inverse map given as t 7→ log(1 + µ) (see [Bri08, Lemme 6.2.13]).
Furthermore, for r ∈ N and A := Ainf(OL∞), Ainf(OL), Acris(OL∞) or Acris(OL) set

I(r)A := {a ∈ A such that φn(a) ∈ FilrA for all n ∈ N}. (4.9)

Lemma 4.14. We note the following facts:

(1) tp−1 ∈ pAcris(OL∞), t{n} ∈ Acris(OL∞) and t/µ is a unit in Λ ⊂ Acris(OL∞).

(2) For r ∈ N we have I(r)Ainf(OL∞) = µrAinf(OL∞) and I(p−1)Ainf(OL∞) = µp−1Ainf(OL∞).

(3) Let S = OF JµK, then the natural map Ainf(OL∞)⊗̂SΛ → Acris(OL∞) defined via
∑

k∈N ak ⊗
(µp−1/p)[k] 7→

∑
k∈N ak(µp−1/p)[k] is continuous for the p-adic topology and an isomorphism of

Ainf(OL∞)-algebras.
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(4) The ideal I(r)Acris(OL∞) is topologically generated by t{s} for s ≥ r.

(5) The natural map Ainf(OL∞)/I(r) → Acris(OL∞)/I(r) is injective and the cokernel is killed by
m!pm where m = ⌊ r

p−1⌋.

Similar statements are true for Ainf(OL) and Acris(OL).

Proof. All claims except (3) follow from [Fon94, §5.2] and [Tsu99, §A3]. The proof of claim in (3)
follows in a manner similar to the proof of [Bri08, Proposition 6.2.14].

Remark 4.15. As subrings of Bcris(OL∞), we have Binf(OL∞) := Ainf(OL∞)[1/p], B+
cris(OL∞) :=

Acris(OL∞)[1/p] and B̃+
rig,L and we equip these with a filtration induced from the natural filtration on

Bcris(OL∞) (see §2.1.1). Then one can define ideals similar to (4.9) for these rings and from Lemma 4.14
(7) we obtain isomorphisms Binf(OL∞)/I(r) ∼−→ B+

cris(OL∞)/I(r) and Binf(OL)/I(r) ∼−→ B+
cris(OL)/I(r).

Proposition 4.16. The Binf(OL∞)-module

NL̆,∞(V ) := Binf(OL∞)⊗B+
L̆

NL̆(V ) ⊂ (Binf(OL)⊗Qp V )HL = D̃+
L (V ),

is stable under the residual action of ΓL on D̃+
L (V ) and we equip NL̆,∞(V ) with this action. Then we

have a natural ΓL-equivariant embedding NL̆,∞(V ) ⊂ Bcris(OL∞)⊗LODcris,L(V ) (see Remark 2.19 and
(2.8) for ΓL-action on the latter).

Proof. From Lemma 4.4 (2) consider the exact sequence

0 −→ µsD̃+
L (V ) −→ NL̆,∞(V ) −→ NL̆,∞(V )/µsD̃+

L (V ) −→ 0, (4.10)

where we know that µsD̃+
L (V ) ⊂ D̃+

L (V ) is stable under the action of ΓL. Therefore, to show that
the middle term above is stable under the action of ΓL, it is enough to show that for the inclusion
NL̆,∞(V )/µsD̃+

L (V ) ⊂ D̃+
L (V )/µsD̃+

L (V ) ⊂ (Binf(OL)/µs ⊗Qp V )HL ⊂ Binf(OL)/µs ⊗Qp V , the image
of the first term in the last term is stable under the action of GL.

From Lemma 4.5, we have a Bcris(OL)-linear and (φ, GL̆)-equivariant isomorphism Bcris(OL) ⊗B+
L̆

NL̆(V ) ∼−→ Bcris(OL)⊗Qp V . In view of Remark 4.15, let us set

M := (I(s)B+
cris(OL)⊗Qp V ) ∩ (B+

cris(OL∞)⊗B+
L̆

NL̆(V )) ⊂ Bcris(OL)⊗Qp V.

Then we obtain a diagram with exact rows

0 µsD̃+
L (V ) NL̆,∞(V ) NL̆,∞(V )/µsD̃+

L (V ) 0

0 M B+
cris(OL∞)⊗B+

L̆

NL̆(V ) (B+
cris(OL∞)⊗B+

L̆

NL̆(V ))/M 0.

The left vertical arrow is injective by Lemma 4.4 (2) and the middle arrow is obviously injective.

Lemma 4.17. The inclusion NL̆,∞(V ) ⊂ B+
cris(OL∞) ⊗B+

L̆

NL̆(V ) induces a ΓL̆-equivariant isomor-

phism of Binf(OL∞)-modules NL̆,∞(V )/µsD̃+
L (V ) ∼−→ (B+

cris(OL∞)⊗B+
L̆

NL̆(V ))/M .

Proof. First, we observe that by Lemma 4.4 (2) we have

M ∩NL̆,∞(V ) = (I(s)B+
cris(OL)⊗Qp V ) ∩NL̆,∞(V )

⊂ (I(s)B+
cris(OL)⊗Qp V ) ∩ D̃+

L (V ) ⊂ µsD̃+
L (V ).

Therefore, we get that the rightmost vertical map in the diagram is injective. Next, we need to
show that NL̆,∞(V ) + M = B+

cris(OL∞) ⊗B+
L̆

NL̆(V ). The left expression is clearly contained in the
right. To show the other direction, let x ∈ B+

cris(OL∞) ⊗B+
L̆

NL̆(V ). Then for m ∈ N large enough
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pmx ∈ Acris(OL∞) ⊗A+
L̆

NL̆(T ). By the isomorphism in Lemma 4.14 (4), for r = ⌈ s
p−1⌉, k ∈ N and

xk ∈ NL̆(T ) such that xk → 0 as k → +∞, we can write

pmx =
∑
k∈N

xk(µp−1/p)[k] =
∑

k≤r−1
xk(µp−1/p)[k] +

∑
k≥r

xk(µ/p)[k].

Clearly, the first sum in the rightmost expression is in NL̆,∞(V ). Moreover, from Lemma 4.14 (1)
there exists v ∈ Λ× such that µp−1/p = vtp−1/p. Therefore, we obtain that the second sum is in
(I(s)Acris(OL)⊗Zp T ) ∩ (Acris(OL∞)⊗A+

L̆

NL̆(T )) ⊂M . Hence, x ∈ NL̆,∞(V ) + M .

Let us now consider the diagram (4.11) below with the following description: in (4.11) the bottom
horizontal arrow is a (φ, GL)-equivariant isomorphism since V is a crystalline representation of GL.
The left vertical arrow from fourth to third row is induced by the projection OBcris(OL) ↠ Bcris(OL)
via Xi 7→ [X♭

i ], it admits a section as in (2.7), it is evidently φ-equivariant and it is GL-equivariant
since the codomain is equipped with a GL-action by transport of structure from the domain (see
Remark 2.19). The right vertical arrow from fourth to third row is also induced by the projec-
tion OBcris(OL) ↠ Bcris(OL), it admits a natural section Bcris(OL) ⊗Qp V → (OBcris(OL) ⊗ V )∂=0

and it is naturally (φ, GL)-equivariant. The horizontal arrow in third row is the isomorphism in
Lemma 2.18 and it is (φ, GL)-equivariant by the preceding discussion and Remark 2.19. Commu-
tativity of lower square follows from this. The left vertical arrow from third to second row is an
isomorphism since L̆ ⊗L ODcris,L(V ) ∼−→ Dcris,L̆(V ) by (2.5) and its (φ, GL̆)-equivariance can ei-
ther be checked by the explicit formula in Remark 2.19 or by observing that the non-canonical map
L→ L̆→ Bcris(OL) is (φ, GL̆)-equivariant (see proof of Lemma 4.13). The horizontal arrow in second
row is a (φ, GL̆)-equivariant isomorphism since V is a crystalline representation of GL̆. Commutativ-
ity of the middle square follows since the outer square between second and fourth row as well as the
lower square are commutative. Commutativity and (φ, GL̆)-equivariance of the top square follows from
Lemma 4.5.

B+
cris(OL∞)⊗L̆ Dcris,L̆(V ) B+

cris(OL∞)⊗B+
L̆

NL̆(V )

Bcris(OL)⊗L̆ Dcris,L̆(V ) Bcris(OL)⊗Qp V

Bcris(OL)⊗L ODcris,L(V ) Bcris(OL)⊗Qp V

(OBcris(OL)⊗L ODcris,L(V ))∂=0 (OBcris(OL)⊗Qp V )∂=0.

∼

∼

∼

≀

∼

≀ ≀

(4.11)

Furthermore, in the diagram (4.11), the image of composition of top two left vertical maps inside
Bcris(OL)⊗LODcris,L(V ) is stable under the action of GL by Remark 2.19. So the image of composition
of top two right vertical maps inside Bcris(OL)⊗Qp V is stable under the action of GL and it follows that
its image (B+

cris(OL∞)⊗B+
L̆

NL̆(V ))/M ⊂ B+
cris(OL)/I(s)⊗Qp V

∼−→ Binf(OL)/µs⊗Qp V is stable under the

action of GL. Therefore, from the preceding lemma we obtain that the image of NL̆,∞(V )/µsD̃+
L (V ) ⊂

Binf(OL)/µs ⊗Qp V is stable under the action of GL. Hence, from (4.10) we conclude that NL̆,∞(V ) is
stable under the action of ΓL and the following natural composition is ΓL-equivariant:

Binf(OL∞)⊗B+
L̆

NL̆(V ) ⊂ B+
cris(OL∞)⊗B+

L̆

NL̆(V ) ∼−→ B+
cris(OL∞)⊗L ODcris,L(V ). (4.12)

Recall that Nrig,L̆(V ) = B+
rig,L̆
⊗B+

L̆

NL̆(V ) and we note the following:

Corollary 4.18. Extending B̃+
rig,L-linearly the embedding NL̆,∞(V ) ⊂ Bcris(OL∞)⊗LODcris,L(V ) from

Proposition 4.16 gives an identification of B̃+
rig,L-submodules of Bcris(OL∞)⊗L ODcris,L(V )

B̃+
rig,L ⊗Binf(OL∞ ) NL̆,∞(V ) = B̃+

rig,L ⊗B+
L̆

NL̆(V ) = B̃+
rig,L ⊗B+

rig,L̆

Nrig,L̆(V ),

stable under the ΓL-action on Bcris(OL∞)⊗L ODcris,L(V ).
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Proof. The equality in the claim follows from definitions and the compatibility of ΓL-actions follows
from (4.12). Using (4.2) we have B̃+

rig,L[µ/t]⊗B+
L̆

NL̆(V ) ∼−→ B̃+
rig,L[µ/t]⊗L̆ Dcris,L̆(V ) ⊂ Bcris(OL∞)⊗L̆

Dcris,L̆(V ) = Bcris(OL∞)⊗LODcris,L(V ). Therefore, we can see B̃+
rig,L⊗B+

L̆

NL̆(V ) as a B̃+
rig,L-submodule

of Bcris(OL∞) ⊗L ODcris,L(V ). Then the stability of B̃+
rig,L ⊗B+

L̆

NL̆(V ) under ΓL-action follows from
Proposition 4.16.

Recall that from Definition 4.9 we have a B+
rig,L-submodule ML(ODcris,L(V )) ⊂ML̆(Dcris,L̆(V ))

stable under the action of (φ, ΓL̆) and from Lemma 4.8 we have a B+
rig,L̆

-linear and (φ, ΓL̆)-equivariant
isomorphism β : ML̆(Dcris,L̆(V )) ∼−→ Nrig,L̆(V ). Define a B+

rig,L-submodule of Nrig,L̆(V ) as

Nrig,L(V ) := β(ML(ODcris,L(V ))) ⊂ Nrig,L̆(V ). (4.13)

Since the map B+
rig,L → B+

rig,L̆
constructed in §2.1.5 is (φ, ΓL̆)-equivariant, from (4.13) we obtain a

B+
rig,L-linear and (φ, ΓL̆)-equivariant isomorphism β : ML(ODcris,L(V )) ∼−→ Nrig,L(V ). In particular,

from Lemma 4.11 (3) we get that Nrig,L(V ) is a finite free B+
rig,L-module of rank = dimQp V and

the natural map B+
rig,L̆
⊗B+

rig,L
Nrig,L(V ) → Nrig,L̆(V ) is a (φ, ΓL̆)-equivariant isomorphism, since β is

(φ, ΓL̆)-equivariant. Moreover, from Lemma 4.12 it follows that Nrig,L(V ) is of finite [p]q-height and
pure of slope 0. Now consider the following diagram:

ML(ODcris,L(V ))[µ/t] B+
rig,L[µ/t]⊗L ODcris,L(V ) Nrig,L(V )[µ/t]

ML̆(Dcris,L̆(V ))[µ/t] B+
rig,L̆

[µ/t]⊗L̆ Dcris,L̆(V ) Nrig,L̆(V )[µ/t].

∼
∼
β

∼

∼

∼
β

∼

(4.14)

In the diagram, all vertical arrows are natural inclusions. In the bottom row, the left to right horizontal
arrow is the inverse of the composition of lower horizontal and left vertical arrow of diagram (4.5), the
right to left horizontal arrow is inverse of (4.2), the curved arrow is the map β in Lemma 4.8 and the
resulting triangle commutes by diagram (4.5). In the top row, the left to right horizontal arrow is the
isomorphism in (4.7), the curved arrow is from (4.13), the right to left horizontal arrow is the inverse of
β composed with natural inclusion and the resulting triangle commutes by definition. Therefore, two
inner squares commute by definition and all maps are (φ, ΓL̆)-equivariant.

Using the diagram (4.14) and Defintion 4.9, we can write Nrig,L(V ) = (B+
rig,L[µ/t]⊗LODcris,L(V ))∩

Nrig,L̆(V ) ⊂ B+
rig,L̆

[µ/t]⊗L̆Dcris,L̆(V ), in particular, now we will consider Nrig,L(V ) as a B+
rig,L-submodule

of B+
rig,L[µ/t] ⊗L ODcris,L(V ). Furthermore, from Lemma 2.21 recall that B+

rig,L ⊗L ODcris,L(V ) ⊂
B+

cris(OL∞) ⊗L ODcris,L(V ) is stable under the action of ΓL and we equip the former with induced
ΓL-action. Since g(t) = χ(g)t and g(µ) = (1 + µ)χ(g) − 1 for g ∈ ΓL and χ the p-adic cyclotomic
character, the preceding ΓL-action extends to B+

rig,L[µ/t]⊗L ODcris,L(V ).

Proposition 4.19. The B+
rig,L-submodule Nrig,L(V ) ⊂ B+

rig,L[µ/t] ⊗L ODcris,L(V ) is stable under the
action of ΓL. Moreover, the preceding inclusion extends to a B+

rig,L[µ/t]-linear and (φ, ΓL)-compatible
isomorphism

B+
rig,L[µ/t]⊗B+

rig,L
Nrig,L(V ) ∼−→ B+

rig,L[µ/t]⊗L ODcris,L(V ). (4.15)

Proof. From Corollary 4.18 and the discussion after (4.13), we have

B̃+
rig,L ⊗B+

rig,L̆

Nrig,L̆(V ) ∼−→ B̃+
rig,L ⊗B+

rig,L
Nrig,L(V ),

stable under the action of ΓL. Moreover, using Lemma 2.21 and the discussion after (4.14), we have a
ΓL-equivariant embedding B+

rig,L[µ/t]⊗L ODcris,L(V ) ⊂ Bcris(OL∞)⊗Qp ODcris,L(V ). Therefore, inside
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Bcris(OL∞)⊗Qp ODcris,L(V ), the following intersection is stable under ΓL-action:(
B̃+

rig,L ⊗B+
rig,L

Nrig,L(V )
)
∩

(
B+

rig,L[µ/t]⊗L ODcris,L(V )
)

=
(
B̃+

rig,L ⊗B+
rig,L

Nrig,L(V )
)
∩

(
B+

rig,L[µ/t]⊗B+
rig,L

Nrig,L(V )
)

= (B̃+
rig,L ∩B+

rig,L[µ/t])⊗B+
rig,L

Nrig,L(V ) = Nrig,L(V ).

The first equality follows from (4.14) and the second equality follows from Lemma 2.11 and the fact
that Nrig,L(V ) is finite free over B+

rig,L. This proves the first claim. For the second claim, note that
by definition, extending the (φ, ΓL)-equivariant inclusion Nrig,L(V ) ⊂ B+

rig,L[µ/t]⊗L ODcris,L(V ) along
the map B+

rig,L → B+
rig,L coincides with the top right horizontal arrow of the diagram (4.14). Hence,

the isomorphism in (4.15) follows.

Corollary 4.20. The action of ΓL on Nrig,L(V ) is trvial modulo µ.

Proof. Note that g(µ) = (1+µ)χ(g)−1 and g(t) = χ(g)t for g ∈ ΓL and χ the p-adic cyclotomic character,
in particular, (g − 1)(µ/t) = µug(µ/t) for some ug ∈ B+

L . Therefore, using Lemma 2.22 it follows that
the action of ΓL is trivial modulo µ on B+

rig,L[µ/t]⊗L ODcris,L(V ) ∼←− B+
rig,L[µ/t]⊗B+

rig,L
Nrig,L(V ) (see

(4.15)).
From Proposition 4.19 note that we have a (φ, ΓL)-equivariant inclusion Nrig,L(V ) ⊂ B+

rig,L[µ/t]⊗B+
rig,L

Nrig,L(V ) ∼−→ B+
rig,L[µ/t] ⊗L ODcris,L(V ). Let x ∈ Nrig,L(V ), then for g ∈ ΓL we have (g − 1)x ∈

Nrig,L(V ) ⊂ Nrig,L̆(V ) and (g − 1)x ∈ µB+
rig,L[µ/t]⊗B+

rig,L
Nrig,L(V ). So inside Nrig,L̆(V )[µ/t],

Nrig,L̆(V ) ∩
(
µB+

rig,L[µ/t]⊗B+
rig,L

Nrig,L(V )
)

=
(
B+

rig,L̆
⊗B+

rig,L
Nrig,L(V )

)
∩

(
µB+

rig,L[µ/t]⊗B+
rig,L

Nrig,L(V )
)

= (B+
rig,L̆
∩ µB+

rig,L[µ/t])⊗B+
rig,L

Nrig,L(V ) = µNrig,L(V ),

where the first equality follows from the isomorphism B+
rig,L̆
⊗B+

rig,L
Nrig,L(V ) ∼−→ Nrig,L̆(V ) (see the

discussion after (4.13)), the second equality follows since Nrig,L(V ) is free over B+
rig,L and the last

equality follows from Lemma 2.10. Hence, (g − 1)Nrig,L(V ) ⊂ µNrig,L(V ) for g ∈ ΓL.

4.4. Compatibility with (φ, ΓL)-modules. From §2.2 recall that D†
rig,L(V ) is a pure of slope 0

finite free (φ, ΓL)-module over B†
rig,L functorially attached to V . The following result is a generalisation

of [Ber02, Proposition 3.5 & Théorème 3.6] from the perfect residue field case to L:

Proposition 4.21. There are natural (φ, GL)-equivariant isomorphisms

(1) B̃+
rig[1/t]⊗L ODcris,L(V ) ∼−→ B̃+

rig[1/t]⊗Qp V .

(2) B̃†
rig[1/t]⊗L ODcris,L(V ) ∼−→ B̃†

rig[1/t]⊗B†
rig,L

D†
rig,L(V ).

Proof. For (1), recall that from Lemma 4.13, there is a B̃+
rig-linear and (φ, GL)-equivariant map

B̃+
rig ⊗L ODcris,L(V ) −→ Bcris(OL)⊗L ODcris,L(V ) ∼−→ Bcris(OL)⊗Qp V,

where the isomorphism is from Lemma 2.18. Extending the isomorphism in (4.2) along B̃+
rig,L[µ/t] →

B̃+
rig[1/t] and using (2.5) we obtain a φ-equivariant isomorphism

B̃+
rig[1/t]⊗L ODcris,L(V ) ∼−→ B̃+

rig[1/t]⊗L̆ Dcris,L̆(V ) ∼−→ B̃+
rig[1/t]⊗B+

L̆

NL̆(V ).

The preceding isomorphism fits into a commutative diagram compatibly with (4.11)

B̃+
rig[1/t]⊗L ODcris,L(V ) Bcris(OL)⊗L ODcris,L(V )

B̃+
rig[1/t]⊗B+

L̆

NL̆(V ) B̃+
rig[1/t]⊗Qp V Bcris(OL)⊗Qp V,

≀ ∼

∼

(4.16)
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where the left horizontal arrow in bottom row is induced from the isomorphism Ainf(OL)[1/µ] ⊗A+
L̆

NL̆(T ) ∼−→ Ainf(OL)[1/µ] ⊗Zp T (see Lemma 4.4 (2)), the slanted isomorphism is the isomorphism
in the third row of (4.11) and the rest are natural injective maps. Since the slanted isomorphism is
(φ, GL)-equivariant we obtain that the isomorphism B̃+

rig[1/t] ⊗L ODcris,L(V ) ∼−→ B̃+
rig[1/t] ⊗Qp V is

(φ, GL)-equivariant, showing (1). For (2), extending the isomorphism in (1) along B̃+
rig[1/t]→ B̃†

rig[1/t]
and using (2.3) we obtain (φ, GL)-equivariant isomorphisms

B̃†
rig[1/t]⊗L ODcris,L(V ) ∼−→ B̃†

rig[1/t]⊗Qp V
∼−→ B̃†

rig[1/t]⊗B†
rig,L

D†
rig,L(V ).

From the discussion after (4.13) and Proposition 4.19 we have that B†
rig,L⊗B+

rig,L
Nrig,L(V ) is a pure

of slope 0 finite free (φ, ΓL)-module over B†
rig,L of rank = dimQp V . Therefore, by the equivalence of

categories in [Ohk15, Lemma 4.5.7] there exists a unique finite free étale (φ, ΓL)-module D†
L over B†

L of
rank = dimQp V such that B†

rig,L ⊗B+
rig,L

Nrig,L(V ) ∼−→ B†
rig,L ⊗B†

L
D†

L compatible with (φ, ΓL)-action.

Corollary 4.22. There exists a natural (φ, GL)-equivariant isomorphism B̃†
rig ⊗B+

rig,L
Nrig,L(V ) ∼−→

B̃†
rig ⊗B†

L
V inducing natural (φ, ΓL)-equivariant isomorphisms D†

L
∼−→ D†

L(V ) and B†
rig,L ⊗B+

rig,L

Nrig,L(V ) ∼−→ B†
rig,L ⊗B†

L
D†

L(V ).

Proof. Consider the following diagram:

B̃†
rig ⊗B+

rig,L
Nrig,L(V ) B̃†

rig ⊗B+
rig,L̆

Nrig,L̆(V ) B̃†
rig ⊗Qp V

B̃†
rig[1/t]⊗B+

rig,L
Nrig,L(V ) B̃†

rig[1/t]⊗L ODcris,L(V ) B̃†
rig[1/t]⊗Qp V.

∼ ∼

∼ ∼

In the top row, the left horizontal arrow is induced by the isomorphism B+
rig,L̆

⊗ Nrig,L(V ) ∼−→
Nrig,L̆(V ) (see the discussion after (4.13)) and the right horizontal arrow is induced by the isomor-
phism Ainf(OL)[1/µ]⊗A+

L̆

NL̆(T ) ∼−→ Ainf(OL)[1/µ]⊗Zp T (see Lemma 4.4 (2)). In the bottom row, the

left horizontal arrow is induced by the (φ, ΓL)-equivariant isomorphism B+
rig,L[µ/t]⊗B+

rig,L
Nrig,L(V ) ∼−→

B+
rig,L[µ/t] ⊗L ODcris,L(V ) (see (4.15) in Proposition 4.19) and the right horizontal arrow is induced

from Propositon 4.21 (1). The left and right vertical arrow are natural maps and the middle verti-
cal arrow is induced from (4.2) and (2.5). Commutativity of the left square follows from (4.14) and
commutativity of the right square follows from (4.16). This shows the first claim.

For the second claim, set V ′ := (B̃†⊗B†
L

D†
L)φ=1, it is a p-adic representation of GL with dimQp V ′ =

dimQp V (see [AB08, Théorème 4.35]). Now we note that V ′ ⊂ (B̃†
rig ⊗B†

L
D†

L)φ=1 ∼−→ (B̃†
rig ⊗B+

rig,L

Nrig,L(V ))φ=1 ∼−→ (B̃†
rig⊗Qp V )φ=1 = V , where the first isomorphism follows from the discussion before

the claim, the second isomorphism follows from (1) and the last equality follows from Lemma 2.2.
Therefore, V ′ ∼−→ V as GL-representations and it implies that D†

L = D†
L(V ′) ∼−→ D†

L(V ) as étale
(φ, ΓL)-modules over B†

L. It is straightforward to verify that this isomorphism is compatible with the
commutative diagram above. This concludes our proof.

Remark 4.23. As indicated before the Corollary, for a p-adic crystalline representation of V , combining
the (φ, ΓL)-equivariant isomorphism B†

rig,L ⊗B+
rig,L

Nrig,L(V ) ∼−→ B†
rig,L ⊗B†

L
D†

L(V ) together with the

inverse of the isomorphism (4.15), gives a B†
rig,L-linear (φ, ΓL)-equivariant isomorphism

B†
rig,L ⊗L ODcris,L(V ) ∼−→ B†

rig,L ⊗B†
L

D†
L(V ). (4.17)

The isomorphism (4.17) generalises [Ber02, Proposition 3.7] from the perfect residue field case to L.
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4.5. Obtaining Wach module. The finite free B+
rig,L-module Nrig,L(V ) is of finite [p]q-height s

and pure of slope 0 (see Lemma (4.12)), therefore from Lemma 2.12 (2) there exists a unique finite free
B+

L -module of rank = dimQp V and finite [p]q-height s whose extension of scalars along B+
L → B+

rig,L

gives Nrig,L(V ). In particular, from the proof of Lemma 2.12 we note the following:

Definition 4.24. Define NL(V ) := Nrig,L(V ) ∩D†
L(V ) ⊂ D†

rig,L(V ).

The B+
L -module NL(V ) is finite free of rank = dimQp V and it is equipped with an induced

Frobenius-semilinear endomorphism φ such that cokernel of the injective map (1⊗ φ) : φ∗(NL(V ))→
NL(V ) is killed by [p]sq since Nrig,L(V ) is of finite [p]q-height s and 1 ⊗ φ : φ∗(D†

L(V )) ∼−→ D†
L(V ).

Moreover, we have NL(V ) ⊂ D+
L (V ) because inside D†

rig,L(V ) we have

NL(V ) = Nrig,L(V ) ∩D†
L(V ) ⊂ (B̃+

rig ⊗Qp V )HL ∩ (B† ⊗Qp V )HL

⊂ ((B̃+
rig ⊗Qp V ) ∩ (B† ⊗Qp V ))HL

⊂ ((B̃+
rig ∩B†)⊗Qp V )HL = (B+ ⊗Qp V )HL = D+

L (V ).

Furthermore, since Nrig,L(V ) and D†
L(V ) are stable under compatible action of ΓL (see Proposition

4.19 and Corollary 4.22), we conclude that NL(V ) is stable under ΓL-action. In particular, from the
preceding discussion and Lemma 2.12 we get (φ, ΓL)-equivariant isomorphisms

B+
rig,L ⊗B+

L
NL(V ) ∼−→ Nrig,L(V ) and B†

L ⊗B+
L

NL(V ) ∼−→ D†
L(V ). (4.18)

Lemma 4.25. The action of ΓL on NL(V ) is trvial modulo µ.

Proof. Let g ∈ ΓL and x ∈ NL(V ). Then, (g − 1)x ∈ NL(V ) ⊂ D†
L(V ). Moreover, from Corollary 4.20

we have (g − 1)x ∈ µNrig,L(V ). Therefore, inside D†
rig,L(V ), from (4.18) we get

(g − 1)x ∈ D†
L(V ) ∩ µNrig,L(V ) = (B†

L ∩ µB+
rig,L)⊗B+

L
NL(V ) = µNL(V ).

Definition 4.26. Define the Wach module over A+
L = B+

L ∩AL ⊂ BL as

NL(T ) := NL(V ) ∩DL(T ) ⊂ DL(V ).

Proof of Theorem 4.1. We will show that NL(T ) from Definition 4.26 satisfies all axioms of Definition
3.7. From the definition, note that NL(T ) is a finitely generated torsion-free A+

L -module and an
elementary computation shows that NL(T ) ∩ µnNL(V ) = µnNL(T ) for all n ∈ N, in particular,
NL(T )/µ is p-torsion free. Moreover, we have NL(T )[1/p] = NL(V ) and a simple diagram chase
shows that (NL(T )/p)[µ] = (NL(T )/µ)[p] = 0 and (AL ⊗A+

L
NL(T ))/p = (NL(T )/p)[1/µ]. So we

have NL(T )/pn ⊂ (NL(T )/pn)[1/µ] = AL ⊗A+
L

N/pn for all n ∈ N and therefore NL(T ) ∩ pn(AL ⊗A+
L

NL(T )) = pnNL(T ), in particular, NL(V ) ∩ (AL ⊗A+
L

NL(T )) = NL(T ). Now using Remark 2.15 it
follows that NL(T ) is finite free A+

L -module of rank = rkB+
L

NL(V ) = dimQp V . Alternatively, to get
the preceding statement, one can also use [Ber04, Lemme II.1.3] (the proof of loc. cit. does not require
the residue field of discrete valuation base field, L in our case, to be perfect).

From the definition it also follows that NL(T ) ∩ pnDL(T ) = pnNL(T ), in particular, we have
NL(T )/pn ⊂ DL(T )/pn and therefore (NL(T )/pn)[1/µ] ⊂ DL(T )/pn. So we get that (AL ⊗A+

L

NL(T ))/pn ⊂ DL(T )/pn, or equivalently, (AL⊗A+
L

NL(T ))∩pnDL(T ) = pn(AL⊗A+
L

NL(T )). Note that
we have (AL⊗A+

L
NL(T ))[1/p] = BL⊗B+

L
NL(V ) ∼−→ DL(V ), where the last isomorphism follows from

(4.18). Therefore, we get that AL⊗A+
L

NL(T ) = DL(T )∩ (AL⊗A+
L

NL(T ))[1/p] ∼−→ DL(T )∩DL(V ) =
DL(T ). Next, NL(T ) is equipped with an induced Frobenius-semilinear endomorphism φ. We have
φ : A+

L → A+
L is finite and faithfully flat of degree pd+1 and φ∗(AL) ∼−→ A+

L ⊗φ,A+
L

AL and similarly
φ∗(B+

L ) ∼−→ A+
L ⊗φ,A+

L
B+

L (see §2.1.2). Therefore, we get that φ∗(NL(V )) = B+
L ⊗φ,B+

L
NL(V ) ∼−→

A+
L ⊗φ,A+

L
NL(V ) and φ∗(DL(T )) = AL ⊗φ,AL DL(T ) ∼−→ A+

L ⊗φ,A+
L

DL(T ). Then it easily follows
that φ∗(NL(T )) = φ∗(NL(V ))∩φ∗(DL(T )) ⊂ φ∗(DL(V )). Now since 1⊗φ is injective on φ∗(DL(V )),
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1 ⊗ φ : φ∗(DL(T )) ∼−→ DL(T ) and cokernel of 1 ⊗ φ : φ∗(NL(V )) → NL(V ) is killed by [p]sq, we get
that cokernel of the injective map 1 ⊗ φ : φ∗(NL(T )) → NL(T ) is killed by [p]sq. Finally, note that
NL(T ) is equipped with an induced ΓL-action such that ΓL acts trivially on NL(T )/µNL(T ) (follows
easily from Lemma 4.25) and we have AL ⊗A+

L
NL(T ) ∼−→ DL(T ). Hence, we conclude that T is of

finite [p]q-height.

Corollary 4.27. There exists a natural isomorphism of étale (φ, ΓL̆)-modules AL̆ ⊗AL DL(T ) ∼−→
DL̆(T ) and a natural isomorphism of Wach modules A+

L̆
⊗A+

L
NL(T ) ∼−→ NL̆(T ).

Proof. Note that we have an injection of étale (φ, ΓL̆)-modules AL̆⊗ALDL(T ) ⊂ DL̆(T ) and (W (C♭
L)⊗AL

DL(T ))φ=1 ∼−→ T
∼←− (W (C♭

L) ⊗AL̆
DL̆(T ))φ=1 as GL̆-representations. So we get that AL̆ ⊗AL

DL(T ) ∼−→ DL̆(T ). Furthermore, we have a (φ, ΓL̆)-equivariant injection of Wach modules A+
L̆
⊗A+

L

NL(T ) ⊂ NL̆(T ). So by the unniquess of a Wach module attached to T (see Lemma 3.9), it follows
that A+

L̆
⊗A+

L
NL(T ) ∼−→ NL̆(T ).

Proof of Corollary 4.3. The equivalence of ⊗-categories follows from Theorem 4.1 and we are left to
show exactness of the functor NL since exactness of the quasi-inverse functor follows from Proposition
3.3 and the exact equivalence in (2.2). From §2.1.5 recall that A+

L → A+
L̆

is faithfully flat, therefore
B+

L → B+
L̆

is faithfully flat. Moreover, for a p-adic crystalline representation V of GL, from Corollary
4.27 we have B+

L̆
⊗B+

L
NL(V ) ∼−→ NL̆(V ). So given an exact sequence

0→ V1 → V2 → V3 → 0, (4.19)

of p-adic crystalline representations of GL it is enough to show that the sequence

0→ NL̆(V1)→ NL̆(V2)→ NL̆(V3)→ 0 (4.20)

is exact. Furthermore, note that (4.19) is exact if and only if it is exact after tensoring with Qp(r) for
r ∈ Z. Similarly, (4.20) is exact if and only if it is exact after tensoring with µ−rB+

L̆
(r). So we may

assume that (4.19) is an exact sequence of positive crystalline representations, i.e. the Wach modules
in (4.20) are effective. Moreover, the map B+

L̆
→ B+

rig,L̆
is faithfully flat (by an argument similar to

Lemma 2.6), so it is enough to show that the following sequence is exact:

0→ Nrig,L̆(V1)→ Nrig,L̆(V2)→ Nrig,L̆(V3)→ 0.

Exactness of the preceding sequence follows from Lemma 4.8, [Kis06, Theorem 1.2.15], [KR09, Propo-
sition 2.2.6] and exactness of the functor Dcris,L̆.
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