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ABSTRACT. For an absolutely unramified extension L/Q, with imperfect residue field, we define
and study Wach modules in the setting of (¢,I')-modules for L. Our main result establishes a direct
equivalence between the category of lattices inside crystalline representations of the absolute Galois
group of L and the category of integral Wach modules for L. Moreover, we provide a direct relation
between a rational Wach module equipped with the Nygaard filtration and the filtered p-module of its
associated crystalline representation.

1. INTRODUCTION

In classical p-adic Hodge theory, Fontaine introduced and developed the idea of studying a p-adic rep-
resentation of the absolute Galois group of Q, (and its extensions) via semilinear algebraic objects
attached to the representation. More concretely, for an extension F'/Q, with perfect residue field and
absolute Galois group G, in [Fon90], Fontaine showed that the category of Z,-representations of G is
equivalent to the category of étale (i, I'r)-modules, where I'r is an open subgroup of Z (see §1.1). On
the other hand, to understand p-adic representations coming from geometry, Fontaine defined several
classes of representations such as crystalline, semistable, etc. in [Fon82]. Putting the two point of views
together, Fontaine asked the following natural question: is it possible to describe crystalline represen-
tations of G in terms of (¢,I'r)-modules? For an unramified extension F'/Q,, Fontaine studied this
question in [Fon90], and introduced the notion of finite crystalline-height representations (représenta-
tions de cr-hauteur finie) of G, which was further developed by Wach [Wac96; Wac97], Colmez [Col99]
and Berger [Ber04]. More precisely, [Ber04] showed that the category of G p-stable Z-lattices of p-adic
crystalline representations is equivalent to the category of Wach modules, where a Wach module is a
certain integral lattice inside the étale (¢, 'r)-module associated to the representation (see §1.1).

The two point of views of Fontaine admit natural generalisations to a relative base, i.e. formally étale
algebras over a formal torus. In particular, relative étale (¢, I')-modules were studied by Andreatta
[And06] and relative p-adic crystalline representations were studied by Faltings [Fal89] and Brinon
[Bri0g]. In [Abh21], we introduced and studied the notion of relative Wach modules for an absolutely
unramified (at p) relative base. However, compared to the classical case, the results of [Abh21] are
restrictive, i.e. we only show that relative Wach modules give rise to lattices inside relative crystalline
representations; the converse is the following difficult open question: can one functorially associate a
relative Wach module to a Z,-lattice inside a relative crystalline representation?

In this article, we resolve the open question for the imperfect residue field case (see Theorem 1.1)
and we use the result thus obtained, in a subsequent work [Abh23a], to resolve the open question in the
relative case. More concretely, for a complete discrete valuation field L/Q, with imperfect residue field,
[And06] developed the theory of étale (¢, 'f,)-modules, where ', is an open subgroup of Z,(1)? x zy,
and [Bri06] developed the theory of p-adic crystalline representations of of G, the absolute Galois
group of L. However, for absolutely unramified L/Q,, the theory of Wach modules for L was missing
from the picture. So, in this article, we define Wach modules for L and prove our first main result:

Theorem 1.1 (Corollary 4.2). The category of G -stable Zy-lattices inside p-adic crystalline represen-
tations of G, is equivalent to the category of Wach modules for L.
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As mentioned above, the difficult part of Theorem 1.1 is to functorially associate a Wach module
to any G-stable Z,-lattice T inside a p-adic crystalline representation of G';,. To resolve this, let us
note that using the classical theory of [Ber04] in the perfect residue field case, one can associate to T
a p-module N over the base ring of Wach modules for L. However, equipping N with a natural action
of I'y, is highly non-trivial, where the difficulty arises because I', is quite large compared to I'r from
the classical case. The heart of this article constitutes a direct construction of the natural action of I'y,
on N (see §1.2.3 for details). Let us remark that the analogous theory of Breuil-Kisin modules in the
imperfect residue field case was studied by Brinon and Trihan [BT08]. However, the theory of loc. cit.
is different from the theory of Wach modules, in particular, the construction of the action of I'y, does
not feature in [BT08].

Besides being natural generalisations of classical results to the relative case, the usefulness of relative
Wach modules stems from its applications in the computation of p-adic vanishing cycles using syntomic
complexes. Indeed, to generalise the computation of p-adic vanishing cycles by Colmez and Niziot
[CN17] to the case of crystalline coefficients, in [Abh23b], crucial inputs were the results on relative
Wach modules from [Abh21]. However, as mentioned above, the results of [Abh21], and therefore, of
[Abh23b] only work for certain crystalline coefficients. In order to generalise the results of [CN17] to
all crystalline coefficients, we need the more general result on relative Wach modules from [Abh23a,
Theorem 1.7], for which Theorem 1.1 is a crucial input. Furthermore, in op. cit. we provide an interesting
application of Theorem 1.1, in particular, we give a new criteria for checking the crystallinity of relative
p-adic representations (see [Abh23a, Theorem 1.9 & Corollary 1.10]).

An additional motivation for considering Wach modules is to construct a deformation of the functor
D.is from classical p-adic Hodge theory (see [Fon90, §B.2.3]). This construction was carried out in
the Fontaine-Laffaille range by Wach [Wac97, Theoreme 3], and more generally, by Berger [Ber04,
Théoréeme I111.4.4]. In this article, our second main result provides a generalisation of loc. cit. to the
imperfect residue field case (see Theorem 1.8). Let us remark that the general idea of deformations of
crystalline and de Rham cohomologies has led to exciting new developments in integral p-adic Hodge
theory via the introduction and development of prismatic cohomology [Sch17; BMS18; BMS19; BS22].

Finally, note that recent developments in the theory of prismatic F-crystals [BS23; DLMS22; GR22)
provide a new approach to the classification of lattices inside crystalline representations. While the
prismatic point of view is an exciting development, in the current paper, we employ techniques from
the theory of (¢, I')-modules to obtain our results. This is due to the fact that, in our approach, the
construction of Wach modules for L and the proof of Theorem 1.1 and Theorem 1.8, are explicit and
direct, which could be advantageous for “arithmetic” applications. In §1.2.4 we will provide more details
on relations of our results in this article to other works. In the rest of this section, we will describe the
results mentioned above in more detail. We begin by recalling the main classical result.

1.1. The classical case. Let p be a fixed prime number and let x denote a perfect field of
characteristic p; set Op := W(k) to be the ring of p-typical Witt vectors with coefficients in x and

F :=Frac(Op). Let F denote a fixed algebraic closure of F', let C,, := F denote the p-adic completion,
and Gp := Gal(F/F) the absolute Galois group of F. Moreover, let Fo := UpF(ppn) with Tp 1=
Gal(Fao/F) = Z) and Hp = Gal(F/Fs). Furthermore, let F2, denote the tilt of Fis (see §1.3) and
fix € := (1,(p, G2, .. .) in O%OO, and p = [e] — 1 and [p]g := o(p)/p in Aint(OFp, ) == W(O%Oo), the ring
of p-typical Witt vectors with coefficients in O%Oo.

In [Fon90] Fontaine estalished a categorical equivalence between Z,-representations of G and
étale (p,T'p)-modules over a certain period ring Ap := Op[u][1/u]" € W(FL), where * denotes
the p-adic completion, and Ap is stable under the (¢,I'r)-action on W(Fgo) For a fixed finite
free Z,-representation T' of G, the associated finite free étale (¢,I'r)-module over Ap is given as
Dp(T) = (A ®z, T)"F, where A C W(C;’?) is the maximal unramified extension of A inside
W(C;). In loc. cit., Fontaine conjectured that if V' := T[1/p] is crystalline then there exists a lat-
tice inside Dp(V) := Dp(T)[1/p] over which the action of I'r admits a simpler form. Denote by
A} = Op[u] C Ap, which is stable under the (¢, I'r)-action, and note the following:

Definition 1.2. Let a,b € Z with b > a. A Wach module over A}, with weights in the interval [a, ] is
a finite free AJFr—module N equipped with a continuous and semilinear action of I'z such that,
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(1) The action of I'r on N/uN is trivial.

(2) There is a Frobenius-semilinear operator ¢ : N[1/u] — N[1/¢(n)] commuting with the action
of T'r such that ¢(u’N) C u’N and the map (1 ® ) : p*(u’N) := A}, N PN — pbN s
A
injective and its cokernel is killed by [p]g_a.
Denote the category of Wach modules over Aljt as (p,I' F)—Mod[ﬁ]ﬁ with morphisms between objects
F .

being A f-linear, T p-equivariant and p-equivariant (after inverting x) morphisms. Let Repczr;S(G F) de-
note the category of Z,-lattices inside p-adic crystalline representations of Gr. To any T in Repczrgs(G F)
using [Wac96] and [Col99], Berger functorially attaches a Wach module Np(T) over AL in [Ber04].

The main result in the arithmetic case is as follows (see [Ber(04]):

Theorem 1.3. The Wach module functor induces an equivalence of ®-catgeories
Repg™(Gr) = (o, PF)-Mod[jjg
T+— Np(T),

with a quasi-inverse @-functor given as N — (W(CZ) ®p+ N)wzl.
F

1.2. The imperfect residue field case. Let d € N and X;, X»,..., X, be indeterminates
and let O;0 = (OF[Xlil, .. ,Xécd](p))A, where " denotes the p-adic completion. It is a complete
discrete valuation ring with uniformiser p, imperfect residue field k(Xy,...,Xy) and fraction field
LF := O;p[1/p]. Let Oy denote a finite étale extension of O;o such that it is a complete discrete
valuation ring with uniformiser p, imperfect residue field a finite étale extension of x(X7i,..., Xy) and
fraction field L := Op[1/p]. Let G, denote the absolute Galois group of L for a fixed algebraic closure
L/L; let T, — Z,(1)? x Z} denote the Galois group of Lo, over L where Lo, is the fraction field
of Or_ obtained by adjoining to Op, all p-power roots of unity and all p-power roots of X; for all
1 <i<d (see §2). In this setting, we have the theory of crystalline representations of G, [Bri06] and
étale (p,T')-modules [And06]. However, the theory of Wach modules for L, i.e. a description of the
p-adic crystalline representations G, in terms of (¢, 'z )-modules, was missing from the picture. The
main goal of this article is to complete this picture, which we discuss next.

1.2.1. Wach modules. For 1 < i < d, let us set Xib = (Xi,Xil/p,...) in Oioo and take [Xzb] in
Ai(Or,) = W(ObLOO) to be the Teichmiiller representative of X?. Let A} denote the unique finite
étale extension (along the finite étale map O;n0 — Op) of the (p, u)-adic completion of the localisation
Or[u][X3)E, ..., [X5)FY (pp). The ring A7 is equipped with a Frobenius endomorphism ¢ and a
continuous action of I'z, (see §1.3 and §2.1).

Definition 1.4. Let a,b € Z with b > a. A Wach module over A} with weights in the interval [a, b]
is a finite free Aj{—module N equipped with a continuous and semilinear action of I'y satisfying the
following assumptions:
(1) The action of I'y, on N/uN is trivial.
(2) There is a Frobenius-semilinear operator ¢ : N[1/u] — N[1/¢(u)] commuting with the action of
'z, such that ¢(u®N) C p’N and the map (1®¢) : ¢*(uPN) := AL ®y At U’ N — PN is injective
(S
and its cokernel is killed by [p]5~2.

Say that N is effective if one can take b = 0 and a < 0. Denote the category of Wach modules over AJLr
as (¢, F)—Modf]f with morphisms between objects being AZ—linear, I'r-equivariant and (-equivariant
L

(after inverting p) morphisms.
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Set Aj = Az[l /u]™ as the p-adic completion, equipped with a Frobenius endomorphism ¢ and a
continuous action of I'y,. Let T" be a finite free Z,-module equipped with a continuous action of G,
and note that one can functorially attach to T" a finite free étale (¢, I'r)-module Dy, (T) over A of rank
= 1kz, T equipped with a Frobenius-semilinear operator ¢ and a semilinear and continuous action of
I'z. In fact, the preceding functor induces an equivalence between finite free Z,-representations of G,
and finite free étale (¢, 'r)-modules over A (see §2.2).

Remark 1.5. The category of Wach modules over A}f can be realized as a full subcategory of étale
(¢, T')-modules over Ay, (see Proposition 3.3).

1.2.2. Main results. Let Rep%r;S(G 1) denote the category of Z,-lattices inside p-adic crystalline
representations of Gr. The main result of this article, i.e. Theorem 1.1, can be stated more precisely
as follows:

Theorem 1.6 (Corollary 4.2). The Wach module functor induces an equivalence of ®-categories
Repg™(Gr) = (@,F)—Modfz‘i
T+— NL (T),

with a quasi-inverse given as N v+ Tr(N) := (W(C%) ®p+ N)wzl, where Cp, := T.
L
Our strategy for the proof of Theorem 1.6 will be described in §1.2.3.

Remark 1.7. In Theorem 1.6, we do not expect the functor N, to be exact (see [CD11, Example 7.1]
for an example in the arithmetic case). However, after inverting p, the Wach module functor induces

an exact equivalence of ®-categories Repg;S(G L) — (@,F)—Modg}f via V — N (V), with an exact
L

quasi-inverse ®-functor given as M + V(M) := (W(C) ®at ]\/.I')cp:1 (see Corollary 4.3).

As indicated earlier, the proof of Theorem 1.6 is based on techniques in the theory of (¢, I')-modules.
One of the advantages of using this approach is that it enables us to establish several comparison results
between objects appearing in the p-adic Hodge theory over L (see Proposition 3.14, Proposition 4.21,
Corollary 4.22 and Corollary 3.16). In order to keep the introduction light, we only mention one of the
comparison results here and refer the reader to the main body of this article for the rest.

Let N be a Wach module over AJLF. We equip N with a Nygaard filtration defined as Fil*N :=
{z € N such that ¢(z) € [p]FN}. Then we note that (N/uN)[1/p] is a ¢-module over L, since [p]; =
p mod pA7}, and N/uN is equipped with a filtration Fil*(N/uN) given as the image of Fil* N under the
surjection N — N/uN. We equip (N/uN)[1/p] with the induced filtration, in particular, it is a filtered
@p-module over L. Moreover, let V := T (N)[1/p| denote the associated crystalline representation of
G, from Theorem 1.6. Then we can functorially associate to V' a filtered (¢, @)-module over L denoted
ODygis,1.(V) (see §2.3), and show the following:

Theorem 1.8 (Corollary 3.16). Let N be a Wach module over AT and V := T (N)[1/p] the associated
crystalline representation from Theorem 1.6. Then we have (N/uN)[1/p] = ODyyis. (V) as filtered
p-modules over L.

The proof of Theorem 1.8 is obtained by utilising the computations done in the proof of Theorem
3.12, more specifically, using Proposition 3.14.

Remark 1.9. Based on the expectation put forth in [Abh21, Remark 4.48], it is reasonable to expect
that the L-vector space (N/uN)[1/p] may be equipped with a connection by defining a g-connection
on N using the action of geometric part of I'z, i.e. I'} (see §2), and inducing a connection via N -l
N/uN. Moreover, the isomorphism (N/uN)[1/p] = ODeyis (V) in Theorem 1.8 should be further
compatible with connections. These expectations will be verified in [Abh23a].
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1.2.3. Strategy for the proof of Theorem 1.6. To prove the theorem, starting with a Z,-lattice
T inside a p-adic crystalline representation of Gy, we first use the result in the perfect residue field
case (see Theorem 1.3) and its compatibility with the results of [Kis06; KR09] (see §4.2) to construct
a finite free module Ny 1,(V') (associated to V' = T'[1/p]), over the ring of functions of the open
unit disk over L (denoted B;'l-’g’ 1), such that Ny, 1,(V') satisfies a Frobenius finite [p],-height condition.
However, proving the existence of a non-trivial action of I';, on Nyig 1,(V) is a difficult question and
it does not follow from the classical theory because I'y, — Z,(1)? Z;, whereas we have I'p = Zy
in the classical case. To resolve this issue, our innovation is to use the Galois action on V and its
crystallinity to explicitly show that Ny (V') is equipped with an action of I';, (see Proposition 4.19).
Furthermore, we show that our construction is compatible with the theory of (overconvergent) étale
(¢, I'r)-modules from [And06; ABO8], establishing the naturality of the action of I';, on Nyig (V) (see

§4.4). Next, we set NL(V) := Nyjg (V) N DE(V) C DL&L(V) as a module over B} = A7 [1/p], where

DTL(V) is the overconvergent étale (p, "1 )-module associated to V' and DLg’L(V) is the (¢, IT'1)-module
over the Robba ring, of slope 0 and associated to V' (see §2.2 and Definition 4.24). Finally, we set
NL(T) := NL(V) N DL(T) C D.(V) as an Af-module and show that it satisfies the axioms of
Definition 1.4 (see the proof of Theorem 4.1 in §4.5). In the opposite direction, starting with a Wach
module N over A}, we use ideas developed in [Abh21] to show that Tp(N)[1/p] is crystalline (see
Theorem 3.12).

1.2.4. Relation to other works. Our first main result, Theorem 1.6, is a direct generalisation
of Theorem 1.3 from [Wac96; Col99; Ber04]. As indicated in §1.2.3, starting with a crystalline
Z,-representation T' of G, the construction of a finite [p],-height module N (7") uses classical Wach
modules and its compatibility with the results of [Kis06; KR09]. However, equipping N7 (7T") with a
natural action of I'z, is highly non-trivial, in particular, it does not follow from previous works and
constitutes the heart of this article. For the converse, starting with a Wach module N over Az, we use
ideas from [Abh21] to show that T (NN)[1/p] is crystalline. Moreover, as mentioned earlier, the results
on Wach modules in the current paper are different from the theory of Breuil-Kisin modules in the
imperfect residue field case studied in [BT08].

Now, let us note that using the unpublished results of Tsuji in [Tsu] and the use of [BT08] in
[DLMS22], it can be seen that the current paper is a crucial input to the construction of relative Wach
modules in [Abh23a]. Moreover, recent developments in the theory of prismatic F-crystals [B523;
DLMS22; GR22], would suggest that there is a categorical equivalence between the category of Wach
modules over A}f and the category of prismatic F-crystals on the absolute prismatic site (Spf Op)
At this point, let us remark that unlike the case of Breuil-Kisin modules from [DLMS22], obtaining
the aforementioned equivalence directly is a difficult question, in particular, it is highly non-trivial
to directly show that the natural functor from prismatic F-crystals to Wach modules is essentially
surjective. This point will be explored in another work [Abh24] and the current article is independent
of the results in the prismatic theory.

As indicated previously, the motivation for interpreting a Wach module as a ¢-de Rham complex
and as g-deformation of crystalline cohomology, i.e. OD,s, comes from [Fon90, §B.2.3] and [Ber04,
Théoréeme I11.4.4]. Our second main result, Theorem 1.8, is an important step towards verifying such
expectations. In addition, we note that our proof of Theorem 1.8 is entirely independent to that of loc.
cit., thus providing an alternative proof (as well as a generalisation) of the important classical result
in loc. cit. Furthermore, in Proposition 4.19 and Corollary 4.22 (see Remark 4.23), we generalise some
results of [Ber02] and [Ber04] to obtain comparison results between Wach modules, overconvergent
étale (¢, I'r)-modules and filtered (¢, d)-modules associated to p-adic crystalline representations. In
particular, for a p-adic crystalline representation V' of G, we prove a comparison isomorphism between
the associated (¢, I'r,)-module over the Robba ring and the scalar extension of ODs (V') to the Robba
ring, where we use the connection on ODis(V') to equip the scalar extension with an action of I'y, (see
§4.3 and Remark 4.23).

Finally, let us remark that using the theory of Breuil-Kisin modules in the imperfect residue field
case from [BT08], in [Gao20] Gao studied lattices inside crystalline (more generally, semistable) rep-
resentations using Breuil-Kisin Gz-modules. However, the objects of loc. cit. are very different from
Wach modules considered in this paper. More specifically, Breuil-Kisin Gr-modules are defined using
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the “Kummer tower” and admit an action of the big Galois group G. In contrast, Wach modules are
defined using the “cyclotomic tower”, as in the theory of étale (¢, I')-modules, and admit an action of
Iz, which is much smaller than Gp. Moreover, [Gao20] only proves a full faithfulness result, whereas
Theorem 1.6 proves a categorical equivalence which was a difficult open question.

1.3. Setup and notations. We will work under the convention that 0 € N, the set of natural
numbers. Let p be a fixed prime number, k a perfect field of characteristic p, Op := W(k) the ring of
p-typical Witt vectors with coefficients in k and F' := Op[1/p], the fraction field of W. In particular,
F is an unramified extension of Q, with ring of integers Op. Let F be a fixed algebraic closure of F' so
that its residue field, denoted as R, is an algebraic closure of x. Further, we denote by G := Gal(F/F),
the absolute Galois group of F.

We fix d € N and let X1, Xs,..., X, be indeterminates. Set RY to be p-adic completion of
Or[X fd, e ,X;H] . Let ¢ : RY — R denote a morphism extending the natural Frobenius on O by
setting ¢(X;) = X! for all 1 < i < d. The endomorphism ¢ of R is flat by [Bri08, Lemma 7.1.5]
and faithfully flat since p(m) C m for any maximal ideal m C RY. Moreover, it is finite of degree p?
using Nakayama Lemma and the fact that ¢ modulo p is evidently of degree p¢. Let O 0= (R[(jp))A,
where " denotes the p-adic completion. It is a complete discrete valuation ring with uniformiser p,
imperfect residue field (X1, ..., Xy) and fraction field L” := O;n[1/p]. The Frobenius on R” extends
to a unique finite and faithfuly flat of degree p? Frobenius endomorphism ¢ : O 10 — Opo lifting the
absolute Frobenius on O;0/pO;0o.

Let O, denote a finite étale extension of O; o such that it is a domain. Then Oy, is a complete discrete
valuation ring with uniformiser p, imperfect residue field a finite étale extension of x(Xy,...,Xy) and
fraction field L := Op[1/p]. Fix an algebraic closure L/L and let G, := Gal(L/L) denote the absolute
Galois group. The Frobenius on O; 0 extends to a unique finite and faithfuly flat of degree p? Frobenius
endomorphism ¢ : O, — Oy, lifting the absolute Frobenius on O, /pOy, (see [CN17, Proposition 2.1]).
For k € N, let Q’éL denote the p-adic completion of module of k-differentials of Op, relative to Z. Then
we have QlOL =@l ,0pdlogX; and QIBL = /\léLQloL.

Next, let O be one of Op_, Or,, O or O and K := Frac(Og). Then the tilt of O is defined
as 0% := lim, Ox /p and the tilt of K is defined as K” := Frac(O%) (see [Fon77, Chapitre V, §1.4]).
Finally, let A be a Z,-algebra equipped with a Frobenius endomorphism ¢ lifting the absolute Frobenius
on A/p, then for any A-module M we write p*(M) := A®, 4 M.

1.4. Outline of the paper. This article consists of three main sections. In §2 we collect relevant
results on p-adic Hodge theory in the imperfect residue field case. In §2.1 we define several period
rings, in particular, we recall crystalline period rings, (¢, I')-module theory rings, overconvergent rings
and Robba rings and prove several important technical results to be used in our main proofs in §4.
In §2.2 we quickly recall the relation between p-adic representations and (¢, T')-module theory over
the period rings described in the previous section. In §2.3 we focus on crystalline representations
and prove some results relating Galois action on a crystalline representation to its associated filtered
(¢, 0)-module. The goal of §3 is to define Wach modules in the imperfect residue field case and study
the associated Z,-representations of G'. In §3.1 we give the definition of Wach modules and relate it
to étale (¢, I')-modules (see Proposition 3.3). Then given a Wach module, we functorially attach to it a
Z,-representation of G, and in §3.2 we show that these are related to finite [p],-height representations
studied in [Abh21]. Finally, in §3.3 we show that the Z,-representation of Gy, associated to a Wach
module, is a lattice inside a p-adic crystalline representation of G, (see Theorem 3.12) and prove the
filtered isomorphism claimed in Theorem 1.8. In §4 we prove our main result, i.e. Theorem 1.6. In
§4.1 we collect important properties of classical Wach modules, i.e. the perfect residue field case. In
§4.2 we use ideas from [Kis06; KKR09] to construct a finite [p],-height module on the open unit disk
over L. On the module thus obtained, we use results of §2.3 to construct an action of I';, and study its
properties in §4.3. Then in §4.4 we check that our construction is compatible with the theory of étale
(p,T'z)-modules. Finally, in §4.5 we construct the promised Wach module and prove Theorem 1.6.
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the course of this project, reading a previous version of the article carefully and suggesting several



Crystalline representations and Wach modules 7

improvements. I would also like to thank Nicola Mazzari and Alex Youcis for helpful discussions. This
research is supported by JSPS KAKENHI grant numbers 22F22711 and 22KF0094.

2. PERIOD RINGS AND p-ADIC REPRESENTATIONS

We will use the setup and notations from §1.3. Recall that Oy, is a finite étale algebra over O;o. Set

Lo = U L(jipeo, X;/77) and for 1 < i < d, we fix X? := (X, X}/?, X}/""|..) € 0} _. Then we have
the following Galois groups (see [Hyo8&6, §1.1] for detalls)

Gp:=Gal(L/L), Hy := Gal(L/Lw), T := G /Hy, = Gal(Loo /L) = Z,(1)* x ZJ,
= Gal(Loo/L(upee)) = Zp(1)?, Gal(L(ppee)/L) = T /T, = Z,5.

Let O; := (UL ,0p [Xil/poo])/\, where " denotes the p-adic completion. The Or-algebra O; is a complete
discrete valuation ring with perfect residue field, uniformiser p and fraction field L := O 7[1/p]. The

Witt Vector Frobenius on O; is given by the Frobenius on Oy, described in §1.3 and setting (X 1/p" ) =

Xil/ 7" for all 1 <i<dandneN. Let Ly = L(,upoo) and let L O T denote a fixed algebraic closure
of L. We have the following Galois groups:

G; = Gal(L/L) = Gal(L/ UL, L(X;™)), Hy := Gal(L/Ls) = Gal(T/Loo),
Iy =Gy /H; = Gal(Loo/L) = Gal(Loo/ UL, ( X{P7)) S Gal(L(ppee) /L) =5 Z2.

From the description above note that GG; can be identified with a subgroup of G, Hy s Hpand T’ i
can be identified with a quotient of I'f.

2.1. Period rings. In this subsection we will quickly recall and fix notations for the period rings
to be used in the rest of this section. For details refer to [And06], [Bri06] and [Ohk13].

2.1.1. Crystalline period rings. Let Aj¢(Or. ) := W(O%w) and A (O7) := W(Ob) admitting
the Frobenius on Witt vectors and continuous Gp-action (for the weak topology). We ﬁx ni=c—1,
where € := (1,(p, (p2,...) € O%Oo and let p:=[e] —1,& := p/o (1) € Aing(Or,,). For g € G, we have
g(1+p) = (14 p)Xx9 X(9) where y is the p-adic cyclotomic character. Moreover, we have a GGp-equivariant

surjection 6 : Aju(O7) — Oc, where Cr, := L and Ker § = €A, (O 7). The map 6 further induces a
I'z-equivariant surjection 0 : Aj,¢(Or. ) — O7 .

Recall that for 1 < i < d, we fixed Xf (XZ,Xl/p Xl/p ..) € Or_, and we take {~o,71,...,7d}
to be topological generators of I';, such that {v1,...,74} are topological generators of I'; and g is a
topological generator of 'z, /T, and v;(X?) = eX? if i = j and X? otherwise. Let us also fix Teichmiiller
lifts [X?] € Aine(Or..). We set Acis(Or.) = Aint(Or. ) (€5 /k! k € N). Let t := log(l + p) €
Ais(OF,) and set B:;IS(OLOO) = Aqis(Or)[1/p] and Beis(Or_) == B;IS(OLOO)[l/t] For g € G,
we have g(t) = x(g)t. Furthermore, one can define period rings OAis(Or..), OBL. (Or.) and
OBis(OL., ). These rings are equipped with a Frobenius endomorphism ¢ and a continuous I'z-action,
and the former two rings OAs(Or ) and (’)B‘;IS(OLN) are further equipped with an appropriate
extension of the map 6. Rings with a subscript “cris” are equipped with a decreasing filtration and rings
with a prefix “O” are further equipped with an integrable connection satisfying Griffiths transversality
with respect to the filtration (see [Abh21, §2.2] for definitions over R with similar notations). One
can define variations of these rings over L which are further equipped with G'r-action. Moreover, from
[MT20, Lemma 4.32] note that Acis(Or. ) = Aais(O7)"L and B (O ) = B, (0O7)Fr.

We have two Op-algebra structures on OAis(Or.,): a canonical structure coming from the defi-
nition of OAs(Or., ); a non-canonical (¢, I'; )-equivariant structure O, — OAis(Or,. ) given by the

map T — Y pend Hglzl 8;“ (x) H‘iizl([Xib] — Xi)[ki}7 in particular, X; — [Xf]
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2.1.2. Rings of (¢,I')-modules. For detailed explanations of objects defined in this subsubsection,
see [And06]. Recall that O;n is a complete discrete valuation ring with uniformiser p imperfect residue
field and Oy, is a finite étale O n-algebra. Let us se AZD to be the (p, u)-adic completion of the
localisation Or[u] [[X3]E, ..., [X])*] (). We have a natural embedding AT5 C Aii(Or,,) and Aj
is stable under the Witt vector Frobenius and I'p-action on Aj(Or_); we equip AT 0 with induced
structures. Moreover, we have an embedding ¢ : O;n0 — AZFD via the map X; — [Xzb] and it extends

to an isomorphism of rings O;o[u] — AJLFE,. Equip O;n[u] with finite and faithfully flat of degree
p?*1 Frobenius endomorphism using the Frobenius on O;n and setting ¢(u) = (1 + u)? — 1. Then the
embedding ¢ and the isomorphism O;o[u] — AT ;o are Frobenius-equivariant.

Let A} denote the (p,u)-adic completion of the unique extension of the embedding A’LLD —
Ain¢(Or ) along the finite étale map O;o0 — O (see [CN17, Proposition 2.1]). We have a natural
embedding Aj{ C Ai(Or,) and AZ is stable under the induced Frobenius and I'z-action. More-
over, the embedding ¢ : O;0 — AZD C A} and the isomorphism O;nfu] — AZD C A} extend
to a unique embedding ¢ : O, — A} and an isomorphism of rings Or[u] — Af. Equip Op[u]
with finite and faithfully flat of degree p?*! Frobenius endomorphism using the Frobenius on Of, and
setting ¢(u) = (1+ u)P — 1. Then the embedding ¢ and the isomorphism Op[u] — A} are Frobenius-
equivariant. In particular, the Frobenius ¢ : AZ‘ — AJLr is finite and faithfully flat of degree ptl.
Let uq := (1 + u)aO[Xb]al-- [X7]% where o = (ag,a1,...,aq) € {0,1,...,p — 1}%4 then we have

FAL) = AL 8,y Af T Bap(A] o

Let Cp, := L, A := W(C}) and B := A[1/p] admitting the Frobenius on Witt vectors and con-
tinuous Gr-action (for the weak topology). Set A := AF[1/u]" equipped with induced Frobenius
endomorphism and continuous I'p-action. Note that A is a complete discrete valuation ring with
maximal ideal pAp, residue field (Or/p)((1)) and fraction field By, := Ap[l/p]. Similar to above,
¢ : Ap — Ap is finite and faithfully flat of degree p?*! and we have ¢*(AL) := Af Rp.a, AL —
Pap(AL)ua = (Bap(AT)ua) Bo(at) o(AL) +— AT ®pAt A . Furthermore, we have a natural Frobe-
nius and I'p-equivariant embedding Ay C AHL Let A denote the p-adic completion of the maximal
unramified extension of Ay inside A and set B := A[1/p] C B, i.e. A is the ring of integers of B.
The rings A and B are stable under induced Frobenius and Gy-action and we have Ay = AL and
B; = B% stable under induced Frobenius and residual I';-action.

2.1.3. Overconvergent rings. We begin by definining the ring of overconvergent coefficients stable
under Frobenius and Gp-action (see [CC98] and [ABO08]) Denote the natural valuation on O"f by ©°
extending the valuation on Obf. Let r > 0 and let a € Obf such that v”(a) = pr/(p — 1). Set

AT . { Zpk[:pk] € A such that o (z;,) + ppflk — +ocask — +oo}.
keN

The Gp-action and Frobenius ¢ on A induce commuting actions of Gy, and ¢ on A" such that
@(AT”’) = ATP". Define the ring of overconvergent coefficients as AT := UTGQ>OAT” C A equipped with
induced Frobenius and Gp-action. Moreover, inside A we take AT’T = A NAT" and AP .= ANAT".
Define ATL = ALﬂAL = UT€Q>OA% and AT := AnAT = UreQ. OAT’ equipped with 1nduced Frobenius
endomorphism and Gz-action from respective actions on A; we have AT = (ANHHL. Upon inverting
p in the definitions above one obtains Q,-algebras inside B, i.e. set BTT = At [1/p], B := Af[1/p],
B := APr[1/p], B := Af[1/p], equipped with induced Frobenius and Gp-action. Moreover, set
B} = (Bf")!:, B] = (BY)!r, B := (BY")r = A}"[1/p] and B, := (BT)"x = A} [1/p] equipped
with induced Frobenius and residual I';-action.

2.1.4. Analytic rings. In this subsection, we will define the Robba ring over L following [Ked05,
§2] and [Ohk15, §1]. However, we will use the notations of [Ber(02, §2] in the perfect residue field case
(see [Ohk15, §1.10] for compatibility between different notations). Define

Bl 1= Ur>0 Nszr (Aint(Op) (g EE)[1]).
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The ring B ¢ can also be defined as UTEQ>OB I Where BL’g denotes the Fréchet completion of B =
AFT([1/p] for a certain family of valuations (see [Ked05, §2] and [Ohl\l) §1.6]). The Frobenius and

Gr-action on BT respectively induce Frobenius and Gr-action on Brlg which extend to respective

actions on BLg. In particular, we have a Frobenius and Gr-equivariant inclusion Bf < Bilg (see
[Ohk15, §1.6 & §1.10]). Set

BIg = MNneN Son (B(—:~_ris (Of))

equipped with an induced Frobenius endomorphism and Gp-action from the respective actions on
Bg}lS(Of). Description of rings in [Ber02, Lemme 2.5, Exemple 2.8 & §2.3] directly extend to our
situation as the aforementioned results do not depend on structure of the residue field of base ring
Opr. Therefore, from loc. cit. it follows that B:fg C Bilg compatible with Frobenius and G-action.
Moreover, we set BL’gL (BTIT)HL BIlgL (BJr )HL and B (BJr Y ¢ BIlgL equipped with

rig,L * :
induced Frobenius endomorphism and residual I'y- actlon.

Remark 2.1. Note that the definition BIig and B;ﬁg as rings does not depend on L, in particular,
one may define these rings using Ainf(OE) and equip them with a Frobenius endomorphism compatible
with the Frobenius endomorphism defined above.

Lemma 2.2. We have (Bllg)‘P:l = (B;‘i'g)wzl =Qyp.

Proof. Using Remark 2.1, note that the Frobenius invariant elements can be computed using results in
the perfect residue field case. In particular, (Bilg)‘P 1 (B;'[g)“’— = Qp, where the first equality follows
from [Ber(04, Proposition 1.4.1] and the second equality from [Col02, Proposition 8.15]. |

Recall that from §2.1.2 we have a Frobenius-equivariant embedding ¢ : O, — AJLF. From [Ohk15,
§1.6] the ring Ay has the following description:

1/r

AE’T e { Z t(ay)u” such that ap € Op and for any p~ /" < p < 1, lim |a|p® = 0}.
ez k——o0

We have B = Al"[1/p] and we set

BLQ = { Z v(ag)p® such that a € L and for any p~ /" < p <1, kll)rinoo lag|p® = 0}.
keZ

The ring BL’; ;, can also be defined as Fréchet completion of BE’T for a family of valuations induced

by the inclusion BTL’T C Bf7 (see [Ked05, §2] and [Ohk15, §1.6]). Define the Robba ring over L as

T T,r
Brlg L U7">0Br1g L

on BLg ;, which extend to respective actions on Brl L (also see [Ohk15, §4.3] where Ohkubo constructs
the differential action of Lie I'z; one may also obtam the action of I';, by exponentiating the actlon of
Lie I'z). From the precedlng discussion, we have a Frobenius and I';-equivariant injection BT c Bl

The Frobenius and G-action on BJET induce respective Frobenius and G-action

rig,L

and the former ring B is also known as the bounded Robba ring. Furthermore, note that BJr " BJr "=

Bt ¢ BT rig,» Where the last term can also be described as the Fréchet completion of the middle

term for a family of valuations induced by the inclusion BTLT c B (see [Ked05, §2] and [Ohk15, §1.6]).
To summarize, for r € Q- we have the following commutative diagram with injective arrows:

BT?T‘ % BT?T

I [N

B —— B}’ —— Bl;
BT T BT’

rig,L rig,L>
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where in the second row, two rings on the left are obtained from the rings in first row by taking
Hp-invariants and the rightmost ring in second row is obtained as Fréchet completion of the rightmost
ring in first row. The bottom row is obtained as Fréchet completion of two rings on the left in the
second row. These inclusions are compatible with Frobenius and I'z-action and these compatibilities
are preserved after passing to respectlve Fréchet completions. In particular, we have a Frobenius and
I'p-equivariant embedding Bng 1 C Bng I

. C B!

Definition 2.3. Define B, — Bl LN B rig, L

rig,L - rig, equipped with induced Frobenius endomor-
phism and I'z-action.

rig,

Lemma 2.4. The ring B;tg’L can be identified with the ring of convergent power series over the open
unit disk in one variable over L, i.e.

+ k : k _
Bl 1 = {%L(ak)u such that ai € L and for any 0 < p < 1,kgrfoo lak|p” = 0},

Proof. Letz € Brlg L C Biig .- Using the explicit description of BI{; ;, and By for r € Qs, we can write

x =z + 2~ with 7 convergent on the open unit disk over L and 2~ € BTL, in particular, 2+ € B;tg
Moreover, using Remark 2.1 and [Ber02, Lemma 2.18, Corollaire 2.28], we have an exact sequence

0 — Bi(O7) — B @B, — Bl — 0, where Biyt(Of) = Aune(O7)[1/p]. So x € Bf, ; ¢ B, if and

only if 2~ € Bins(O7) N Bl = Bint(0O1..) N B = B}, where we have used Ayt(O7)"r = Ae(Or.)
(see [And06, Proposition 7.2]). Hence, x converges on the open unit disk over L. The other inclusion
is obvious. |

Remark 2.5. The topology on B g1, Can be described as follows: Let D(L, p) denote the closed disk
of radius 0 < p < 1 over L and let (’)( (L, p)) denote the ring of analytic functions, i.e. power series
converging on the closed disk D(L, p). Then O(D(L,p)) is equipped with a topology induced by the
supremum norm |[z|, := sup,ep(z ) | f(2)] < +o0. We have Brl 1 = lim, O(D(L, p)) C L[p] and we
equip it with the topology induced by the Fréchet limit of the topology on O(D(L, p)) induced by the
supremum norm, i.e. the topology on B;Eg’ ; can be described by uniform convergence on D(L, p) for
p— 1.

Lemma 2.6. The natural map B — BrlgL is faithfully flat.

Proof. Note that BJLr is a principal ideal domain and Bjig’ ;, is a domain, so the map in claim is flat.
To show that it is faithfully flat, it is enough to show that for any maximal ideal m C BJLr we have
mBIg’ L # B;Eg’ ;- Note that if m C B} is a maximal ideal, then m = (f) where f is an irreducible
distinguished polynomial in the sense of [Lan90 Chapter 5, §2]. Since any f as above admits a zero

over the open unit disk, it follows f is not a un1t in Bf Hence, mBrlg ;1 #B |

rig,L* rlg,

Remark 2.7. From §1.3 recall that ¢ : L — L is finite of degree p? and we also have op(u) =
(1 + )P — 1. Therefore, from the explicit description of B]flg ;, in Lemma 2.4 it follows that the
Frobenius endomorphism ¢ : Brlg L Brig’ 7, is finite and faithfully flat of degree pdtt

2.1.5. Period rings for L. Definitions above may be adopted almost verbatim to define corre-
sponding period rings for i in particular, one recovers definitions of period rings in [Fon90], [CC98]

and [Ber02], in particular, one obtain period rings A+ A; AT B:gg i and Biig i equipped with a

Frobenius endomorphism ¢ and I'y-action. Note that we have a natural identification Az — Oz [u]
where the right hand side is equipped with a finite and faithfully flat of degree p Frobenius endomor-
phism using the natural Frobenius on Oy and setting ¢(u) = (1 + p)? — 1 and a I'y-action given as
g(p) = (14 ,u)X(g) —1for g € I'y. Moreover, the preceding isomorphism naturally extends to a Frobenius
and Iy -equivariant isomorphism Ay — Oy [u][1/p]", where * denotes the p-adic completion.

Recall that the Frobenius-equivariant embedding Oy, — Oy is faithfully flat and it naturally extends
to a Frobenius and I'y-equivariant faithfully flat embedding O [u] — Oy [u]. Using Frobenius and
I';-equivariant isomorphisms A} = Op[u] and A; = O; [1] we get a Frobenius and I';-equivariant
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faithfully flat embedding A} — A‘Lf sending [X?] — X;. This further extends to a Frobenius and
I'; -equivariant faithfully flat embedding Ay — A;.

We can equip Ain¢(Or.. ) with a non-canonical Op-algebra structure by first defining an injection
O;0 — Aint(Or) via the map X; +— [X?] and extending it uniquely along the finite étale map O;o0 —
Or, to an injection O — Ajn(Or.,) (see [CN17, Proposition 2.1]). Note that the preceding maps
are Frobenius-equivariant but not I'p-equivariant. The Op-algebra structure on Aj,s(Or. ) naturally
extends to a Frobenius-equivariant O;-algebra structure by sending Xl-l/pn — [(Xil/pn)l’] foralll <i<d
and n € N. We can further extend this to a Frobenius and I';-equivariant embedding AZ =O;[p] —
Ain(Or..).

Using the embeddings described above and following the definitions of various period rings discussed
so far, we obtain a commutative diagram with injective arrows where the top horizontal arrows are
Frobenius and I'z-equivariant and the rest are Frobenius and I'j-equivariant:

le_g, B;‘;g L BIlg L BIlg,L
+
Brig,f/ rlg,L
Remark 2.8. Similar to Lemma 2.4 we have
B;E&L { Z app® such that aj, € L and for any 0 < p < 1, hm lag|p* = 0}

keN

The ring BT gL is equipped with a Fréchet topology similar to Remark 2.5. Moreover, since ¢ : L= L
and ¢(u) = (14 p)P — 1, the Frobenius endomorphism on B ; is finite and faithfully flat of degree p.

rig,

+ +
Lemma 2.9. The rings BrlgL and B .l 0T Bézout domains and BngL — Brig,i is flat.

g,

Proof. The first claim follows from [Ber02 ; Proposition 4. 12]. Note that loc. cit. assumes the residue
field of discrete valuation base field (L and L in our case) to be perfect, however the proof of loc. cit.
only depends on [Laz62] and [Hel43] which are independent of this assumption. For the second claim,
note that we can write Bz ;= colim;c; M;, where I is the directed index set of finitely generated

)

B:qg ;-submodules of B" X Since BT i is a domain, M; is torsion-free for each i € I. Now recall that

finitely generated torsion-free modules over a Bézout domain are finite projective (see [CE99, Chapter
VII, Proposition 4.1] noting that Bézout domains are a special case of Priifer domains), and therefore
finite free by [Ked04, Proposition 2.5]. Moreover, directed colimit of finite free modules over a ring is
flat (see [Sta23, Tag 058G]). Hence, it follows that B;Y&L — B:i'g ; is flat. [ |

ig, rig,

Lemma 2.10. The element t/p = (log( + 1))/ = Tlhen(@™([Plg)/p) converges in BrlgL c Bt
Moreover, (t/u)BIg’i N B;tg L= (t/w)B rig, "

rig, L

Proof. The first claim follows from [Ber04, Exemple 1.3.3] and [I 1(17(52, Remarque 4.12]. For the second
claim let x = >, N ot € BrlgL with 2, € L and let y = >, cn yppt € BJr w1th Yr € L such that

ty/u=z. Write t/pu = 3 ey arpt’ with ag, € Qp. Then we have (3cn axp )(ZkeN YeiF) = S pen TR
We will show that y, € L for all & € N using induction. Note that agyo = xg € L so yo = zp/ap € L.

Let n € N and assume y; € L for every kK < n. Then we have ZZiol GpYnti—k = Tnt1 € L and
by inductive assumption we get Yn+1 = (Tn+1 D p—o AkYn+1—k)/a0 € L. Hence, y € B;EgL implying

(/B (B, = (t/mB,, u

Lemma 2.11. We have (t/p)B7
from Lemma 2.10.

vig.z, N BngL = (t/“)BIg,E’ therefore (t/u)B vig.z, 1 BrlgL = (t/p)Bf vig L

Proof. Let us first note that for each n € N>1 we have the following diagram:


https://stacks.math.columbia.edu/tag/058G
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n—1 n—1 o
0 B+ . ¥ ([p]qz B+ i NHCP L(Cpn) O

rig,L rig,
- n—1 ~ o~ ™
0 B, ([Plo) B, bop Cr 0,

where left and middle vertical arrows are natural inclusions, the right vertical arrow is ¢y : I}(Cpn) =
L(¢pn) C Cp, given as el akgjgn — ey @E"(ak)cgn with e = [L(¢pn) : L] and oy L = L and
0 : B;tg C B};(Oz) — Cp, from §2.1.1. The top row is obviously exact and the bottom row is exact by
[Ber02, Proposition 2.11, Proposition 2.12 & Remarque 2.14]. All vertical maps are injective and hence
we obtain that ¢"([plq )BJr NBT . = go”([p]q)B:gg ; foralln € N, in particular, ¢"([plq )BE  NBT

r1g rig,L rig, L rig, L -
@n([P]q)B:Egi'
Let x € (t/p)B vig.r, N B+ ; and write x = ty/p for some y € Brlg - We will show that y € B+

by showing that it converges over each closed disk D(L p) for 0 < p < 1. Fix some 0 < p <1 and

from Lemma 2.10 we write t/p = [[,en(¢"([plq)/p) = vIInei (¢™([plg)/p) for a unit v € O(D (L, p))*
and m € N depending on p. Then we have yp = = = ([p ]q/p)y1 for some y; € BrlgL N (p/[plq )B+ =

rig, L~
:Egi' Repeating this for 1 < n < m we obtain y, € Brigi such that y, = ¢"([plg/P)yYn+1 for some
Ynt1 € B;Eg,L N go”(p/[p]q)B:ggi = BIgI:. In particular, we have y = v 'y,1 € O(D(L,p)). Since
B:i_g,i =lim, O(D(L, p)) we get that y € Bigr [
2.1.6. p-modules over certain period rings. Let ¢-Modgi  denote the category of finite free

rlg L

modules over B, equipped with an isomorphism 1® ¢ : ¢* M —+ M and morphisms between objects

rig,L

are BY. linear maps compatible with 1 ® ¢ on both sides; denote by - MOdBT the full subcategory
rig,L

of objects that are pure of slope 0 in the sense of [Ked04, §6.3]. Similarly, one can define the category
¢-Modgi and denote by go—ModOBT the full subcategory of objects that are pure of slope 0 (as ¢-modules
L L

rig,L~

over a discretely valued field).
Let EH—(p—ModK}f denote the category of effective and finite [p],-height A}f—modules, i.e. finite

free Az-module N equipped with a Frobenius-semilinear endomorphism ¢ : N — N such that the

map 1 ® ¢ : ¢*(N) — N is injective and its cokernel is killed by a finite power of [p],; denote by

[Plq

Eff—cp—Mod[p : ® Qp the associated isogeny category. Similarly, define Eff- go—ModB as the category

rig,L

of effective and finite [p],-height Brlg ;-modules and Eff-¢- Mod[p 120 25 the full subcategory of objects

rlg L

that are pure of slope 0, i.e. M such B! 1, ®@g+ M is pure of slope 0.
rig,L

rig,

Lemma 2.12. (1) There is a natural equivalence of categories @—ModOT = - Mod0 induced by
rlg L

the functor M — M ®BT BngL

2) There is an exact equivalence of Q-categories Eff- —Mod[p]q ® Q, = Eff- Mod[p]q’ induced by
P P P

rlg L

the functor N — N ®A+ Brlg I
Proof. The claim in (1) follows from [Ked05, Theorem 6.3.3]. The equivalence of ®-categories in (2)
follows from (1), [Kis06, Lemma 1.3.13] and [KKed04, Proposition 6.5], and the exactness follows since
B — B;Eg’ ;. is faithfully flat by Lemma 2.6. Note that in [Kis06] Kisin assumes the residue field of
the discrete valuation base field (L in our case) to be perfect. However, the proof of [Kis06, Lemma
1.3.13] depends only on [Ked04, Proposition 6.5] and [Ked05, Theorem 6.3.3] which are independent
of the structure of the residue field. In particular, the proof of [KisO6, Lemma 1.3.13] applies almost
verbatim to our case. We recall the quasi-inverse functor from loc. cit. to be used in the sequel (see

§4.5).
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Bf

rig,

Let MZ

+
rig L ®Bf M

rig,L rig

be a finite height effective B ;-module pure of slope 0, then M f

rig, rig =

is pure of slope 0 and (1) implies that there exists a finite free BTL—module M1 pure of slope 0 such

that BiigL Rpt VAt ¥ iad BiigL Rp+ M7 . Choose a BTL—basis of MT and a BIg 1 -basis
2l L b 2l

rig rig,L rig
of M:i“g. The composite of the isomorphisms above is given by a matrix with values in BIig - By
[{ed04, Proposition 6.5], after modifying the chosen bases, we may assume the matrix to be identity,
in particular, MT and MZ  are spanned by a common basis. Let M denote the Bz—span of this basis.

Tig
Since Bf =B, , N B} C Bl ,, we obtain that M := M, n M' ¢ M}, and B}, | @5+ M = M,
) L

rig,L> Tig Tig rig,L rig
and BTL Qg+ M — MT. Moreover, M is pure of slope 0, so there exists an AE—lattice MJ C Mt. Let
L
My = M N Mg C MT and set My := (AE ®p+ ME) N M)[1/p] € MT. Using [Kis06, Lemma 1.3.13)
L

and the discussion above, My C M is a finite free p-stable Az—submodule such that cokernel of the
injective map 1 ® ¢ : ¢*(Mo) — My is killed by some finite power of [p],. |

Remark 2.13. Let M be a finite free BI&L—module and N C M a B:qgjL—submodule. Then N is finite
free if and only if it is finitely generated if and only if it is a closed submodule of M. Equivalences
in the preceding statement essentially follow from [KisO6, Lemma 1.1.4]. Note that Kisin assumes the
residue field of the discrete valuation base field (L in our case) to be perfect. However, the proof of loc.
cit. depends on results of [Laz62, §7-§8], [Ked04, Lemma 2.4] and [Ber02, Proposition 4.12 & Lemme
4.13], where the proof of latter depends on [Laz62] and [Hel43]. Relevant results of [Laz62], [Ked04]
and [Hel43] are independent of the structure of the residue field of L. Hence, we get the claim by using

the proof of [Kis06, Lemma 1.1.4] almost verbatim.
We note some useful facts about AJLr—modules.

Lemma 2.14. Let Ok := Of, O, or Oy and let A := Og[p] equipped with a Frobenius endorphism
extending the Frobenius on O by o(u) = (1+p)? —1. Let N be a finitely generated A-module equipped
with a Frobenius-semilinear endomorphism such that 1 ® ¢ : ¢*(N)[1/[plq] = N[1/[pl4]. Then N[1/p]
is finite free over A[l/p] .

Proof. The proof is essentially the same as [BMS18, Proposition 4.3]. Let J denote the smallest non-zero
Fitting ideal of N over A. Set K := Og|[1/p] and A = A/J. From loc. cit. the claim can be reduced to
checking that A[1/p] = 0. Note that the Frobenius endomorphism on A and finite height condition on
N are different from loc. cit. Therefore, we need some modifications in the arguments of loc. cit.; we us
point out the differences in terms of their notations. Fix an algebraic closure K of K and consider the
finite set Z := Spec (A[1/p])(K) of K-valued points of A[1/p]. Let Z' := {x € m such that (14+z)P—1 €
Z}, where m C O is the maximal ideal. Then from the equality (A/J)[1/[pl,] = (A/e(J))[1/[ple] we
get that ZNU =2Z'NU where U :=m —{¢ —1,... ,Cli’j_l — 1}. All the arguments from loc. cit. then
easily adapt to give an isomorphism K|u]/(u") — K|u]/(¢(1)") where K = Ok[1/p]. But then we
get that (p(p)/p)" is a unit in K[u], whereas p(u)/p € Klp is an irreducible polynomial. Hence, we
must have r = 0 and thus (A/J)[1/p] = 0, proving the claim. [ |

Remark 2.15. Let N be a finitely generated torsion-free AZ—module. Then D = AL ®,+ N is a finite
L

free A-module and N C D an A}-submodule. Moreover, the AT-module N’ = N[1/p] N D is finite
free. The claim essentially follows from [Fon90, Proposition B.1.2.4]. Note that Fontaine assumes the
residue field of the discrete valuation base field (L in our case) to be perfect. However, the proof of
[Fon90, Proposition B.1.2.4] only depends on [LLan90, Chapter 5, Theorem 3.1] which is independent of
the structure of residue field of L. Therefore, one can adpat Fontaine’s proof verbatim to show that N’
is finite free.

Let N be a finite free Az—module. Say that N is effective and of finite [p|q-height if N is equipped
with a Frobenius-semilinear endomorphism ¢ such that the natural map 1®¢ : *(N) — N is injective
and its cokernel is killed by some finite power of [pl,.

Let D; be a finite free étale p-module over A;. Let S(D;) denote the set of finitely generated
AT -submodules M C D 7 such that M is stable under induced ¢ from D; and cokernel of the injective
map 1®p : ¢*(M) — M is killed by some finite power of [p],. In [Fon90, §B.1.5.5], Fontaine functorially
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attached to Dy an A%—submodule jj(Di) = UMeS(DE)M C D; (Fontaine uses the notation ji to
denote the functor j;'; we change notations to avoid obvious confusion).

Lemma 2.16. The A}:—module jj(Dz) is free of rank < rka, Djy. Moreover, if N is an effective
A'Lf—module of finite [plq-height, then cokernel of the injective map N — jF(Ay ®A;:L N) is killed by

some finite power of .

Proof. The first claim is shown in [Fon90, §B.1.5.5]. For the second claim note that N is finite free over

Az and of finite [p],-height, therefore it is p-étale in the sense of [Fon90, §B.1.3.1] by the equivalence

shown in [Fon90, Proposition B.1.3.3]. In particular, we get that Dy := A; ® ,+ N is an étale p-module
L

and N € §(Dy). Now from [Fon90, Proposition B.1.5.6] it follows that cokernel of the injective map
N — j:‘(DZ) is killed by some finite power of p. |

2.2. p-adic representations and (¢, I')-modules. Let T be a finite free Z,-representation of
Gr. From theory of (p,I'r)-modules (see [Fon90] and [And06]) one can functorially associate to T' a
finite free étale (¢,I'z)-module Dy (T) := (A®z, T)"t over A, of rank = rkz, T, i.e. D(T) is equipped
with a Forbenius-semilinear endomorphism ¢ and a semilinear and continuous action of I';, commuting
with ¢ and such that the natural map 1 ® ¢ : ¢*(Dr(T")) — Dr(T) is an isomorphism. Moreover, we
have D, (T) := (A@sz)HL = Afle @, D (T). Furthermore, by the theory overconvergence of p-adic
and Z,-representations (see [CC98] and [ABO8]) one can functorially associate to T" a finite free étale
(¢, T'z)-module DJfL(T) = (AT @z, T)Ht over ATL of rank = rkz, T and such that Ap DAl DTL(T) —

D (T). We have natural isomorphisms
A®a, Di(T) > Az, T, Al ®at DL (T) = At ez, T, (2.1)

comaptible with (¢,I'r)-actions. More generally, the constructions described above are functorial and
induce equivalence of categories

Repz, (GL) — (807FL)‘M0d§&tL — (o, FL)‘MOdiTL- (2.2)

Similar statements are also true for p-adic representations of Gy,. For a p-adic representation V of G,
set DIig,L(V) = BLg’L ®BTL DE(V) which is the unique finite free (¢, I'r)-module over BLg’L of rank
= dimg, V' and pure of slope 0 functorially attached to V' (see [Ber02], [Ked05] and [Ohk15]). Moreover,
the preceding functor induces an equivalence of categories between p-adic representations of Gy and
finite free (¢,I'r)-modules over BL& ;, which are pure of slope 0 (see [Ohkl5, Lemma 4.5.7]) and we
have a natural (¢, G )-equivariant isomorphism

B!

rig Ot DJrrig,L(V) = Bl

ri
rig,L g

®q, V- (2.3)

Remark 2.17. We have variations of the results mentioned above for p-adic (resp. Z,-representations)
of G as well (see [Fon90], [CC98] and [Ber02] for details).

Finally, let V' be a p-adic representation of G and T" C V' a G-stable Z,-lattice. Since G is a
subgroup of G, therefore by restriction V' is a p-adic representation of Gy and T' C V' a Gj-stable
Z,-lattice. Furthermore, we have a I'j-equivariant embedding A;, C Aj (via the map (X?] = Xi)
and thus we have isomorphisms of étale (¢,I';)-modules D;(T) = A; ®a, Dr(T) and Dy (T) :=
(A ®z, T)"t = Af: ®a, Dy (7). Similar statements are also true for V.

2.3. Crystalline representations. Let Repggs(G 1) denote the category of p-adic crystalline
representations of G, (see [Bri06, §3.3]) and let MF}?(p, 9) denote the category of weakly admissible
filtered (¢, d)-modules over L (see [Bri06, Définition 4.21]). Then the following functor induces an exact
equivalence of ®-categories:

Repg*(Gr) < MF}*(¢,0)

24
V +— ODyis, (V) := (OBais(07) ®q, V)Or, (2.4)
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with an exact quasi-inverse given as D — OV s (D) := (FilO(OBcriS(OZ) = D))E’:O"F’:1 (see [Bri06,
Corollaire 4.37]). In particular, if V' is a p-adic crystalline representation of G, then ODs (V) is
a rank = dimg, V' weakly admissible filtered (¢, d)-module over L. Moreover, as a representation of

Gy one can attach to V a rank = dimg, V filtered ¢-module over L, denoted as D_.. 7 (V). Then
from [BT08, Proposition 4.14] and the map OBis(07) — Beis(O7) sending X; — [Xf] we obtain an
isomorphism of filtered p-modules over L

L@L ODeris (V) = Dy 1 (V). (2.5)

The representation V is said to be positive if all its Hodge-Tate weights are < 0 and in this case we
have ODqyis,1.(V) = (OBZ(01) ®q, V)E. We equip Beis(O7) with a (¢, G )-equivariant L-algebra

cris
structure via the composition L — OBeis(O7) — Bais(Op) where the first map is the non-canonical
L-algebra structure on OBeis(O7) (see §2.1.1).

Lemma 2.18. There exists a natural Beis(O1)-linear and Frobenius-equivariant isomorphism
BcriS(Of) ®Q, V= (OBcriS(OZ) QL ODcriS,L(V))azo — Bcris(of) A, ODcris,L(V)v
induced by the surjective map OBeis(O7) — Beris(O1) given by X; — [Xf] for1 <i<d.

Proof. Let JOBeys(O7) := p-adic closure of the ideal ([X]] — X1, ..., [X}] — X4) C OBis(O7). Then
we have a projection,

OBcris(Of) ®L ODCI‘iS(V) — Bcris(Of) ®L ODcriS(V)> (26)

via the map X; ~ [X?] with kernel given as .J OBis(07) ®1 ODgis(V). Moreover, using the non-
canonical L-algebra structure on OBc;is(O7), we have an L-linear map OD s, 1,(V) = OBeis(O7) @1
ODygvis,. (V) given as & — >y end ]_[f:l 8;“ () ngl([Xf] — X;)F) where we write ngl af" (x) = 8?1 o
<0 85‘1(3;) for notational convenience. The map above extends Be,is(O7)-linearly to a map

Bcris(of) ®L ODcriS,L(V) — OBcris(Of) ®L ODcris,L(V)’

d d
a@z—a® Y [[oF () [[(1x7] - X)),

keNd i=1 i=1

(2.7)

and it provides a section to the projection given above. In particular, we obtain a Beis(O7)-linear
direct sum decomposition

OBcriS(Of) ®L ODcris,L(V) — (JOBcris(Of) ®L ODcris,L(V)) ©® (Bcris(of) ®L ODCI’iS,L(V))'

Note that the image of the section (2.7) lies in (OBqis(O7) @1 ODcris,L(V))azo. Moreover, since V
is crystalline, we have OBis(O1) @1 ODgis (V) = OB.is(0O7) ®1 V, and it is easy to see that
(JOBis(0O1) ®1 ODeyis, £(V))?=0 = 0. Therefore, from the direct sum decomposition it follows that
we have (OBis(O) @1 ODcrisﬁL(V))aZO = Baris(0O7) @1 ODgis (V). Note that (2.6) and (2.7) are
evidently compatible with Frobenius on either side, therefore the isomorphism in the claim is compatible
with Frobenius. Hence, we get the claim. |

Remark 2.19. Using the Bes(O7)-linear map in (2.7) we equip Beis(O7) ®1 ODeris (V) with a
G'r-action by transport of structure. In particular, the action of g € G on a ® v € Beis(0O7) ®L
ODyio (V) is given by the formula g(a ® z) = g(a) ® Yiene Ty O (2) Ty (9([X?]) — [X2]) 145,

Remark 2.20. Using the description in Remark 2.19 we have that B (O7) ® ODeys (V) C
Bi1is(O1) ©1 ODgris,.(V) is stable under the action of G, as well. Moreover, we note that the Hr-action
on ODyis,2,(V) in the tensor product Beis(O7) @, ODeyis, (V) is trivial and B, (O7)#r = Bl (OL.)
by [MT20, Lemma 4.32]. Therefore, we get that

(B:—ris<of) XL ODcriS,L(V))HL = B(—;iS(OLoo) QL ODcriS,L(V)- (2-8)

We equip B, (O1_) @1 ODyis,1.(V') with the residual I'-action.

cris
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Lemma 2.21. For x € ODyis (V) and g € 'z, the series Y yena [y 8k'( ) TIL (g([X2]) — [X7]) kil
converges in Brlg 1 ®1L ODyis,1.(V). In particular, B;’i'g,L ®1 ODgis (V) € BE, (Or..) ® ODgyis (V)
is stable under ' -action.

Proof. Let {y0,71,.-.,74} be topological generators of 'y, as in §2.1.1, in particular, v;([X;]’) = (1 +
u)[Xf] if = j and 0 otherwise. For «;, simplifying the sum in the claim, we can rewrite it as the
sum 3y end /,L[kﬂ[X?] 4, 8;“ ‘(). Recall that the connection 0 on ODgys (V) is p-adically quasi-
nilpotent, i.e. there exists an Op-lattice M C OD,,s(V') stable under 9 such that 9 is nilpotent modulo
p. In particular, we have 0 : M — M ® QIOL. Let {e1,...,ep} denote an Op-basis of M. Then
we may check on the chosen basis that ¢(M) C p™"M for some fixed r € N. Moreover, recall that
we have L ®, 1, ODgyis,1,(V) — ODgyig .(V), so we may write z = Z?Zl ajp(ej) for a; € L. Since
0i(p(ej)) = pp(0i(ej)) for all 1 <i < dand 1 <j <mn, we get that

S uhlx H (ple)) =p~ Y phl[x Hp (0l (e4)),

keNd i=1 keNd =1
converges in Brlg 1 ©1 ODyis, 1(V). Therefore, using Leibniz rule we are reduced to showing that the
sum Y jeena o ][Xb} L, 8k “(a) converges in BngL
OF(XM) k! = 0 for n < k, OF(XP)/k! = () XP7F for n > k and 9F(X;™)/k! = (=1)k (W1 X, ("HF)
for n € N. Hence, the lemma is proved.

for any a € L. This follows easily since we have

Lemma 2.22. The action of I'p, on B:i_gL ®1 ODguis,.(V') is trvial modulo .

Proof. Note that g(u) = (1 4+ p)X@ — 1 for ¢ € T'y, and x the p-adic cyclotomic character. Using
Lemma 2.21 and for g € I', and a®x € B;ii_g,L[M/t] ®1 ODgis 1.(V'), this action is given by the formula

gla®@z) = g(a) ® Yuene ITi1 07 () T4 (9((X7]) — [X7)P. Note that

(g —De@z)=((g - 1a) @z +g(a) ® ((g — Dz), (2.9)
where g(z) is given by the series in Lemma 2.21. So, (9—1)z = ZkeNi 12, 0F () T, ((g— 1) [ X2,
where N& = N7\ {(0,0,...,0)}. Using the explicit description of BIg,L in Lemma 2.4 note that

(9 - )B+

rig,L, C /,LBr1g ; and from the proof of Lemma 2.21 note that (g — 1)[X?] € uB}. Therefore, an

argument similar to the proof of Lemma 2.21 shows that (g — 1)x converges in ,uBng 1 1 ODgis (V).
So from (2.9) it follows that (¢ — 1)(a ® z) € uBIg’L Q@1 OD¢yis,.(V). |

3. WACH MODULES

In this section we will describe Wach modules in the imperfect residue field case and finite [p],-height
representations of Gy and relate them to crystalline representations. Our definition is a direct and
natural generalisation of Wach modules in the perfect residue field case (see [Ber04, Définition I11.4.1]).

3.1. 'Wach modules over A}. Inside Aj,(OF,) fix ¢:=[e], p:=[e] -1 =g—1and [p], := € :=
p(i)/

Definition 3.1. Let a,b € Z with b > a. A Wach module over A} with weights in the interval [a, b]
is a finite free Az—module N equipped with a continuous and semilinear action of I'y satisfying the
following assumptions:

(1) The action of I', on N/uN is trivial.

(2) There is a Frobenius-semilinear operator ¢ : N[1/u] — N[1/¢(u)] commuting with the action of
'z, such that p(u?N) C u’N and cokernel of the induced injective map (1® @) : p*(u’N) — u’N
is killed by [p]g_“.



Crystalline representations and Wach modules 17

Define the [p]q-height of N to be the largest value of —a for a € Z as above. Say that N is effective if
one can take b = 0 and ¢ < 0. A Wach module over Bz is a finitely generated module M equipped
with a Frobenius-semilinear operator ¢ : M[1/u] — M[1/¢(p)] commuting with the action of I'z, such
that there exists a @-stable (after inverting u) and I'z-stable AJ-submodule N C M with N a Wach
module over A (equipped with induced (¢,I'z)-action) and N[1/p] = M.

Denote the category of Wach modules over AJLr as (o, T )-Modl[‘:]ﬂ with morphisms between objects
L

being AJLr—linear I'z-equivariant and @p-equivariant morphisms (after inverting p).

Definition 3.2. Let N be a Wach module over A‘LL. Define a decreasing filtration on N called the
Nygaard filtration, for k € Z, as

Fil* N := {z € N such that ¢(z) € [p]I;N}.

From the definition it is clear that N is effective if and only if Fil°N = N. Similarly, we can define a
Nygaard filtration on M := N[1/p] and it satisfies Fil* M = (Fil*N)[1/p].

Extending scalars along AT — A, induces a functor (i, F)—Mod[ﬁ]i — (¢, T)-Mod% , and we make
L

the following claim:

Proposition 3.3. The following natural functor is fully faithful:

(307 F)_MOdEZ}ng — (307 F)_MOd%L

Nvr— Ap®@,+ N.
L
Proof. We need to show that for Wach modules N and N’, we have a bijection

Hom 1o (N, N') = Hom, 1y pjoaq (AL @4+ N, AL @+ N) (3.1)
' ) Ap L L

[p
(¢,I')-Mod At

Note that A7 — A = AF[1/u]”" is injective, in particular, the map in (3.1) is injective. To check that
(3.1) is surjective let D, = A ®@,+ N, D7 = AL ®,+ N’ and take an A p-linear and (¢, I'z)-equivariant
L L

map f : Dr — D}. Base changing f along the embedding A — Aj (see §2.1.5) we obtain an
A;-linear and (¢, I';)-equivariant map f; : Dy — D/L' Using the definition and notation preceding
Lemma 2.16 we further obtain an A;{—linear and (¢, 'y )-equivariant map f; : jF(Dy) — ]j(D’E) where
we abuse notations by writing f; instead of jf(fz). From Lemma 2.16 note that for some s € N and
Ny := A'g Dps N, we have p*N; C j(Djy) and its cokernel is killed by some finite power of ;. Hence,
Ni[1/u) = 4 (Dy)[1/p]. Similarly, one can also show that N%[1/u] = jF(D%)[1/u].

Now from the map f; : jF (D) — ]j(D/i) we obtain an induced I -equivariant map f; : Ny [1/u] =
3 (DY)[L/ ] = 55 (DY)[1/u] = N3 [1/p] and from Lemma 3.4 we get that f;(Ny) C N}. It is easy to
see that N := N;NDp C Dy and N’ := NiNDj C D%, so we conclude that f(N) = f;(Ny)Nf(Dr) C
N} N D7 = N’ This proves the surjectivity of (3.1). [

Lemma 3.4. Let N and N’ be Wach modules over Az and let f: N[1/u] — N'[1/u] be an A'Lf—linear
and Ty -equivariant map. Then f(N) C N'.

Proof. The proof is similar to the proof of [Abh21, Lemma 5.31]. Assume f(N) C p~*N’ for some
k € N and consider the reduction of f modulo u, which is again I'y-equivariant. By definition we
have that I'; acts trivially over N/uN, whereas p *N'/u=**IN" =5 N'/uN'(—k), ie. the action
of I'y on p RN’ /u=F*tIN' is given by x~* where x is the p-adic cyclotomic character, in particular,
(u=N'/p=*IN'L = 0. Since f is I'j-equivariant, we must have k = 0, i.e. f(N)C N'. [ |

Analogous to above, one can define categories (¢, I’ )-Mod[Bp]Lf and (¢,T')-Modg, and a functor from
the former to latter by extending scalars along Bz — Bpr. Then passing to associated isogeny catgeories
in Proposition 3.3 we get the following:
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Corollary 3.5. The natural functor (o, F)—Modg]zf — (@,F)—Mod%L is fully faithful.

Composing the functor in Proposition 3.3 with the equivalence in (2.2), we obtain a fully faithful
functor

Ty : (@,F)-Modl[’;}zq — Repz, (GL) 52)
N (A@ys N)*H 2 (W(Ch) @, N)7 '

Lemma 3.6. Let N be Wach module of [p]4-height s and let T := T (N). Then we have a Gr,-equivariant
isomorphism
AT/ ®AZNL>A+[1//L] ®z, T. (3.3)

Moreover, if N is effective, then we have Gp-equivariant inclusions us(A™ ®z, T) C At @a+ N C
L
At ez, T.

Proof. For r € N large enough, the Wach module u"N(—r) is always effective and we have that
Tr(u"N(—=r)) = T(N)(—r) (the twist (—r) denotes a Tate twist on which I';, acts via x~" where y
is the p-adic cyclotomic character). Therefore, it is enough to show both the claims for effective Wach
modules. So assume N is effective. Since N is finite free over A}, using Definition 3.1 (2) and tensor
product Frobenius we obtain an isomorphism ¢ : A (O7)[1/€] NS N =5 Aue(07)[1/€] NS N. So
from [MT20, Proposition 6.15] we get G'r-equivariant inclusions

,U,S(Ainf(Of> ®Zp T) C Ainf(of) ®A4Lr N C Ainf(Of) ®Zp T C A ®Aj;r N.

Moreover, from (2.1) we have A® ,+ N — A®z, T. Therefore, taking the following intersection inside
L

A® Al N A ®z, T we obtain G'L-equivariant inclusions:
us(Ainf(Of) N A) ®Zp T C (Ainf(Of) n A) ®A4L- N C (Ainf(Of) N A) ®Zp T.

Since AT = Aj¢(O7) N A we get that the natural map in (3.3) is bijective and p*(A* @z, T') C
AT ®,+ N C AT ®z, T (for N effective), as desired. ]
L

3.2. Finite [p|,-height representations. In this subsection we generalise the definition of finite
[p]q-height representations from [Abh21, Definition 4.9] in the imperfect residue field case. Let T' be a
finite free Z,-representation of G, V := T[1/p] and set D} (T) := (AT @z, T)"t be the (¢, T'1,)-module
over A} associated to T and let Df (V) := D} (T)[1/p] be the (¢,I'1)-module over B associated to
V.

Definition 3.7. A finite [p|,-height Z,-representation of G, is a finite free Z,-module 7" admitting a
linear and continuous action of G, such that there exists a finite free A}-submodule Nz (T) C D (T)
satisfying the following;:

(1) NL(T) is a Wach module in the sense of Definition 3.1.
(2) We have A, ®AJLF NL(T) = DL(T).

Set the [p],-height of T' to be the [p],-height of N, (T'). Say T is positive if N1(T') is effective.

A finite [p],-height p-adic representation of G, is a finite dimensional Q,-vector space admitting a
linear and continuous action of G7, such that there exists a Gr-stable Z,-lattice T' C V' with T" of finite
[plq-height. We set N1(V) = N (T')[1/p] satisfying analogous properties. Set [p],-height of V' to be
the [p]s-height of T'. Say V' is positive if Nz (V) is effective.

Remark 3.8. For T a finite [p],-height Z,-representation of G, and » € N. We set N (T'(r)) =
p~"N(T)(r), in particular, property of being finite [p],-height is invariant under Tate twists.

Lemma 3.9. Let T' be a finite [p|q-height Z,-representation of Gr. Then,
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(1) If T is positive then n*D7 (T) C N(T) C DE(T).
(2) The Af-module NL(T) is unique.

Proof. Since Ay ®,+ NL(T) = D.(T) and this scalar extension is fully faithful by Proposition
L

3.3, we obtain that T (N.(T)) — T as representations of G (here T is the functor defined in
(3.2)). This also implies that Lemma 3.6 holds for N (T"), so taking Hp-invariants there we obtain
p*D}(T) € NL(T) € Df(T) which shows (1). The claim in (2) follows from Proposition 3.3, or using
an argument similar to [Abh21, Proposition 4.13]. [ |

Remark 3.10. Let V' be a finite [p],-height p-adic representation of G, and T' C V' a finite [p]4-height
Gr-stable Z-lattice. Then we have Nz (V) = Nz (T)[1/p] and from Lemma 3.9 we get that if V' is
positive then p*D7 (V) C N4(V) C D} (V). Moreover, from Corollary 3.5 (or [Abh21, Proposition
4.13]) it follows that N (V') is unique, in particular, it is independent of choice of the lattice T by

Alternatively, note that since we have N (V(r)) = pu "N (V)(r), without loss of generality we
may assume that V is positive and 7" C V another finite [p],-height G-stable Z,-lattice. Then
D7 (V) € NL(T")[1/p] € D} (V) and using the argument in the proof of [Abh21, Proposition 4.13]
almost verbatim gives N7 (V) = N (T)[1/p] = N (T")[1/p] compatible with (¢, T'1)-action.

Remark 3.11. From the definition of finite [p],-height representations, Lemma 3.9 and the fully faithful
functor in (3.2) it follows that the data of a finite [p],-height representation is equivalent to the data of
a Wach module.

3.3. Wach modules are crystalline. The goal of this subsection is to prove Theorem 3.12 and
Corollary 3.16. To prove our results we need certain period rings similar to [Abh21, §4.3.1] which
we denote as AEEU and OAE% below. We define these as follows: let @ = (¢, — 1 and set AJLF’W =
AT ()] C Aine(Or_.). Restricting the map 6 on Ap¢(Or,..) (see §2.1.1) to Ai,w we get a surjection
0 : AJLrvw — Op|w]. Define AE% to be the p-adic completion of the divided power envelope of the map
0 with respect to Ker . Moreover, consider the surjective map 67, : Op ®z Atw — Ofp[w] given as
r ®y — z0(y). Define C’)AEEU to be the p-adic completion of the divided power envelope of the map
0, with respect to Ker fy. Similar to [Abh21, §4.3.1] one can show that AE% C Aqis(Or,,) and
OAE% C OA.is(Or,,) stable under Frobenius and I'z-action on latter. We equip AE% and OAE%
with induced structures, in particular, a filtration (same as filtration by divided powers of Ker § and
Ker 6, respectively, see [Abh21, Remark 4.23]) and a connection d4 on OAE% satisfying Griffiths
transversality and such that (OAE%)aA:O = AEE_J. Similar to [Abh23a, Remark 3.26], it is easy to
see that the rings Alz?D and (’)AE% are flat over AJLF. Moreover, from the argument in loc. cit., it also
follows that Fil® (’)AE% is flat over AT, for each k € N.

Theorem 3.12. Let N be a Wach module over AT then V := TL(N)[1/p| is a p-adic crystalline
representation of Gp,.

Proof. For r € N large enough, the Wach module p"N(—r) is always effective and we have that
Tr(W"N(—r)) = Tr(N)(—r) (the twist (—r) denotes a Tate twist on which I';, acts via x~" where
X is the p-adic cyclotomic character). Therefore, it is enough to show the claim for effective Wach
modules. So assume N is effective. Note that N is free over A} and Ty(N) is a finite [p],-height
Z,-representation of G1, in the sense of Definition 3.7 (see Remark 3.11). Then the results of [Abh21,
§4.3-§4.5] can be adapted to the case of base ring O, almost verbatim since all objects appearing in
loc. cit. admit a natural variation for Oy. In particular, proofs of [Abh21, Theorem 4.25, Proposition
4.28] can be adapted to get that V' = T (IV)[1/p] is a crystalline representation of Gr,.

Set Dy, := ((’)AIZE_J @+ N[1/p])'t C ODgyis,(V), then from Proposition 3.14 it follows that
Dy, is a finite L-vector spaceL of dimension = rk AJLFN equipped with a tensor product Frobenius and a
connection induced from the connection on (’)AE% satisfying Griffiths transversality with respect to the

filtration defined as Fil* Dy, := (Xitjmk Fili(’)AE% Dpt File[l/p])FL, where N[1/p] is equipped with



Crystalline representations and Wach modules 20

Nygaard filtration of Deﬁnition 3.2. Moreover, from Proposition 3.14 we have a natural isomorphism
OA D ®0, DI, — OA = Oat N[1/p]. Now consider the following diagram:

OBcris(O ) Xr DL (; ) OBcriS(Of) ®AI N[l/p]

(3-7& (3.;5)lz (3.4)
OBcris(Of) ®L ODcris,L(V) _— OBcris(Of) ®Qp Va

where the left vertical arrow is extension of the inclusion D C ODgis (V) from (3.7) along L —
OB..is(O1), the top horizontal arrow is extension of the isomorphism in Proposition 3.14 along the
natural map (’)Alz}?ﬂ[l /p] = OBeis(O7), the right vertical arrow is extension of the isomorphism
(3.3) in Lemma 3.6 along AT[1/u] — OBgis(Of) and the bottom horizontal arrow is the natural
injective map (see [Bri06, Proposition 3.22]). Commutativity and compatibility of the diagram with
(¢, Gr)-action and connection follows from (3.7). Bijectivity of the top horizontal arrow and the right
vertical arrow imply that the left vertical arrow and the bottom horizontal arrow are bijective as well.
Hence, V is a crystalline representation of Gp. |

Remark 3.13. In diagram (3.4), taking the G-fixed part of the left vertical arrow we get that
DL = ODcris,L(V) (35)

compatible with Frobenius and connection. Moreover, since the bottom horizontal arrow of the diagram
(3.4) is compatible with filtrations (see [Bri06, Proposition 3.35]), an argument similar to the proof of
[Abh21, Proposition 4.49] shows that the isomorphism in (3.5) is compatible with filtrations, where we
consider the Hodge filtration on OD s 1,(V).

Following result was used in the proof of Theorem 3.12:

Proposition 3.14. Let N be an effective Wach module over AY, then Df, := (OAT N N[l/p])FL

is a finite L-vector space of dimension = rk,+ N equipped with Frobenius, filtration and a connection
L

satisfying Griffiths transversality with respect to the filtration. Moreover, we have a natural comparison

isomorphism N
OAL7, ®o, Di —+ OAL, @41 N1/, (3.6)

compatible with Frobenius, filtration, connection and I'f-action.

Proof. We will adapt the proof of [Abh21, Proposition 4.28]. Following [Abh21, §4.4.1], for n € N

define a p-adically complete ring SFP := A+< = 2,“ in yeees k!;;%’ ... ). The p-adically completed divided
power ring SPD is equipped with a continuous action of I';, and we have a Frobenius homomorphism
@ : SPP — SPD "in particular, ¢"(SEP) C SPD C APD —, where the latter inclusion is obvious. The

reader should note that in [Abh21, §4.4.1] we consider a further completion of SFP with respect to
certain filtration by PD-ideals, denoted §5D in loc. cit. However, such a completion is not strictly
necessary and all proofs of loc. cit. can be carried out without it. In particular, many good properties
of §5 D restrict to good properties on SLP as well (for example, (¢, I'z)-action above).

Now consider the Op-linear homomorphism of rings ¢ : Or, — SEP sending X; — [X ]b] for 1 < j <d.
Using ¢ define an Op-linear morphism of rings f : Or ®o, SPD 5 SPD via a ® b+ 1(a)b. Let OSFP
denote the p-adic completion of the divided power envelope of Or ®o,, SPD with respect to Ker f. The
divided power ring OSEP is equipped with a continuous action of I'z, an integrable connection and

we have a Frobenius ¢ : OS'P — OSFP, | in particular, ©"(OSPP) C (’)APD . Moreover, we have

O = (OSFP)'L and with V; == 1{;[%] for 1 < j < d, we have p-adically closed divided power ideals

d d
LT = Vi), k = (o, k- .. ka) € N such that S k; Zi>.
j=1 j=0

J[i]OSED = <
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Equip OSFP ® A+ IV with tensor product filtration, tensor product Frobenius and an integrable connec-
L

tion induced from the connection on OSYP. Then D, := (OSEP @ Af N[1/ p])FL is an L-vector space
equipped with an integrable connection and we have a Frobenius morphism ¢ : D,, — D,,_1. In partic-
ular, ¢"(D,,) C D, = (OAE?D @t N[l/p})rL C (OALis(07) Bpt N[l/p])GL7 where the last inclusion
follows since OATY C OAqis(OL,,) = OAcis(Op)"E (see [MT20, Corollary 4.34]). Let T' := T1(N)
be the associated finite free Z,-representation of G, and V := T'[1/p|, then we have

Dy, € (OB (Og) @ N[1/p) ™ C(OBuass(O) @5 N[1/p])

(3.7)
L) (OBcris<Of) ®Qp V)GL = ODcris,L(V)a

where the isomorphism follows by taking G-fixed elements of extension along A™[1/u] — OBais(07)
of the isomorphism in Lemma 3.6. Recall that ¢"(D,) C Dy, or equivalently, the L-linear map
1®¢": L @pn r Dy — Dy, is injective, we get that L ®,n 1, D,, is a finite dimensional L-vector space.
Moreover, ¢ is finite free over L, so it follows that D, is a finite dimensional L-vector space equipped
with an integrable connection. Furthermore, for n > 1 similar to the proof of [Abh21, Lemmas 4.32 &
4.36], one can show that logvy; = ZkeN(—l)k% converge as a series of operators on OSPP Dpt N,
where {70,71,...,74} are topological generators of I';, (see §2.1).

Lemma 3.15. Let m > 1 (let m > 2 if p = 2), then we have a I'f-equivariant isomorphism via the
natural map a bR r — ab @ x:

OSYP @0, Dy = OSEP @+ NI1/p]. (3.8)

Proof. Compatibility of (3.8) with I'z-action is obvious from the definitions, so we only need to
check that it is bijective. We will first show that (3.8) is injective. Note that we have an injective

ring homomorphism OSPP[1/p] SN OAIL)B_J[l /p] = OBeis(O7). Since Dy, is a finite dimensional
L-vector space, we get that the following map is injective

OSEP @0, Dim = OSEP[1/p] @1 Dyyy — OBeyis(Of) ®ypm 1, Dy, (3.9)

Recall that V' = T'[1/p| and consider the following composition

OBcris(Of) ®<pm,L Dm % OBcriS(Of) Xr DL — OBcris(Of) XL ODCriS,L(‘/)a (310)

where the first map is injective because 1 ® ¢ : L @ m 1, Dy, — Dy, is injective and injectivity of the
second map follows from (3.7), in particular, (3.10) is injective. Furthermore, similiar to (3.9), note
that N[1/p] is a finite free B} -module, so it follows that the map OS'P ® ,+ N[1/p] = OSEP[1/p] @p+

L L

N[1/p] = OBais(Of) @ m g+ N[1/p] is injective. Also, recall that we have an isomorphism 1 ® ¢ :
B

By ®, 5t N[1/p.1/[plg] = N[1/p,1/[pl). So OBeris(OF) @ m g+ N[1/p] = OBeris(Of) @g+ N[1/p],

since [plq is invertible in OBuis(O7). Combining the preceding two observations, we get that the

following composition is injective:

OSEP @+ N[1/p] — OBeris(Or) @ ym g+ N[1/p] =5 OBeris(Op) @+ N[1/pl.  (3.11)

Now consider the following diagram

OS};D ®OL Dm & OBcris<Of) ®<pm,L Dm & OBcriS(Of) ®R ODcris,L(V)

<f+8>l J

OSEP @ 1 N[1/p) L1 OBis(07) ®p+ N[1/p] ——— OBais(0g) ®q, V,

where the right vertical arrow is the natural injective map (see [Bri06, Proposition 3.22]) and the bottom
right horizontal map is extension of the isomorohism in Lemma 3.6 along A" [1/u] — OBeis(Of). The
diagram commutes by definition and it follows that the left vertical arrow, i.e. (3.8) is injective.
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Now let us check the surjectivity of the map (3.8). Define the following operators on ONPP .=
O8> ® 5+ N[1/p):

. —(log o)/t for i = 0,
T (logy)/(tV;) for1<i<d,

where V; = 1[®1] for 1 < i < d (see [Abh21, §4.4.2]). Using the fact that for g € 'y, and = €

OSPP @+ N we have (¢ — 1)(ax) = (¢ — 1)a - x 4+ g(a)(g — 1)z and from the equality log(y;) =
L

lim,, 400 (77 —1)/p", it is easy to see that d; satisfy the Leibniz rule for all 0 < i < d. In particular,
the operator & : ONFP — ONFD ®OgPD Q}DS};D/OL given as x — Jp(z)dt + szzl Gi(:c)d[Xf] defines a
connection on ONFP. The connection 9 is integrable since the operators d; commute with each other
(see [Abh21, Lemma 4.38]) and using the finite [p],-height property of N it is easy to show that 0 is
p-adically quasi-nilpotent as well (see [Abh21, Lemma 4.39]).

For x € N[1/p], similar to the proof of [Abh21, Lemma 4.39 & Lemma 4.41], it follows that the
following sum converges in D,, = (ONFP)I'L = (ONPP)9=0;

> Ao o0 @) ik (1 - V)R (1 vl (3.12)
keNd+1

By choosing a basis of N and using the formula in (3.12) on basis elements, we can define a linear
transformation o on the finite free OSYP[1/p]-module ONEP. Now similar to the proof of [Abh21,
Lemma 4.43] it can easily be deduced that for some large enough N € N we can write p" deta €
14 JHOSPP ie. deta is a unit in OSEP[1/p] and o defines an automorphism of ONLEP. Finally, as
the formula in (3.12) converges in D,, it follows that the map OSFP @0, D, — OSPP DAt N[1/p] is

surjective. Hence, (3.8) is bijective. |

Note that Dy is an L-vector space equipped with tensor product Frobenius, a filtration given as
Fil" Dy, == (3, 4 FI'OAFD wOat File[l/p])FL, where N[1/p] is equipped with the Nygaard filtration

of Definition 3.2. The preceding filtration is well-defined, i.e. FilkDL‘ is a sub vector space of Dy, for
each k € N. Indeed, it is enough to check that Fi'OAYY &, FiVN[1/p] is an OAYD -submodule
) L )

of (’)Alz% Dt N[1/p], for each 4,5 € N. This easily follows from the fact that the (’)AE%—linear
composition FllZOAPD Dt FilV N[1/p] — F11"(9AEI3U NS N[1/p] — OALPD w OAt N[1/p] is injective,

where the first arrow is obtained by tensoring the A -linear inclusion Fil’ N 1 /p] — N[1/p] with the
flat AZ—module Filz(’)AE% and the second arrow is obtained by tensoring the AJLr—linear inclusion
FiliOAlz?ﬂ — OAE% with the flat Af-module N[1/p]. Moreover, Dy, is equipped with an integrable
connection induced from the connection on OAE% satisfying Griffiths transversality with respect to
the filtration since the the same is true for the connection on OAEE_J. Now consider the following
diagram:
1®¢e
OALw ®0L om D,, 4> OALw ®OL Dy,
(S.S)J(Z J{(S.G) (3.13)

OATY, @pt om N[1/p] — OATY, @5+ N[1/p],

where the left vertical arrow is extension of the isomorphism (3.8) in Lemma 3.15 along ¢™ : OSFP —

OA — and the bottom horizontal isomorphism follows from an argument similar to [Abh21, Lemma
4. 46] By description of the arrows it follows that the diagram is commutative and (p, I'z)-equivariant.
Taking I'z-invariants for the composition of left vertical and bottom horizontal isomorphisms gives an
L-linear isomorphism O ®o;, ,m Dy, = Dy,. So it follows that the top horizontal arrow in the diagram
(3.13) is bijective as well. The preceding observation together with the bijectivity of left vertical and
bottom horizontal arrows imply that the right vertical arrow is bijective as well, in particular, the com-
parison in (3.6) is an isomorphism compatible with Frobenius, connection and I'z-action. Compatibilty
of (3.6) with filtrations follows from an argument similar to [Abh21, Corollary 4.54] (using the filtration
compatible isomorphism (3.5) in Remark 3.5). This concludes our proof. [ |
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There exists another relation between the Wach module N and ODis (V). Let us equip N with
a Nygaard filtration as in Definition 3.2. Then we note that (N/uN)[1/p] is a ¢-module over L since
[p];, = p mod uN and N/uN is equipped with a filtration Fil*(N/uN) given as the image of Fil* N
under the surjection N — N/uN. We equip (N/uN)[1/p] with induced filtration, in particular, it is a
filtered p-module over L.

Corollary 3.16. Let N be a Wach module over A} and V := T(N)[1/p] the associated crystalline
representation from Theorem 3.12. Then we have (N/uN)[1/p] = ODeyis..(V) as filtered p-modules
over L.

Proof. For r € N large enough, the Wach module p"N(—r) is always effective and we have that
Tr(u"N(—r)) = Tr(N)(—r) (the twist (—r) denotes a Tate twist on which T';, acts via x~" where
X is the p-adic cyclotomic character). Therefore, it is enough to show the claim for effective Wach
modules. So assume N is effective and set M := N[1/p] equipped with induced Frobenius, I'p-action and
Nygaard filtration. Note that the L-vector space M /u is equipped with a Frobenius-semilinear operator
¢ induced from M such that 1® ¢ : @*(M/u) = M/u since [p], = p mod p. The filtration Fil*(M/p)
is the image of Fil*M under the surjective map M — M /p. From the discussion before Theorem
3.12 recall that we have a period ring OA%% C OAis(Or..) equipped with a Frobenius, filtration,

connection and I'z-action. Moreover, from Theorem 3.12 we have Dj = ((’)AE% ®at N (V)

equipped with a Frobenius, filtration and connection such that Dy ~% ODg;s(V) compatible with
supplementary structures (see (3.5)). Consider the following diagram with exact rows:

0 uM M M/u 0

| | !

0 — (Fil'OATR) @pr M — OATY, Opp M — L(G) ®r M/ — 0

J o J

0 — (Fi'OATY)) ®0, D — OAR ©o, D, — L(¢) ®1 D, — 0.

Note that (Fil'OATY ®,+ M)N M = (FI'OATD N A}) ®@,+ M = puM, so the vertical maps from
first to second row are natLural inclusions and the second row ig exact. Moreover, the middle vertical
arrow from second to third row is the isomorphism (3.6) in Proposition 3.14, from which it can easily be
shown that the left vertical arrow is also an isomorphism and therefore the right vertical arrow is also
an isomorphism. Taking Gal(L((,)/L)-invariants of the right arrow gives M/u ¢— Dj, — ODyis (V)
where the last isomorphism is compatible with Frobenius, filtration and connection as mentioned in the
proof of Theorem 3.12 (see (3.5)).

Note that the isomorphism D —+ M/u is compatible with Frobenius and we need to check the
compatibility between respective filtrations. In the diagram above, the middle term of the second row
is equipped with tensor product filtration so the image of Fil® (O AE% ® Al M) under the surjective

map from second to third term is given as L((,) ® Fil®*(M/yu). Similarly, the middle term of the
third row is equipped with tensor product filtration so the image of Fil® (OAE% ®o, Dr) under the

surjective map from second to third term is given as L(,) ®r Fil*Dy. Since the isomorphism (3.6) in
Proposition 3.14 is compatible with filtrations, we get L(,) ® Fil* Dy, — L(,) @ Fil*(M/p). Taking
Gal(L((p)/L)-invariants in the preceding isomorphism gives Fil* Dy, = Fil®(M /). This concludes our
proof. |

4. CRYSTALLINE IMPLIES FINITE HEIGHT

The goal of this section is to prove the following claim:

Theorem 4.1. Let T be a finite free Z,-representation of G such that V := T[1/p] is a p-adic
crystalline representation of Gr. Then there exists a unique Wach module N1 (T) over AJLr satisfying
Definition 3.7. In other words, T is of finite [p|,-height.
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Before carrying out the proof of Theorem 4.1, we note the following corollaries: let RepCZr;S(G L)
denote the category of Z,-lattices inside p-adic crystalline representations of G;. Then combining
Theorem 3.12 and Theorem 4.1 and [Abh21, Proposition 4.14] (for compatibility with tensor products),
we obtain the following:

Corollary 4.2. The Wach module functor induces an equivalence of ®-catgeories
Repg(G'r) = (. T)-Mody "
T+— NL (T),

with a quasi-inverse ®@-functor given as N + T(N) := (W(C}) @4+ N)‘le.
L
Passing to associated isogeny categories, we obtain the following:

Corollary 4.3. The Wach module functor induces an exact equivalence of ®@-categories Repg;S(G L) —

(@,F)—Modg]f via V. — Ng(V), with an ezxact quasi-inverse ®-functor given as M — V(M) =
L
=1
(W(CbL) ®A"L' M)w :

In the rest of this section we will carry out the proof of Theorem 4.1 and Corollary 4.2 by constructing
N (T) and show Corollary 4.3 as a consquence. In §4.1 we collect important properties of classical
Wach modules, i.e. the perfect residue field case. In §4.2 we use ideas from [Kis06; KR09] to show
that classical Wach modules are compatible with Kisin-Ren modules, and we further show that in our
setting, a finite [p],-height module on the open unit disk over L descends to a finite [p]4-height module
on the open unit disk over L, similar to [BT08]. On the module thus obtained, we use results of §2.3 to
construct an action of I';, and study its properties in §4.3. Then in §4.4 we check that our construction
is compatible with the theory of étale (¢, 'r)-modules. Finally, in §4.5 we construct the promised Wach
module N (7T') and prove Theorem 4.1 and Corollary 4.3.

For a p-adic representation of G, note that the property of being crystalline and of finite [p],-height
is invariant under twisting the representation by x" for » € N. So from now onwards we will assume
that V is a p-adic positive crystalline representation of Gy, i.e. all its Hodge-Tate weights are < 0. We
have T'C V a G-stable Z,-lattice.

4.1. Classical Wach modules. Recall that G is a subgroup of G, so from [BT08, Proposition
4.14] it follows that V is a p-adic positive crystalline representation of Gy and T' C V' a Gj-stable

Z,-lattice. Note that L is an unramified extension of Qp with perfect residue field, therefore the
G y-representation V' is of finite [p],-height (see [Col99] and [Ber04]). Let the [p]q-height of V' be s € N.
One associates to V' a finite free (¢, I'; )-module over B}: of rank = dimg, V' called the Wach module

N; (V) and to T a finite free (¢, 'y )-module over A}: of rank = dimgq, V' called the Wach module N (T')
(see [WacO6; Wac97; Ber04] and [Abh21, §4.1] for a recollection). Let Df (T) := (Aint(O7) ®z, T)Hr
be the (¢, I'z)-module over Aine(Or_) := Au(O7)"L (see [And06, Proposition 7.2]) associated to T
and let D} (V) := D (T)[1/p] over Bint(Oy..) = Bint(O7) !t associated to V.

Lemma 4.4 ([Ber04]). (1) N (T) =Ny (V)NnDy(T) Cc D (V).
(2) ' Ant(Of) ®z, T C Aint(Of) @+ Ny (T) C Aie(O) ®z, T and taking Hp-invariants gives
~ L ~
DT (T) C Ain(Or..) @+ N3 (T) € DJ(T). Similar claims are also true for V.
L

By properties of Wach modules, we have functorial isomorphisms of étale (¢, 'z )-modules, where
the second isomorphism in first row follows from [Ber04, Théoreme I11.3.1]
Ay @ps NL(T) = Dy(T) and A} @,s Ny (T) (T),

V)

o=+ e+

=D
Bj @ Ni(V) = Dy(V) and B! @ Ny(V) =D

i (V) 2 Dt
Bl ; ®p: Ny(V) 5Dl (V).
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Let N, (V) = BI& i ®B§ N; (V) equipped with (diagonally) induced Frobenius-semilinear op-

erator ¢ and I'y-action. From [Ber04, Proposition II.2.1], recall that we have a natural inclusion
Dcrls ;(V) € N, (V) which extends BT .-linearly to a Frobenius and T';-equivariant inclusion
rig,L L

rig,L
rlg 7 ®r Do i (V) c N 7 (V) such that its cokernel is killed by (t/u)® € BJr i (see [Ber04, Propo-
sitions I1.3.1 & II1.2.1]). In particular, we obtain a (i, I'; )-equivariant 1somorphlsm

cris,L

B;tg /@Dy (V) — B;ggi[u/t] O N; (V). (4.2)

Moreover, note that from loc. cit. we have a natural L-linear isomorphism of filtered p-modules
D (V) — N 1 (V)/uNy, ; (V) =Ny (V)/uNy (V) such that the largest Hodge-Tate weight of V

equals s, i.e. the [p],-height of V. Since ¢/ is a unit in BY, (O ) and B+ ; C BngL B!.(0r.),

extending scalars in (4.2) gives a BJ, (O )-linear and (¢, T 7 )-equivariant 1sornorph1sm

Blis(OLo) ® Do 1 (V) = By (0L, @ Np(V). (4.3)

cris,L
Lemma 4.5. The following diagram is commutative and (p, Gy )-equivariant:

BcriS(Of) ®E Dcrisj/(v) — BcriS(Of) ®B‘Lf NE(V)

I |

BCI‘iS(Of) ®Qp V  ——] BCI‘iS(Of) ®Qp V

Proof. The left vertical arrow is an isomorphism since V' is a crystalline representation of Gy. The
top vertical arrow is scalar extension of (4.3) along B/, (Or_) — Bes(Of). Next, from Lemma

4.4 (2) we have a (¢, Gy)-equivariant isomorphism Ai¢(O7)[1/p] @ o+ N (T) = Aint(OF)[1/1] ®2z,
L

T and extending this isomorphism along Ain¢(O7)[1/4] — Beis(Op) gives the isomorphism in right

vertical arrow. The commutativity of the diagram follows since the top horizontal arrow is also the

Beis(Op)-linear extension of the natural inclusion D _; (V) C B:i_g,i ®BE N; (V) C Beis(O7) ®BJL“r

N; (V) (see [Ber04, §I1.2]). |

4.2. Kisin’s construction. Our goal is to construct a Wach module Nz (T) over Af. To this
end, we will adapt some ideas from [BT08] and [KR()S)] generalizing the results of Kisin in [Kis06] to

first construct a finite [p]q-height module over Brlg -

Let E(X) := % € Z,[X] denote the cyclotomic polynomial. We equip Z,[X] with the
cyclotomic Frobenius operator ¢ given by identity on Z, and setting p(X) = (1 + X)? — 1 and for
n € N we set E,(X) := ¢"(E(X)). In particular, (yn+1 — 1 is a simple zero of E,(X). For X = u, we

will write E,,(X) =&, for n € N and @(u)/u = € = & = E(u) = [ply-

Remark 4.6. Define ¢y, : ngL — BngL as the map given by Frobenius on L and ¢r(u) = p, i.e.

Sken tap)if = Spen t(or(ak)) k. Then BrlgL is finite free of rank p? over BrlgL via the map ¢y,

+ — BT 7 denote the map given by Frobenius on L and

1g7

in particular, flat. Similarly, let ¢; : B

¢y (1) = p. From §2.1.4 recall that we have an injection B
with ¢ on left and ¢; on right.

L= B i which is evidently compatible

rig,

rig,

Remark 4.7. We have t/u € B o1 and we can write t/p = [Then(én/p) (see [Ber04, Exemple 1.3.3]
and [Laz62, Remarque 4.12]). The zeros of t/p are Gymi1 — 1 for all n € N. Moreover, we have
¢ " (t/1n) = t/u, therefore the zeros of ¢ "(t/u) are (yni1 — 1 as well.

Now let B i, denote the completion of E(gpn+l) ®jz Bz with respect to the maximal ideal generated
by p — (Cpn+1 — 1). Moreover, since (,n+1 — 1 is a simple root of &, we obtain that (p — (Grtr — 1)) =
(fn) C B . The local ring B i, Daturally admits an action of I'; obtained by the diagonal action of
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I'; on the tensor product E(Cpn+l)®z BJEF. We Eut a ﬁlgration on ELn[l/éﬂ] as FﬂTBE,n [1/6,] = €:B;
for r € Z. We have inclusions B}: C B:Eg,i C By ,[1/&].

Let Dy := ODeis,.(V) and Dy := D_,. (V) then using the p-equivariant injection L — L, we
have an isomorphism of filtered ¢-modules L @y, D, =+ D 7 from (2.5). Note that Dy, (resp. Dj) is an

effective filtered p-module over L (resp. over L), i.e. Fil’D; = Dy, (resp. Fil’D; = D;) and we have a
p-equivariant inclusion Dy, C Dj. Consider a map

+ L opt B
BrlgL ®L Df, _ Br'g o ®E Df, — Bi,n ®z Dfﬂ

where ¢; : Bzg [ Bl':g ;18 defined in Remark 4.6 and ¢p, is the Frobenius-semilinear operator on
Dy . Since the residue field of Lis perfect, the map i,, is well-defined and it extends to a map
(w/tl@p Dy — By [p/tl @ D

in

rlgL
Define a BT .-module
rig,L
M;(Dy) = {xEB:gg,E[u/t] ®jy Dy, such that Vn € N, i, (z) GFI]O( [1/§n] D;)},

where B:g& i[u/ t]®y Dy is equipped with tensor product Frobenius and B bm 1/ én] ®;y Dy is equipped
with tensor product filtration. By [Kis06, Lemma 1.2.2] and [KR09, Lemma 2.2.1], the BJr z-module
M (Dy) is finite free of rank = dim; D; stable under ¢ and I'; such that cokernel of the injective
map 1® ¢ : " (M;(D;)) — Mj;(Dy) is killed by £ and the action of I'y is trivial modulo p.
Moreover, from [KR09, Lemma 2.2.2] there exists a unique L-linear section a : M 7(Dy)/uM;(Dy) —

M (Dj)[u/t] such that the image a(My(Djy)/puMy(Dy)) is I'y-invariant. Furthermore, the section
« is @-equivariant and it induces an 1somorphlsm

l@a:BL [u/t]@p (My(Dp)/nMg(Dg)) = My(Dg)lu/t]. (4.4)

Finally, from [KR09, Proposition 2.2.6] we have a natural isomorphism Dy — M;(D;)/uM;(D;)
compatible with the respective Frobenii and filtrations and under the isomorphism above the image of
Dy coincides with a(Mj(Dy)/uM;j(Dy)).

Next, we note that the B L—module BT 1 ®p+ . M (Dy ) is pure of slope 0 using [Kis06, Theorem
rig,

1.3.8] and [KKR09, Proposition 2.3.3]. Then from [KR09, Corollay 2.4.2] one obtains an A"i—module N;
finite free of rank = dimy Dy equipped with a Frobenius-semilinear endomorphism ¢ and semilinear
and continuous action of I'; such that cokernel of the injective map 1®¢ : ¢*(Ny) — Ny is killed by &°,
the action of I'y is trivial modulo x and B ;©® At N; = M;(Dj;) compatible with (<p, 7 )-action.

Lemma 4.8. There is a natural B:i'g z-linear and (p,1'y)-equivariant isomorphism 5 : My(Dy) =
Nrig(,igv)' Moreover, it restricts to a Bz—linear and (o, Ty )-equivariant isomorphism [ : Ny [1/p] —
Ny (V).

L

Proof. Recall that by definition N, 7(V) = B 1 Bt N;(V), and consider the following diagram:

I‘lg,

(/) @y Dy ——— N (V)[u/]

{ {g (4.5)

plu/tl @y (Mp(Dy)/n) <5 Mp(Dp)lu/t],

rig, L

rig,L

where the top horizontal arrow is (4.2), the bottom horizontal arrow is (4.4) and the left vertical
arrow follows from Dy — My (D;)/u. For the right vertical arrow j3, we consider N, 7 (V) and
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M (Dy) as submodules of B;:g,i[,u/t] ®; D . 1 (V) and construct the map as follows: from [KR09,
Lemma 2.1.2] the action of I'; on N, (V) is “Zy-analytic” in the sense of [KR09, §2.1.3] and we
have Dy — N, z(V)/p- So from the equivalence of categories in [KR09, Proposition 2.2.6] and its
proof, it follows that we have an isomorphism 8 : Mj(D;) — M;(N rlgL( V) — ergi(V) as
BJr L—submodules of BJr ;/t] ®; Dy compatible with (o,I'; )-action and whose reduction modulo
i mduces 1somorphlsms ./\/l 7(Dy)/n — Dy — N, 1 (V)/p. Commutativity of the diagram follows
from the uniqueness of f and noting that the composition of left, top and right arrow provides a section
M;(D;y)/mw— Mj(Dy)[p/t] with the same property as a. This shows the first claim. For the second

claim, note that B]L_g ; ®p+ M;(Dy) — B]L_g ; ®p+ NrigE(V) is pure of slope 0, so from [[KR09,
g, rig,i g, rig,i ’

Corollary 2.4.2] we conclude that the isomorphism 8 induces an isomorphism 3 : Nj[1/p] — Ny (V)
compatible with (¢, Ty )-action. |

From (2.5) we have an isomorphism of filtered ¢-modules Lo Dy = Dy;.

Definition 4.9. Define

Mp(Dy):={z € B“gL[u/t] ®r Dp, such that Vn € N,i,(z) € Fllo( in[l/gn] 7 D;y)}
= (Bigrlu/t) @1 DL) "My (D) C BE 4 [u/t] @ Dy.

From §2.1.5 recall that we have a ¢-equivariant injection Brlg L = B:i’g Ix therefore by definition
M (Dy) is stable under the induced tensor product Frobenius semilinear-operator ¢ on B:gg L[M/ tl®y
D;. Using Lemma 4.8 and the discussion preceding (4.2) we have g-equivariant inclusions Bjig 7 OF

Dy c My(Dy) C (u/t)SB“‘ ; ®; Dy Moreover, from Lemma 2.9 recall that BIgL — B]: ol is flat and

from Lemma 2.10 we have Brlg Lﬂ(t/,u)B:gg’L =(t //L)B;:gl, or equivalently, B+ . ﬁBIg L/t = B;tg I
So it follows that we have @p-equivariant inclusions

B:gg,L ®r D, C Mp(Dp) C (,u/t)s rig,, OL Dy. (4.6)
Therefore, similar to (4.2), we obtain a yp-equivariant isomorphism
Mr(Dy)lp/t] = B, 1lu/t] ®1 Dy, (4.7)

Note that extending scalars of the isomorphism L(Cpnq1) — (L((pnt1) @1 Brlg )/ (= (Cpnir — 1))

along L — L, gives L((pny1) — (L (Cpn+1)®LBIg7 )/ (1 (Cpn+1 1)). Let I C L(Cpn+1)®LBr1g 1, denote

the maximal ideal generated by p — ((yn+1 — 1), and let (L ((pn+1) L Brlg 1)1 denote the localisation at
I. Then the natural map (Z/(Cpn+1) ®r B;Eg’ )1 — B 1. is obtained as completion of a discrete valuation
ring and we get the following;:

Lemma 4.10. The composition of maps B:qg,L — Iv/(Can) ®L BIg,L — (L (Cpn+1) ®L B]rlg ) — ]A3i7n
is flat for all n € N.

~ N
Lemma 4.11. Consider Bi,n as a Brlg 1 -algebra via the composition BngL — Bl':g i BN B/i,n'

)

(1) The homomorphism

~

Bi,n ®B+ (B

rig,L

rig,L ®L DL) Bi,n ®f/ Di L Bf/

induced by i, is an isomorphism.

(2) The isomorphism in (1) induces an isomorphism

B;, ®g+ My(Dy) Y &'By, @, Fil'Dy

rig,L
i€N



Crystalline representations and Wach modules 28

(3) The -equivariant homomorphism B:i_gz ®pg+ Mr(Dr) = Myz(Dy) obtained by extending
) rig,L
B:g . -linearly the @-equivariant inclusion Mr(Dr) C Mjy(Dy) is an isomorphism. Moreover,
M (Dy) is a finite free Brlg 1 -module of rank = dimp, Dr,.

Proof. The proof follows in a manner similar to [Kis06, Lemma 1.2.1]. For (1), note that using (2.5)
we have Dy = L ®1, Dy, so we can write

::g,L ®Br1gL (BngL XL DL) = BJr i ®r, Dy, = BJr el ®E Di‘

Moreover, we have qﬁ_” ® (p_” BT

n +
above along gb Brlg 7
To show (2), let us write for k € N

Mpi(Dr):={z € B;'i’g,L[u/t] ®r, Dr, such that ip(z) € Fllo( [1/£k] ®z D;)}.

e, ;® i Dy = Bj . ®y Dy, so extending scalars of the isomorphism

— Bi gives BL n ®zn,B+ . (B:;g,i ®r Dr) — Bi,n ®p Dj.

Then we have ML(DL) = mkeNML k(DL) c B

Lemma 4.10) and of ¢r, : BIgL

[/t @1 Dr. By flatness of Bi,n over B . (see

rig, L R rig,L
— BmgL (see Remark 4.6), we get that By  ®p+ Mr(Dr) =
’ rig,L
NkeN (BE O+ My i(Dr)) C Brlg pl/tl®r Dr. To prove our claim, it suffices to show the following
) rig,L

two equalities:

Ei,n ®Br+igLMLn (Dr) = an B n QL Fil" Dy,
, reN
B, ®p; , Mix(Dr) =By, [1/&] @1 Di, for k #n.

o~

For the first equality note that we have Bi,n ®B$g,L Mpn(Dr) CYen gﬁrﬁi,n(@L Fil" Dy, by definition.
For the converse, note that we have £, = %gp”(u/t)@”“(t/u) € Buig.r[pt/t] and ¢, (1) = &, So for
any r € Nand §,"a®d € §,"B; @ Fil"Dy, we have {," ®¢"(d) € My ,(Dr) since i, (§," @¢"(d)) =
£rede Fllo( Ln[l/fn] ®y D ) Therefore, £,7a®d = a®i,(E,” @ ¢"(d)) € P’E,n ®Br+igL Mpn(Dp).
For the second equality again note that by definition we have Bi,n@Bfig,LMka(D’:) C Ein [1/§~n]®LDL.
For the converse, note that & is a unit in Bi,n since (yr+1 — 1 is not a root of &, because n # k. So
for any j,r € N we take é,;’”é,;ja ®d e ELn[l/én] ®r FilVDy. Moreover, &, is a unit in Bi,k and
in(€"67 @ (d) = §767 @ d € Fi(By ,[1/&] @, Dy) so we have £,76,7 @ ¢#(d) € Mpx(Dy).
Therefore, £;76 a® d = a @ ix(§,78,” @ pF(d)) € By, @gi  Mui(Dr).

For (3), note that we have inclusions BJr ; ®L Dy C B+ 1 @B . Mp(Dr) € Myp(D;) C

gl BIgE is flat (see
Lemma 2.9) and M (Dy) C (,u/t)SBIgL ®r Dy, from (4.6). So we get that (¢/p)° kills the cokernel of

:Eg,i ®B:i—g,L Mp(Dr) = Mj;(Dy). Moreover, note that My (D;) C (,u/t)SBjing ®y Dy is a closed
submodule by [Kis06, Lemma 1.1.5, Lemma 1.2.2] and since Big . C B;Eg ; is a closed subring, we
get that M (Dyr) C (u/ t)SBrlg 1 @1 Dy is closed and hence finite free by Remark 2.13 and of rank
= dimy, Dy, by the isomorphism shown below.

Let us write Bjig . = lim, O(D(L, p)) as the limit of ring of analytic functions on closed disks
D(L, p) of radius 0 < p < 1 (see Remark 2.5); similarly write BIg ; =lim, O(D(L, p)). Since M (Dp)

and M;(D;) are free, we have M (Dg) — lim,(O(D(L,p)) ®g+ 5 Mp(Dr)) and My(Dy) —
rig,
lim,(O(D(L, p)) ®g+ M;(Dy)). Then to show our claim, it is enough to show that the map

rig,L

O(D(L,p)) ®@gt  Mrp(Dr) — O(D(L,p)) ®g+ M;(Dy), (4.8)

rig, rig,i

(1/t)*B iy ®1 D, where the first two 1nclus1ons follow since the map B

is a bijection. Note that O(D D(L, p)) is a domain, so injectivity of (4.8) can be checked after passing
to the fraction field of O(D(L, p)). To check that (4.8) is surjective, let Q denote the cokernel of (4.8)
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and we will show that Q = 0. Note that Q is a finitely generated S := O(D(L, p))-module killed by
(t/u)® and S is a principal ideal domain (see [Bosl4, Chapter 2, Corollary 10]). So by the structure
theorem of finitely generated modules over S we write Q = @©S/a; where a; = (a;) for some nonzero
primary elements a; € S and such that a;|(t/p)® for each i. Note that ,/a; is a maximal ideal of S
and Q & = S/a;, so to get @ = 0 it is enough to show that Qg = 0. From [Bosl4, Chapter 2,
Corollary 13] note that each maximal ideal \/a; corresponds to a zero of (¢/p)®, in particular, we are
reduced to showing that () vanishes at zeros of ¢/u. This follows from (2). Hence, we get that (4.8) is
an isomorphism and passing to the limit over p we obtain B:i_g, 7 ®Br+ig ; Mp(Dr) = M;(Dy). |

Lemma 4.12. We have following properties for the Br -module Mp(Dp):
(1) Cokernel of the injective map 1 ®@ ¢ : ¢*(Mr(DL)) — Mr(Dy) is killed by [p];.

(2) M(Dy) is pure of slope 0, i.e. the BT o.1,-module Bl
sense of [Ked(], §6.5].

L ®g+ Mp(Dr) is pure of slope 0 in the

I‘lg rig,L

Proof. For (1), let us first note the following commutative diagram with exact rows:

0 —— My(Dr) —— B, 1[u/t]®r D Q 0

| J |

()*>./\/li(DfJ)—>BJr ;w/t®y Dy *>B+L gt Q——0.

rig,L

All maps are p-equivariant and vertical maps are injective (see (4.6), Lemma 4.8, Defnition 4.9 and
Lemma 4.11 (3)) From Remark 2.7, Remark 2.8, Lemma 2.10 and Lemma 2.9 recall that the maps
oL - Brlg . = Brlg p, and pj - BJr BJr ; are faithfully flat (we write ¢ with subscripts to avoid

rig,L, BJr 1s ﬂat and BJr y mB:;gL[:u/t] _ ng
L®LDL from (2.5), we get SOL(M (DL)) = B:Eg,E®BIg,L 07 (Mr(Dpr)) and ¢} (B rlgL[M/ﬂ ®1D1) =5
rlg L[:u/t]®B+ @L(BrlgL@)LDL) C Bjig,lv/['u/t]@B;tgL[u/t}soL( rlgL[:u/t]®LDL) AN @L(B+ [N/t]®z
Dy). So from precedmg discussion and exactness of both rows in the diagram above, it follows that
PLML(DL)) = (B 1[n/t) @ | ¢1(Mr(D1)) N (BE ; @g: | ¢L(Mr(Dp)))
= (PL(BIg plu/tl®r D) N @E(ME(DE)) cC SO*E(B:;g,E[:“/t] ®; Dy).

confusion), B .- Using Lemma 4.11 (3) and Dy —

Now let z € Mr(Dr) C Mj(Djy), then there exists y € ¢*(My(D;)) such that (1®¢)y = £%z. Recall
that 1®¢ : *(D1) = Dy, and o(u/t) = (Ep)/(pt), therefore the cokernel of 1® ¢ : @*((1/1)*Biiy 1 OL
Dp) — (u/t)sBrlgL(EQLDL is killed by £°, in particular, £z € (1Q0¢)p ((,u/t)SBrlgL@LDL). Since 1®¢

is injective on ¢ ((l‘/t)sB:ggj@’EDi)’ therefore we get that y € go*((u/t)SB;qg 1OLDL)NY* (M (Dy)) =

©*(Mp(Dyp)). In particular, the cokernel of 1® ¢ : ¢*(Mp(Dy)) = Mp(Dy) is killed by £°.
For (2), note that from Lemma 4.11 (3) Bfgi ®pt Mp(Dr) = M;j(D;). Moreover, from
rng, rig,

[Ked04, Theorem 6.10] we obtain a slope filtration on BL& I ®Br+ig . M (Dr) such that base changing

T ; : T
this slope filtration along Bl L= Brig 7 gives a slope filtration on Brig 7 ®BIg,i M (Dy). However,

rig,

from [KisO6, Theorem 1.3.8] and [KKR09, Proposition 2.3.3] Biigz ®g+ Mj(Djy) is pure of slope 0.
’ rig,L

Therefore, we must have that M (Dy) is pure of slope 0. |

4.3. Stability under Galois action. In this subsection we will define and study a finite free slope
0 (¢,T'r)-module Nyig (V) over Brlg ;, obtained from the B;tg ;-module in Definition 4.9. From §2.1.4
recall that we have identifications B+g L = (B;'[g) = Mnene" (B (0r..)) where the last equality

follows since B, (Or.) = B, ,(O7)"L (see §2.1.1). Moreover, using the isomorphism in Lemma 2.18

and Remark 2.20 we see that Beis(Or..) @1 ODgyis 1.(V) is equipped with an action of I';,. We have

Brlg 1 O ODgis, 1.(V) C Beris(Or..) @1 ODgris 1.(V) and we make the following claim:
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Lemma 4.13. The BIgL -module BmgL ®1 ODeis,.(V') is stable under the action of I'y. For a® x €

Brig 1. ®L ODyis,1.(V') this action can be explicitly described by the formula

d d
gawa)=gla)o Y []oF (@) [T(a((X7]) = XID™, forg €Ty

keNd i=1 =1

Proof. The non-canonical (¢, G )-equivariant L-algebra structure on OB (Or. ) from §2.1.1 ex-
tends to a (¢, Gy )-equivariant L-algebra structure and it prov1des (¢, Gy )-equivariant L-algebra and
L-algebra structures on BL, (Oy_) via the composition L — L — OBZL. (O ) - BL, (Oy_), where

Cris
the last map is the projection map described before Lemma 2.18. Moreover, recall that we have

L ®@yn 1, ODyis ,(V) = ODgyis,1,(V) for all n € N. So we can write

Blis(Or..) @ ODeyis (V) = Bl(Or..) ®; D

Cris

(V)

cris,L

= Bg}ls(OLw) ®¢En’i (E ®<PE7E Dcris,Z(V))‘

Applying ¢" to the isomorphism above gives (B, (Or_) ® ODeyis (V) — (Bl (Or.)) ®1
OD,is,.(V). Note that the Frobenius endomorphism ¢ on B .(0r..) ®L ODCHS( ) commutes with
the action of I'y,. Therefore, the following is stable under I'z-action:

mTLENSO (OBcrls(OLoo) L ODCriS,L(V)) - ( neNy (OBcrls(OLoo))) XL ODCri&L(V)

= Brlg L L ODcrls L(V)

The second claim follows from Lemma 2.21. [ |

Extending the isomorphism in (4.2) along the map B:ggi[u/t] — BIg Lli/t] (see §2.1.5), we obtain

an isomorphism B;ﬁng[u/t} ®; D iz (V) — BIgL[u/t] ®BE N; (V). Recall that for g € I'y, we have

g(t) = x(g)t and g(p) = (1 4+ p)X9 — 1, where y is the p-adic cyclotomic character. Now using
D 1 (V) = L ®1 ODgyis (V) we get isomorphisms B;Q&L[u/t] ®r ODeyis (V) = BIgL[,u/t] =

+
cris,[v/(v) — BrlgL

structure via this 1somorphism In particular, the preceding discussion induces an action of I';, over
Bj;g L/t ®B+ » N, (V) =B, o/t ®B+ N; (V). Our first objective is to show that Brlg L ®p+

rig,L

(/1] ®BZ N; (V) and we equip the last term with a I'z-action by transport of

N, (V) C Brlg L/t ®B;Lig,L N, £ (V) is stable under the action of I'z. We will do this by embedding

everything into Beis(Op) ®q, V.
Let us fix some elements in Aeis(Or_ ). For n € N, let n = (p—1)f(n) +r(n) with r(n), f(n) € N

and 0 < r(n) < p— 1. Set t{"} = W;f(") and A := {3, cn ant™ with a,, € Op such that a,, —

Oasn — +oo} = Op[t, =1 /p)M &k € N}A where " denotes the p-adic completion. Then we have an
isomorphism of rings

Oplu, (W~ /p)M, k€ N =5 A,

via the map p +— exp(t) — 1 with the inverse map given as ¢ — log(1 + p) (see [Bri08, Lemme 6.2.13)).
Furthermore, for 7 € N and A := Ajt(Or_. ), Aint(O7), Acis(OL.,) or Aqis(O7) set

IM A := {a € A such that ©"(a) € Fil"A for all n € N}. (4.9)
Lemma 4.14. We note the following facts:
(1) P71 € pAis(Or.), tin} e Auis(Or) and t/p is a unit in A C Agis(OrL)-
(2) Forr € N we have I At (Op_) = p" At (Or) and P DAy (Op.) = 1P~ ' Aing(Or).

(3) Let S = Op[u], then the natural map Aug(Op)®sA — Acis(Or.) defined via > keN Gk @
(=Y p) L s S en an (Pt /)L is continuous for the p-adic topology and an isomorphism of
A;¢(Or,)-algebras.
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(4) The ideal I(T)Acris(OLoo) is topologically generated by t1} for s > r.

(5) The natural map Ajnf(OLoo)/I(T) — AcriS(OLoc)/I(r) is injective and the cokernel is killed by

mlp™ where m = | 15 |.

Similar statements are true for Ajt(O7) and Acqis(Og).

Proof. All claims except (3) follow from [Fon94, §5.2] and [Tsu99, §A3]. The proof of claim in (3)
follows in a manner similar to the proof of [Bri08, Proposition 6.2.14]. [ |

Remark 4.15. As subrings of Beis(Or., ), we have Bint(Or.) = Aint(Or..)[1/p], B! .(Or.) =
Ais(Or)[1/p] and Brlg 1 and we equip these with a filtration induced from the natural filtration on

Bis(Or.,) (see §2.1.1). Then one can define ideals similar to (4.9) for these rings and from Lemma 4.14
(7) we obtain isomorphisms By, (O ) /1" =5 BE. (Or)/I") and By, (O ) /1 = B (07) /1.

Cris cris (

Proposition 4.16. The Bi,(Or_)-module

N oo (V) 1= Bint(OLo) @+ N (V) € (Bint(O7) ®q, V) =Df(V),

is stable under the residual action of ', on DE (V) and we equip N (V) with this action. Then we
have a natural I'p -equivariant embedding Ny (V') C Beis(OL., ) ®1L ODcrls L(V) (see Remark 2.19 and
(2.8) for I'r-action on the latter).

Proof. From Lemma 4.4 (2) consider the exact sequence
0 — w’DI (V) — Nj (V) — Ny _(V)/w’Di (V) — 0, (4.10)

where we know that u*Df (V) C D (V) is stable under the action of I'y. Therefore, to show that

the middle term above is stable under the action of 'z, it is enough to show that for the inclusion

N; . (V)/wD} (V) € DE(V)/DE(V) C (Bint(Og)/1* ©q, V)t C Bing(Og)/u® ®q, V, the image
of the first term in the last term is stable under the action of G7,.

From Lemma 4.5, we have a Beis(O7)-linear and (¢, G )-equivariant isomorphism Beis(O7) ®g+

L

N; (V) = Bais(Of) ®q, V. In view of Remark 4.15, let us set
M = (I(S)Bjns(Of) ®q, V) N (B&s(Or..) ®B*E' N;(V)) € Beis(Og) ®q, V-

Then we obtain a diagram with exact rows

0 — D (V) ———— N; (V) N; (V)/wDE(V) ——— 0
0 M CrlS(OLoo) ®BJr Ny (V) B (B(—;is(OLoo) ®BJLr NL(V))/M — 0.

The left vertical arrow is injective by Lemma 4.4 (2) and the middle arrow is obviously injective.

Lemma 4.17. The inclusion NE’OO(V) c Bt

cris

phism of Bint(Or.,)-modules NLOO(V)//LSDZ(V) - (B CMS(OLW) ®B+ N;(V))/M.

(Or..) ®B+ N; (V) induces a Ty -equivariant isomor-

Proof. First, we observe that by Lemma 4.4 (2) we have
MON; (V)= (B (0p) ®q, V) NNy (V)
C (1B, (0p) #q, V) NDE(V) € w'DE(V).

Therefore, we get that the rightmost vertical map in the diagram is injective. Next, we need to
show that Ny (V) + M = B!..(Op.)® B+ N; (V). The left expression is clearly contained in the

right. To show the other direction, let x € Bcrls(OLoo) ®B§ N; (V). Then for m € N large enough
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T € Aais(Or..) ®p+ Ny (T). By the isomorphism in Lemma 4.14 (4), for r = [;27], k € N and
L

rp, € N (T) such that zx — 0 as k — 400, we can write

pre =Y w7 /p)M = > 2 o)+ w(u/p)

keN k<r—1 k>r

Clearly, the first sum in the rightmost expression is in Ny (V). Moreover, from Lemma 4.14 (1)

there exists v € AX such that u?~1'/p = vtP~!/p. Therefore, we obtain that the second sum is in
(I® Ais(07) ®z, T) N (Aeris(Or..) ® 4+ N;(T)) € M. Hence, z € N; _ (V) + M. u
L b

Let us now consider the diagram (4.11) below with the following description: in (4.11) the bottom
horizontal arrow is a (¢, Gr)-equivariant isomorphism since V' is a crystalline representation of Gp.
The left vertical arrow from fourth to third row is induced by the projection OB.is(O7) — Beris(O7)
via X; — [X?], it admits a section as in (2.7), it is evidently p-equivariant and it is Gz-equivariant
since the codomain is equipped with a Gp-action by transport of structure from the domain (see
Remark 2.19). The right vertical arrow from fourth to third row is also induced by the projec-
tion OBeris(Of) — Bais(Of), it admits a natural section Beis(Of) ®q, V' — (OBais(Of) ® V)9=0
and it is naturally (¢, Gp)-equivariant. The horizontal arrow in third row is the isomorphism in
Lemma 2.18 and it is (¢, Gr)-equivariant by the preceding discussion and Remark 2.19. Commu-
tativity of lower square follows from this. The left vertical arrow from third to second row is an
isomorphism since L @ ODes (V) — D (V) by (2.5) and its (¢, G})-equivariance can ei-
ther be checked by the explicit formula in Remark 2.19 or by observing that the non-canonical map
L—L— Bis(O7) is (o, G )-equivariant (see proof of Lemma 4.13). The horizontal arrow in second
row is a (¢, Gy )-equivariant 1somorphlsm since V' is a crystalline representation of Gy. Commutativ-
ity of the mlddle square follows since the outer square between second and fourth row as well as the
lower square are commutative. Commutativity and (¢, Gy )-equivariance of the top square follows from
Lemma 4.5.

Bii(OL) ®p Dyyyy 1 (V) — Bl (OL.,) @+ Ny (V)
L

cris, L

Bcris(of) ®i Dcris,i(v) —_— BCTiS(Of) ®Qp 4

Z H (4.11)

Bcris(Of) ®L ODcriS,L(V) % Bcris(Of) ®Qp |4

| ?T

(OBuais(07) ®1 ODeyis,.(V))?=0 —=— (OBeyis(07) ®q, V)70,

Furthermore, in the diagram (4.11), the image of composition of top two left vertical maps inside
Be1is(07) ® L ODpis, (V) is stable under the action of Gz, by Remark 2.19. So the image of composition
of top two right vertical maps inside BCHS(O )®Qp V is stable under the action of G, and it follows that

its image (B CrlS(OLoo)®B+N (V))/M C BZ( —)/I(S) ®q,V — Bint(OF)/1*®q, V is stable under the

action of Gp. Therefore, from the preceding lemma we obtain that the image of Ny _(V)/ wDE (V) C
Bint(Of)/1® ®q, V' is stable under the action of Gr. Hence, from (4.10) we Conclude that Ny (V) is
stable under the action of I';, and the following natural composition is I'f-equivariant:

Bint(Or..) ©pi N; (V) c BLi(Or) Op N; (V) = Bl (Or.) ®1 ODgyis (V). (4.12)

cris cris
|

Recall that N, ; (V) = BIg,“ ®B+ N; (V) and we note the following:

Corollary 4.18. Eztending Brlg -linearly the embedding Ny (V) C Beris(Or.,) ®1 ODgis, 1.(V) from

Proposition /.10 gives an identification of B;qg -submodules of Beyis(Or..) @ ODeyis,1.(V)
B:i_g,L ®Binf(OLoo) Ni,w(v> = Brlg L ®B+ Ny (V) - Brlg L ®BJr ek Nrig,i(v)’

stable under the I'r-action on Beis(Or.,) @1 ODeyis (V).
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Proof. The equality in the claim follows from definitions and the compatibility of I'z-actions follows
from (4.12). Using (4.2) we have BIgL[u/t] ®B1£ N; (V) = BIg pl/t] @Dy £ (V) € Baris(OL,,) ©f
Dcris’i(V) = Bais(Or.. )®1,ODgis,.(V). Therefore, we can see Brig,L®BJ£NE(V) as a BI&L-submodule
of Baris(Or..) ®1 ODgris 1,(V). Then the stability of E;Eg’L ®BJ£ N; (V) under I'z-action follows from
Proposition 4.16. [ ]

Recall that from Definition 4.9 we have a B;tgL -submodule M (ODeis,r.(V)) € M;(D_, 1 (V))
stable under the action of (¢,I'y) and from Lemma 4.8 we have a BJr ;-linear and (¢, I'y )-equivariant

ng,

isomorphism 8 : M (D_._ ;(V)) — N, 1 (V). Define a Bj -submodule of N, (V) as
Nrig7L(V) = ﬁ(ML(ODCriS7L(V>)) C Nrig,i(v)' (4.13)

Since the map B
BIg p-linear and (o, 'y )-equivariant isomorphism £ : Mp(ODeis (V) — Niyig,r.(V). In particular,
from Lemma 4.11 (3) we get that Ny (V) is a finite free ;'[gL

the natural map BJr 1 OBt - Niig,.(V) = N, ; (V) is a (¢, I’z )-equivariant isomorphism, since 3 is

BJr ; constructed in §2.1.5 is (¢, 'y )-equivariant, from (4.13) we obtain a

ng,

rig,L

-module of rank = dimg, V' and

(¢, 'y )-equivariant. Moreover from Lemma 4.12 it follows that Nyg (V) is of finite [p],-height and
pure of slope 0. Now consider the following diagram:

B

~

ML(ODcris,L(V))[M/t] - Bxg L[,u/ﬂ XL ODcriS,L(V) —— Nrig,L(V)[H/t]

l J l (4.14)
My (V)] —=— BE [1/1]@; Dy (V) = N, (V)[u/t].

B

cris, L

In the diagram, all vertical arrows are natural inclusions. In the bottom row, the left to right horizontal
arrow is the inverse of the composition of lower horizontal and left vertical arrow of diagram (4.5), the
right to left horizontal arrow is inverse of (4.2), the curved arrow is the map § in Lemma 4.8 and the
resulting triangle commutes by diagram (4.5). In the top row, the left to right horizontal arrow is the
isomorphism in (4.7), the curved arrow is from (4.13), the right to left horizontal arrow is the inverse of
B composed with natural inclusion and the resulting triangle commutes by definition. Therefore, two
inner squares commute by definition and all maps are (¢, I'y )-equivariant.

Using the diagram (4.14) and Defintion 4.9, we can write erng(V) (B;tg 2/t ®@r ODgis (V)N
N (V) C B:gg,i[u/ ]®;D . 1. (V), in particular, now we will consider Nyig, (V') as a Brlg -submodule
of B;tgL[u/t] ®1 ODguis,.(V). Furthermore, from Lemma 2.21 recall that BrlgL ®r ODgis,.(V) C

Crls(OLoo) ®1 ODygis, (V) is stable under the action of I'y, and we equip the former with induced
T'z-action. Since g(t) = x(g)t and g(u) = (1 + u)X@ — 1 for g € T and x the p-adic cyclotomic
character, the preceding I';-action extends to Brlg i/t @ ODgis, (V).

Proposition 4.19. The BrlgL -submodule Ny 1.(V) C Brlg 1/t @ ODgis (V) is stable under the
action of I'r,. Moreover, the preceding inclusion extends to a BrlgL[,u/t]—linear and (¢, T'1)-compatible

isomorphism N
B, [0/t) @ | Neig(V) = B, 1l1/t] ©1 ODaio (V). (4.15)

Proof. From Corollary 4.18 and the discussion after (4.13), we have

+
Bl ®gt Ny i (V)5 B

rig, L ®B"T Nrig,L(V)’
rig,L

rig,

stable under the action of I';,. Moreover, using Lemma 2.21 and the discussion after (4.14), we have a
I’ -equivariant embedding Brlg 21/t &L ODeig (V) C Beris(OLy, ) ®q, ODais, (V). Therefore, inside
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Beis(Or.) ®q, ODeris,.(V), the following intersection is stable under I'z-action:
(B;?g,L ®B$g7L Nrig,L(V)) (B:qg L[:U’/t] QL ODcris,L(V))
= (Brig L ®B+ L Niig,2.(V)) N (B vig LK/ ] ®B+ " Niig,.(V))
= (Bl N B, L[n/1]) ®pz , Nrig (V) = Nuig (V).

The first equality follows from (4.14) and the second equality follows from Lemma 2.11 and the fact
that Nyig 7 (V) is finite free over B;g& - This proves the first claim. For the second claim, note that
by definition, extending the (¢, I's,)-equivariant inclusion Nyg 1,(V) C B . [1/t] ®1 ODeis (V) along

; — Bl o1, coincides with the top right horizontal arrow of the diagram (4.14). Hence,

rig,L
the map B:g
the isomorphism in (4 1’) follows. |

Corollary 4.20. The action of I'y, on Nyig (V') is trvial modulo p.

Proof. Note that g(u) = (14+p)X9 —1and g(t) = x(g)t for g € T';, and x the p-adic cyclotomic character,

in particular, (g — 1)(u/t) = pugy(p/t) for some uy € B} . Therefore, using Lemma 2.22 it follows that

the action of Iy, is trivial modulo x on Bng Llu/tler ODCNS,L(V) & B:qg Ll/tl g+ Nig (V) (see
5 rig,L

(4.15)).

From Proposition 4.19 note that we have a (¢, I'f,)-equivariant inclusion Nyig 1,(V)) C Bng Lln/tl@g+
rig,L

Niig,2.(V) = BIgL[u/t] @1 ODeris,r.(V). Let € Nyjgr.(V), then for g € I'r, we have (g — 1)z €

Nuig.2.(V) C NngL(V) and (g — 1)z € ,uBrlgL[,u/t] ®B;§g,L Niig.2.(V). So inside Nrigi(V)[u/t],

Nrig,i(v) (MBrlg L[:U'/t] ®BIg,L Nrig,L(V))
- (BI L %8Bl Niig,z (V) N (4B 1 [1/t] ®By , Niig, (V)
= (B, p NiB, 1[1n/1) ©g;  Nigr(V) = iNiig 1 (V).

(V') (see the

discussion after (4.13)), the second equality follows since Ny 1,(V') is free over Bj 1, and the last
equality follows from Lemma 2.10. Hence, (¢ — 1)Nyig,.(V) C uNyig, (V') for g € T'z. [ |

o o . +
where the first equality follows from the isomorphism Brig7 i ®BIg,L Niig.2.(V) = erg N

4.4. Compatibility with (¢,T';)-modules. From §2.2 recall that D,

tig.2. (V) is a pure of slope 0

finite free (¢, ', )-module over BLg ;, functorially attached to V. The following result is a generalisation
of [Ber02, Proposition 3.5 & Théoréme 3.6] from the perfect residue field case to L:

Proposition 4.21. There are natural (¢, Gp)-equivariant isomorphisms

(1) B,[1/1] @1 ODeyis (V) = B, [1/t] @, V.

Df

(2) Bl [1/t] ®L ODeyis (V) = Bl [1/t] @ L

vig (V).

B, |
Proof. For (1), recall that from Lemma 4.13, there is a B glinear and (¢, G'r)-equivariant map

Brlg XL ODcns,L(V) — Bcrls(O ) L ODcrls L(V) —> Bcris(of) ®Qp ‘/a

where the isomorphism is from Lemma 2.18. Extending the isomorphism in (4.2) along B;Eg’ Lle/t] —

B;tg[l /t] and using (2.5) we obtain a @p-equivariant isomorphism

rlg[l/ﬂ ®r ODeris L(V) — B;tg[l/t] ®r Dcrisj,(v) — B:g[l/t] ®Bz NE(V)-
The preceding isomorphism fits into a commutative diagram compatibly with (4.11)

[1/t] ®r ODCI‘IS L(V) — Bcris(OZ) L ODcris,L(V)

lz \ (4.16)

rlg[l/t] ®B+ N;(V) —— B;tg[l/t] ®q, V ———— Buis(O7) ®q, V,

rlg
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where the left horizontal arrow in bottom row is induced from the isomorphism Ajne(O7)[1/p] @ 5+
L

N;(T) — Aue(Of)[1/p] ®z, T (see Lemma 4.4 (2)), the slanted isomorphism is the isomorphism
in the third row of (4.11) and the rest are natural injective maps. Since the slanted isomorphism is
(¢, GL)-equivariant we obtain that the isomorphism Bng[l/t] ®r ODeis (V) — leg[l/t] ®q, V is
(¢, Gp)-equivariant, showing (1). For (2), extending the isomorphism in (1) along Brlg[l Jt] — Bllg[l /t]
and using (2.3) we obtain (¢, G')-equivariant isomorphisms

[1/] ©1 ODaris 1 (V) =+ Bl [1/1] @0, V = Blg[1/f] @51 D]

Vg L rig,L

ng (V). |

From the discussion after (4.13) and Proposition 4.19 we have that Biig . ®g+ Nijg (V) is a pure
’ rig,L
of slope 0 finite free (¢, I'r)-module over BIig ;, of rank = dimg, V. Therefore, by the equivalence of

categories in [Ohk15, Lemma 4.5.7] there exists a unique finite free étale (¢, I'r)-module DTL over BTL of

rank = dimg, V' such that Brlg L ®g+ Nigr(V) = Biig L ®pt DTL compatible with (¢, ' )-action.
rig,L ) L

~

Corollary 4.22. There erists a natural (@, Gp)-equivariant isomorphism BLg Ppt Niig.2.(V) —
g, L

Bl ®BT V' inducing natural (p,I'r)-equivariant isomorphisms DTL e DTL(V) cmd BLgL Rp+

rg rig,L

Niig (V) =+ Bl @gy DL(V).
Proof. Consider the following diagram:

P’Iig ®B:qg,L Nijg (V) ——— Biig Rp+ Nrigi(V) —~ L Bl ®q, V

v Il
rig,L &

J | J

Bl [1/1] ®pz , Nugr(V) —— Bl [1/t] © ODeiis, (V) —— Bl [1/t] @q, V.

~

In the top row, the left horizontal arrow is induced by the isomorphism B;Eg 7 ® Nri&L(V) —
N, (V) (see the discussion after (4.13)) and the right horizontal arrow is induced by the isomor-
phism A, (O7)[1/p] ®A+ N; (T) = A (07)[1/p] @z, T (see Lemma 4.4 (2)). In the bottom row, the

~

left horizontal arrow is mduced by the (¢, 'z )-equivariant isomorphism Brlg L/t ®Br+ig,L Nyig (V) —

lHgL[,u/t] ®1 ODgis 1.(V) (see (4.15) in Proposition 4.19) and the right horizontal arrow is induced
from Propositon 4.21 (1). The left and right vertical arrow are natural maps and the middle verti-
cal arrow is induced from (4.2) and (2.5). Commutativity of the left square follows from (4.14) and
commutativity of the right square follows from (4. 16) This shows the first claim.

For the second claim, set V' := (Bf® Bl Di)e 1)Y=, it is a p-adic representation of G with dimg, V' =
dimg, V' (see [KB” Théoreme 4.35]). NOW we note that V' ¢ (Bl ® B} DE)“’—1 ~s (Bl Rp+

r1g rig rig, L
Nyig ,(V))#=! (BIlg ®q, V)#=! =V, where the first isomorphism follows from the discussion before
the claim, the second isomorphism follows from (1) and the last equality follows from Lemma 2.2.
Therefore, V! =+ V as Gp-representations and it implies that DTL = DTL(V’ ) — DE(V) as étale
(¢, T'1)-modules over BTL. It is straightforward to verify that this isomorphism is compatible with the
commutative diagram above. This concludes our proof. |

Remark 4.23. As indicated before the Corollary, for a p-adic crystalline representation of V', combining
the (p,I')-equivariant isomorphism BLgL ®BIg,L Nyig (V) = BL&L ®BTL DE(V) together with the

inverse of the isomorphism (4.15), gives a B! _linear (¢, 'r)-equivariant isomorphism

rig, L~
Bliz.s ©1 ODaiis (V) = B, ®i DL(V). (4.17)

The isomorphism (4.17) generalises [Ber(2, Proposition 3.7] from the perfect residue field case to L.
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4.5. Obtaining Wach module. The finite free B;Eg ;-module Nyig 1,(V) is of finite [p],-height s
and pure of slope 0 (see Lemma (4.12)), therefore from Lemma 2.12 (2) there exists a unique finite free
B/ -module of rank = dimg, V' and finite [p],-height s whose extension of scalars along B — BI& I
gives Nyig 7.(V'). In particular, from the proof of Lemma 2.12 we note the following:

Definition 4.24. Define N7(V') := Ny (V) N DTL(V) C DLgJJ(V).

The Bj{—module N (V) is finite free of rank = dimg, V' and it is equipped with an induced
Frobenius-semilinear endomorphism ¢ such that cokernel of the injective map (1 ® ¢) : *(Np(V)) —
N (V) is killed by [p]$ since Ny z(V) is of finite [p],-height s and 1 ® ¢ : o*(D}(V)) = D] (V).

Moreover, we have Nz(V) C D} (V) because inside DL& (V) we have

N (V) = Ny (V) NDL(V) € (B, ®q, V)™= n (Bl @q, V)"
C (B, ®q, V) N (Bl @q, V)"
C (B, nBY) &g, V)"t = (BT ®q, V)" =Df(V).

Furthermore, since Ny 7,(V) and DTL(V) are stable under compatible action of I';, (see Proposition
4.19 and Corollary 4.22), we conclude that N (V) is stable under I'z-action. In particular, from the
preceding discussion and Lemma 2.12 we get (p, ' )-equivariant isomorphisms

B+

fer ©pt NL(V) = Nugg £(V) and B} @gs N1 (V) = DL(V). (4.18)

Lemma 4.25. The action of I't, on N1(V) is trvial modulo p.

Proof. Let g € ', and € N (V). Then, (9 — 1)z € NL(V) C DTL(V). Moreover, from Corollary 4.20

we have (g — 1)z € ulNyig, (V). Therefore, inside DIig,L(V)7 from (4.18) we get

(9~ Dz € DL(V) N uNuig (V) = (B, N By, 1) @y NL(V) = uNL(V). u

Definition 4.26. Define the Wach module over AJLr = BJLr NAp C By as
NL(T) = NL(V) N DL(T) C DL(V)

Proof of Theorem /J.1. We will show that N7(T") from Definition 4.26 satisfies all axioms of Definition
3.7. From the definition, note that N (7T) is a finitely generated torsion-free Af-module and an
elementary computation shows that Nz (7) N u"Ng(V) = p"N(T) for all n € N, in particular,
N (T)/u is p-torsion free. Moreover, we have N (T)[1/p] = N(V) and a simple diagram chase
shows that (N (T)/p)[u] = (NL(T)/u)[p] = 0 and (AL ®,+ NL(T))/p = (NL(T)/p)[1/n]. So we
have N1(T)/p™ C (NL(T)/p™)[1/u] = AL @t N/p™ for all n € N and therefore N (T) Np"(Ap @t
N.(T)) = p"Nr(T), in particular, N(V) N (AL N N.(T)) = NL(T). Now using Remark 2.15 it
follows that N (7T) is finite free Af-module of rank = rszN (V) = dimg, V. Alternatively, to get
the preceding statement, one can also use [Ber04, Lemme I1.1.3] (the proof of loc. cit. does not require
the residue field of discrete valuation base field, L in our case, to be perfect).

From the definition it also follows that N (7) N p"Dr(T) = p"N(T), in particular, we have
Nz(T)/p" C Dr(T)/p" and therefore (N.(T)/p")[1/u] € Dr(T)/p". So we get that (Ap ®at
N.(T))/p" C DL(T)/p", or equivalently, (AL®A2r NL(T)np"D(T) = p”(AL®Az N_.(T)). Note that
we have (A ®Af N.(T))[1/p) =BL ®Bf N (V) = Dp(V), where the last isomorphism follows from
(4.18). Therefore, we get that Ay, NS N.(T)=Dr(T)N(AL Rt N, (T))[1/p] = Dr(T)NDL(V) =
D (T). Next, N.(T) is equipped with an induced Frobenius-semilinear endomorphism ¢. We have
¢ : AT — A7 is finite and faithfully flat of degree p™1 and ¢*(AL) = AT ®%AJE A} and similarly
©*(BY) — Af DAt B/ (see §2.1.2). Therefore, we get that ¢*(N.(V)) = Bf DB N.(V) =
AT DAt N.(V) and ¢*(DL(T)) = AL ®pa, DL(T) = Af By At D/ (T). Then it easily follows

that ©*(NL(T)) = ¢*(NL (V) Ne*(DL(T)) C ¢*(Dr(V)). Now since 1 ® ¢ is injective on ¢* (D (V)),
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1® ¢ : ¢*(DL(T)) — D(T) and cokernel of 1 ® ¢ : *(NL(V)) = N (V) is killed by [p]3, we get
that cokernel of the injective map 1 ® ¢ : ¢*(NL(T)) — N(T) is killed by [p];. Finally, note that
N (T) is equipped with an induced I'g-action such that 'y acts trivially on N (T)/ulNg(T) (follows
easily from Lemma 4.25) and we have Ap Bat N (T) = Dp(T). Hence, we conclude that T is of

finite [pq-height. |

~

Corollary 4.27. There exists a natural isomorphism of étale (,I'y)-modules Ay @A, Dp(T) —
D; (T) and a natural isomorphism of Wach modules A"i ®a+ NL(T) = Ny (T).
L

Proof. Note that we have an injection of étale (¢, I'; )-modules A;®a, Dr(T) C Dy (T) and (W(Ch)®a,
D (T))*=t = T <& (W(C%) @A, D;(T))?=! as Gj-representations. So we get that A; ®a,
D (T) — Dy (T). Furthermore, we have a (¢, 'y )-equivariant injection of Wach modules A}Jf ®at
Nz (T) € Ny (T). So by the unniquess of a Wach module attached to T (see Lemma 3.9), it follows

that Az (X)AzL NL(T) L}NE(T) [ |

Proof of Corollary 4.3. The equivalence of ®-categories follows from Theorem 4.1 and we are left to
show exactness of the functor N, since exactness of the quasi-inverse functor follows from Proposition
3.3 and the exact equivalence in (2.2). From §2.1.5 recall that AT — A'{ is faithfully flat, therefore

Bj{ — Blg is faithfully flat. Moreover, for a p-adic crystalline representation V of G, from Corollary
4.27 we have BJLr ®pt N.(V) = N (V). So given an exact sequence

0—-Vi—=Vo—>V3—0, (4.19)
of p-adic crystalline representations of Gy, it is enough to show that the sequence
0= Nz(V1) = Ny (Va) = Ny (Va) = 0 (4.20)

is exact. Furthermore, note that (4.19) is exact if and only if it is exact after tensoring with Q,(r) for
r € Z. Similarly, (4.20) is exact if and only if it is exact after tensoring with ,u_”Bz(r). So we may
assume that (4.19) is an exact sequence of positive crystalline representations, i.e. the Wach modules

in (4.20) are effective. Moreover, the map Bz — B:Eg ;s faithfully flat (by an argument similar to

Lemma 2.6), so it is enough to show that the following sequence is exact:

0— Nrigj/(vl) — Nrigi(Vg) — Nrig,i(vz") — 0.

Exactness of the preceding sequence follows from Lemma 4.8, [Kis06, Theorem 1.2.15], [KR09, Propo-

sition 2.2.6] and exactness of the functor D__ ;. |
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