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Abstract. We study relative Wach modules, generalising our previous works on this subject. Our
main result shows a categorical equivalence between relative Wach modules and lattices inside rela-
tive crystalline representations. Using this result, we deduce a purity statement for relative crystalline
representations and provide a criteria for checking the crystallinity of relative p-adic representations.
Furthermore, we interpret relative Wach modules as modules with q-connections and show that for a
crystalline representation, its associated Wach module together with the Nygaard filtration is the canon-
ical q-deformation (after inverting p) of the filtered (φ, ∂)-module associated to the representation.

1. Introduction
The study of arithmetic Wach modules and their relationship to crystalline representations is of classical
nature, having been taken up in the works of Fontaine [Fon90], Wach [Wac96; Wac97], Colmez [Col99] and
Berger [Ber04]. More precisely, in op. cit. the authors studied the situation of an absolutely unramified
extension of Qp with perfect residue field. In [Abh21] we defined a similar concept in the relative case, i.e.
for certain étale algebras over a formal torus (see §1.4 for precise setup) and showed that such objects give
rise to crystalline representations of the fundamental group of the generic fiber. On the other hand, in
[Abh23a], we generalised the theory of Wach modules and their relationship to crystalline representations,
to the imperfect residue field case. In this article, we combine these two generalisations of the classical
theory, to discuss the equivalence between Wach modules and crystalline representations in its most
natural generality. In addition, we provide some applications of the preceding result and also show
that Wach modules are q-deformations of lattices inside the filtered (φ, ∂)-module attached to crystalline
representations.

Before providing further motivations for our results, let us remark that recent developments in the
theory of prismatic F -crystals [BS23; DLMS22; GR22] provide a new approach to the classification of
lattices inside crystalline representations. These exciting new developments have motivated us in seeking
the results of the current paper. However, instead of using the tools from the prismatic theory, we employ
techniques from the classical theory of (φ,Γ)-modules to obtain our results due to the very nature of the
objects studied in this article, i.e. relative Wach modules. Additionally, our proof enables us to provide
interesting applications as well, for example, using [Abh23a, Theorem 1.5] and Theorem 1.5, we provide
a new criteria for checking the crystallinity of a p-adic representation in the relative case (see Theorem
1.7 and Corollary 1.8). We refer the reader to §1.1.2 for precise statements of these results, to §1.1.3 for a
sketch of our proof strategy and to §1.3 for more details on relation of our results to the prismatic theory.

Our motivation for studying relative Wach modules is twofold, largely stemming from geometry. In
[Abh23b], for smooth (p-adic formal) schemes, we defined the notion of crystalline syntomic complex with
coefficients in global relative Fontaine-Laffaille modules. Moreover, [Abh23b, Theorem 1.15] showed that
such a complex is naturally comparable to the complex of p-adic nearby cycles of the associated crystalline
Zp-local system on the (rigid analytic) generic fiber of the (formal) scheme. The work in loc. cit. was
motivated by the results of [FM87], [Tsu96], [Tsu99] and [CN17], and the proof of [Abh23b, Theorem
1.15] follows via careful computations in the local setting in which relative Wach modules play a pivotal
role (see [Abh23b, Corollary 1.12]). To generalise these results beyond the Fontaine-Laffaille case, it is
therefore necessary to understand the relationship between crystalline representations of the fundamental
group and general relative Wach modules (see Theorem 1.5).
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On the other hand, in [BMS19], for smooth p-adic formal schemes, the authors defined a prismatic
syntomic complex and compared it to the complex of p-adic nearby cycles integrally. In the same vein,
comparison results beyond the smooth case, have also been obtained in [AMMN22] and [BM23], where the
latter uses the theory of prismatic cohomology from [BS22]. The aforementioned results were obtained
in the case of constant coefficients and it is natural to ask if [BMS19, Theorem 10.1] could be generalised
to non-constant coefficients, i.e. prismatic F -crystals. In our approach to resolving this question, results
pertaining to Wach modules from the current paper will play a critical role.

Another motivation for considering Wach modules is to construct a deformation of crystalline coho-
mology, i.e. the functor Dcris from classical p-adic Hodge theory, to better capture mixed characteristic
information. In [Fon90, §B.2.3] Fontaine expressed similar expectations which were verified by Berger in
[Ber04, Théorème III.4.4] and generalised to finer integral conjectures in [Sch17, §6]. Some conjectures of
[Sch17] were resolved by the introduction of prismatic cohomology [BS22]. Furthermore, it is also worth
mentioning that the proof of the result comparing prismatic syntomic complex to p-adic nearby cycles,
i.e. [BMS19, Theorem 10.1], relies on a local computation of prismatic cohomology using the q-de Rham
complex, i.e. a q-deformation of the usual de Rham complex. Additionally, the importance of q-de Rham
cohomology in computation of prismatic cohomology has also been emphasised in [BL22, §3].

In this paper, we interpret Wach modules as q-de Rham complexes (see Theorem 1.9). Moreover,
we show that such an object is the q-deformation of a lattice inside the filtered (φ, ∂)-module attached
to a crystalline representation. In a subsequent work [Abh24], we show that in our setting, a relative
Wach module can be regarded as the evaluation of a prismatic F -crystal over a covering (by a suitable
q-de Rham prism) of the final object of a certain prismatic topos. Hence, from these apparent tight
connections between Wach modules and prismatic F -crystals and p-adic crystalline representations, we
expect these objects to play a pivotal role in the study of p-adic nearby cycles of crystalline Zp-local systems
(for smooth formal schemes) and its comparison to prismatic syntomic complex with coefficients.

In summary, within the overarching program sketched above, this paper realises two of our goals (see
Theorem 1.5 and Theorem 1.9). Additionally, we provide interesting applications of our results to purity
statements in p-adic Hodge theory (see Theorem 1.7 and Corollary 1.8).

1.1. Crystalline representations and Wach modules. Let p be a fixed prime number and
κ a perfect field of characteristic p; set OF := W (κ) to be the ring of p-typical Witt vectors with
coefficients in κ and F := OF [1/p]. Let d ∈ N and take X1, X2, . . . , Xd to be some indeterminates.
We set OF ⟨X±1

1 , . . . , X±1
d ⟩ to be the p-adic completion of Laurent polynomial ring OF [X±1

1 , . . . , X±1
d ].

Let R denote the p-adic completion of an étale algebra over OF ⟨X±1
1 , . . . , X±1

d ⟩ with non-empty and
geometrically integral special fiber. Denote by GR the étale fundamental group of R[1/p] and by ΓR the
Galois group of R∞[1/p] over R[1/p], where R∞ is obtained from R by adjoining to it all p-power roots of
unity and all p-power roots of Xi, for each 1 ≤ i ≤ d. Then we have ΓR ∼−→ Zp(1)d⋊Z×

p (see §2 for precise
definitions). Set OL := (R(p))∧ as a complete discrete valuation ring with uniformiser p, residue field a
finite étale extension of κ(X1, . . . , Xd) and set L := OL[1/p]. Let GL denote the absolute Galois group
of L such that we have a continuous homomorphism GL → GR; let ΓL denote the Galois group of L∞
over L, where L∞ is obtained from L by adjoining to it all p-power roots of unity and all p-power roots
of Xi, for each 1 ≤ i ≤ d. The continuous homomorphism GL → GR induces a continuous isomorphism
ΓL ∼−→ ΓR. In this setting, we have the theory of crystalline representations of GR from [Bri08] and the
theory of étale (φ,Γ)-modules from [And06; AB08].

1.1.1. Relative Wach modules. Set ε := (1, ζp, ζp2 , . . .) in R♭∞ (the tilt of R∞) and its Teichmüller
lift [ε] in Ainf(R∞) := W (R♭∞), the ring of p-typical Witt vectors with coefficients in R♭∞. Additionally, set
µ := [ε]−1 and [p]q := φ(µ)/µ, as elements of Ainf(R∞). Moreover, for 1 ≤ i ≤ d, fixX♭

i := (Xi, X
1/p
i , . . .)

in R♭∞ and their Teichmüller lifts [X♭
i ] in Ainf(R∞). Let A+

R denote the (p, µ)-adic completion of the
unique extension of the (p, µ)-adic completion of OF JµK[X♭

1]±1, . . . , [X♭
d]±1] along the p-adically completed

étale map OF ⟨X±1
1 , . . . , X±1

d ⟩ → R (see §1.4 and §2.2). The ring A+
R is equipped with a Frobenius

endomorphism φ and a continuous action of ΓR; set A+
L to be the (p, µ)-adic completion of the localisation

(A+
R)(p,µ) equipped with an induced Frobenius endomorphism φ and a continuous action of ΓL ∼−→ ΓR.

With this setup, we define the following:
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Definition 1.1. A Wach module over A+
R with weights in the interval [a, b], for some a, b ∈ Z with b ≥ a,

is a finitely generated A+
R-module N satisfying the following assumptions:

(1) The sequences {p, µ} and {µ, p} are regular on N .

(2) N is equipped with a semilinear action of ΓR such that the induced action of ΓR on N/µN is trivial.

(3) N admits a Frobenius-semilinear operator φ : N [1/µ] → N [1/φ(µ)] compatible with the action of
ΓR on each side, and such that φ(µbN) ⊂ µbN and the cokernel of the A+

R-linear map (1 ⊗ φ) :
φ∗(µbN)→ µbN is killed by [p]b−aq .

Denote by (φ,ΓR)-Mod[p]q
A+

R

the category of Wach modules over A+
R, with morphisms between objects being

A+
R-linear, φ-equivariant (after inverting µ) and ΓR-equivariant morphisms.

Remark 1.2. The condition (1) in Definition 1.1 is new and relaxes finite projectivity assumption of
relative Wach modules in [Abh21, Definition 4.8]. Moreover, condition (1) above is equivalent to the
vanishing of local cohomology of N with respect to the ideal (p, µ) ⊂ A+

R in degree 1 (see Lemma 3.3 and
Remark 3.4), in particular, it is equivalent to having {p, [p]q} and {[p]q, p} as regular sequences on N (see
Lemma 3.6). Furthermore, one can also show that the A+

R[1/p]-module N [1/p] is finite projective (see
Proposition A.1, where we use some ideas from [BMS18; DLMS22]), the A+

R[1/µ]-module N [1/µ] is finite
projective (see Proposition 3.11) and N = N [1/p] ∩N [1/µ] ⊂ N [1/p, 1/µ] (see Lemma 3.5).

Remark 1.3. In Definition 1.1, note that in contrast to the definition of Wach modules in the arithmetic
case (see [Ber04, Definition III.4.1]), we have dropped the assumption on the continuity of the action of
ΓR on N . However, in Lemma 3.7 we show that the condition (2) in Definition 1.1, i.e. triviality of the
action of ΓR on N/µN , automatically implies that the action of ΓR on N is continuous.

Remark 1.4. Definition 1.1 may be adapted to the case of a field, i.e. over the ring A+
F = OF JµK (resp.

A+
L ). In such cases, from the assumptions of Definition 1.1 it follows that a Wach module over A+

F (resp.
A+
L ) is necessarily finite free. Indeed, if N is a Wach module over A+

F (resp. A+
L ), in the sense of Definition

1.1, then one first observes thatN is torsion-free sinceN ⊂ N [1/p] and the latter is finite free overA+
F [1/p]

(resp. A+
L [1/p]) by [Abh23a, Lemma 2.14]. Then using [Fon90, §B.1.2.4 Proposition] (resp. Lemma 3.5

and [Abh23a, Remark 2.15]) it follows that N is finite free. In particular, Definition 1.1 is equivalent to
[Ber04, Definition III.4.1] over A+

F (resp. [Abh23a, Definition 1.3] over A+
L ).

Set AR := A+
R[1/µ]∧ as the p-adic completion, equipped with the induced Frobenius endomor-

phism φ and the induced continuous action of ΓR, and similarly, set AL := A+
L [1/µ]∧ equipped with

the induced Frobenius endomorphism φ and the induced continuous action of ΓL. Let T be a finite
free Zp-representation of GR and note that one can functorially attach to T a finite projective étale
(φ,ΓR)-module DR(T ) over AR of rank = rkZpT , equipped with a semilinear and continuous action of ΓR
and a Frobenius-semilinear operator φ commuting with the action of ΓR. In fact, the preceding functor
induces a categorical equivalence between the category of finite free Zp-representations of GR and the
category of finite projective étale (φ,ΓR)-modules over AR (see [And06, Theorem 7.11]). Additionally,
the category of Wach modules over A+

R fully faithfully embeds into the latter category, i.e. the category
of étale (φ,ΓR)-modules over AR (see Proposition 3.15).

1.1.2. Main results. Let Repcris
Zp

(GR) denote the category of Zp-lattices inside p-adic crystalline rep-
resentations of GR. For T a Zp-lattice inside a p-adic crystalline representation of GR, we construct a
Wach module NR(T ) over A+

R, functorial in T , and contained in DR(T ) (see Theorem 4.1). Our first
main result is as follows:

Theorem 1.5 (Corollary 4.3). The Wach module functor induces an equivalence of categories

Repcris
Zp

(GR) ∼−→ (φ,ΓR)-Mod[p]q
A+

R

T 7−→ NR(T ),

with a quasi-inverse given as N 7→ TR(N) :=
(
W

(
R
♭[1/p♭]

)
⊗A+

R
N

)φ=1.
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Remark 1.6. In Theorem 1.5, we do not expect the functor NR to be an exact equivalence. However,
note that after inverting p, the Wach module functor induces an exact equivalence between ⊗-categories:
Repcris

Qp
(GR) ∼−→ (φ,ΓR)-Mod[p]q

B+
R

, via V 7→ NR(V ), where B+
R = A+

R[1/p], and an exact ⊗-compatible

quasi-inverse functor given as M 7→ VR(M) :=
(
W (R♭[1/p♭])⊗A+

R
M

)φ=1 (see Corollary 4.4).

As an application of Theorem 1.5, we obtain the following purity statement:

Theorem 1.7 (Theorem 4.5). Let V be a p-adic representation of GR. Then V is crystalline as a
representation of GR if and only if it is crystalline as a representation of GL.

For a p-adic representation V of GR, let ODcris,R(V ) denote the associated filtered (φ, ∂)-module over
R[1/p] (see [Bri08, §8.2]). We show the following criterion for checking the crystallinity of V :

Corollary 1.8 (Theorem 4.5 & Corollary 4.6). Let V be a p-adic representation of GR. Then V is
crystalline if and only if rkR[1/p]ODcris,R(V ) = dimQp V . Moreover, under these equivalent conditions,
we have a natural isomorphism L⊗R[1/p] ODcris,R(V ) ∼−→ ODcris,L(V ) of filtered (φ, ∂)-modules over L.

Important inputs for the proof of Corollary 1.8 are Theorem 1.7 and a careful study of the period
rings for the localisation of R at its minimal primes above (p) ⊂ R (see §2.1).

1.1.3. Strategy for the proof of Theorem 1.5. The proof of Theorem 1.5 crucially uses analogous
results obtained in the imperfect residue field case (see [Abh23a, Theorem 1.5]). Starting with a Wach
module N over A+

R, we use ideas from [Abh21, Theorem 4.25 & Proposition 4.28], the observation that
A+
L ⊗A+

R
N is a Wach module over A+

L and [Abh23a, Lemma 3.6 & Theorem 3.12] to establish that TR(N)
is a Zp-representation of GR such that TR(N)[1/p] is crystalline (see Theorem 3.34). Conversely, starting
with a Zp-lattice T inside a p-adic crystalline representation of GR, we observe that T [1/p] is a p-adic
crystalline representation of GL, and we use [Abh23a, Theorem 4.1] to obtain a unique Wach module
NL(T ) over A+

L . Moreover, note that from the theory of (φ,Γ)-modules we have an étale (φ,ΓR)-module
DR(T ) over AR (see [And06]).

We set NR(T ) := NL(T ) ∩DR(T ) ⊂ DL(T ) as an A+
R-module, where DL(T ) is the (φ,ΓL)-module

over AL, associated to T . Then, using the compatible Frobenius-semilinear endomorphism φ and the
continuous action of ΓL ∼−→ ΓR on NL(T ) and DR(T ), we equip the A+

R-module NR(T ) with a natural
(φ,ΓR)-action. Let us remark that the definition of NR(T ) is parallel to the Breuil-Kisin setting studied in
[DLMS22] and we employ some (modified) ideas from op. cit. to show that NR(T ) has “good” properties
as a module over A+

R. However, there are two key differences: first, op. cit. uses [BT08] as an important
ingredient but our constructions use [Abh23a] instead; next, note that relative Breuil-Kisin modules
admit a prismatic descent datum whereas Wach modules admit an action of ΓR. Equipping NR(T ) with
a natural action of ΓR is non-trivial and we resolve it by using the theory of Wach modules in the imperfect
residue field case from [Abh23a] and the theory of étale (φ,Γ)-modules from [And06] as important inputs.
Finally, we utilise the properties of NL(T ) and DR(T ) to show that NR(T ) is the unique Wach module
associated to T .

1.2. Wach modules as q-deformations. In §5 we recall the definition of a q-connection ax-
iomatically, following [MT20]. Moreover, we show that a Wach module N over A+

R can also be seen
as a φ-module equipped with a q-connection. More precisely, let D := OF JµK, and let {γ1, . . . , γd} be
topological generators of the geometric part of ΓR, i.e. Γ′

R (see §2). Then in Proposition 5.3 we show that
the q-connection defined as

∇q : N −→ N ⊗A+
R

Ω1
A+

R/D
, x 7−→

∑d
i=1

γi(x)−x
µ dlog([X♭

i ]),

describes (N,∇q) as a φ-module with (p, [p]q)-adically quasi-nilpotent D-linear flat q-connection over
A+
R. We equip N with the Nygaard filtration as in Definition 3.24. Then, it follows that N/µN is

a φ-module over R equipped with a p-adically quasi-nilpotent flat connection and we further equip it
with a filtration Filk(N/µN) given as the image of FilkN under the surjection N ↠ N/µN . We equip
N [1/p]/µN [1/p] = (N/µN)[1/p] with induced structures, in particular, it is a filtered (φ, ∂)-module over
R[1/p].
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Theorem 1.9 (Theorem 5.6). Let N be a Wach module over A+
R and V := TR(N)[1/p], the associated

crystalline representation from Theorem 1.5. Then we have a natural isomorphism (N/µN)[1/p] ∼−→
ODcris,R(V ) of filtered (φ, ∂)-modules over R[1/p].

Note that ODcris,R(V ) denotes the filtered (φ, ∂)-module over R[1/p] associated to V (see [Bri08,
§8.2]). Our proof of the theorem follows from computations done for the proof of Theorem 3.34 (building
upon ideas developed in [Abh21, Theorem 4.25 & Proposition 4.28] and [Abh23a, Theorem 1.7]).

Finally, let us summarise the relationship between various categories considered in Theorem 1.5 and
Theorem 1.9. Recall that Repcris

Qp
(GR) is the category of p-adic crystalline representations of GR, and

let MFR(φ, ∂) denote the category of filtered (φ, ∂)-modules over R[1/p]. From [Bri08, §8.2] we have
a ⊗-compatible functor ODcris,R : Repcris

Qp
(GR) → MFR(φ, ∂), and let MFad

R (φ, ∂) denote its essential
image. Then, from [Bri08, Théorème 8.5.1], we have an exact equivalence of ⊗-categories ODcris,R :
Repcris

Qp
(GR) ∼−→ MFad

R (φ, ∂), with an exact ⊗-compatible quasi-inverse OVcris,R (see §2.6). So, Remark
1.6 and Theorem 1.9 can be summarised as follows:

Corollary 1.10 (Corollary 5.10). Functors in the following diagram induce exact equivalence of ⊗-categories

Repcris
Qp

(GR) (φ,ΓR)-Mod[p]q
B+

R

MFad
R (φ, ∂).

NR

ODcris,R

VR

q 7→1OVcris,R

1.3. Relation to previous works. Our first main result, Theorem 1.5, is a generalisation of
arithmetic Wach modules from [Wac96; Col99; Ber04] and [Abh23a, Theorem 1.5]. That said, the methods
of op. cit. do not directly apply to our current situtation. In fact, the proof of Theorem 1.5 uses crucial
inputs of results and ideas from [Abh21] and [Abh23a].

Recent developments in the theory of prismatic F -crystals in [BS23; DLMS22; GR22] would sug-
gest that there is a categorical equivalence between the category of Wach modules over A+

R and (com-
pleted/analytic) prismatic F -crystals on the absolute prismatic site (Spf R)∆. From that perspective,
Theorem 1.5 could be seen as an analogue of [DLMS22, Theorem 1.2 & Proposition 1.4]. In our con-
structions, for a lattice T inside a crystalline representation of GR, the definition of NR(T ) is parallel to
the Breuil-Kisin case studied in op. cit. and we employ some (modified) ideas from op. cit. to show that
NR(T ) has “good” properties as a module over A+

R. However, there are two key differences: first, op. cit.
uses [BT08] as an important ingredient but our constructions use [Abh23a] instead; next, note that Wach
modules admit a natural action of ΓR whereas relative Breuil-Kisin modules admit a prismatic descent
datum. Equipping NR(T ) with a natural action of ΓR is non-trivial and we resolve it by using the theory
of Wach modules in the imperfect residue field case from [Abh23a] and the theory of étale (φ,Γ)-modules
from [And06] as important inputs. Furthermore, as our base ring R is absolutely unramified (at p), the
action of ΓR is rich enough to establish the categorical equivalence claimed in Theorem 1.5.

In the current paper, we provide two applications of Theorem 1.5. The first application, i.e. Theorem
1.7 establishes a certain purity statement for crystalline representations. Our result is similar to the purity
statement for Hodge-Tate representations in [Tsu11, Theorem 9.1] and rigidity of de Rham local systems
in [LZ17, Theorem 1.3]. It should be noted that the purity result in Theorem 1.7 can also be obtained
by combining [LZ17, Theorem 1.3] and some unpublished works of Tsuji. Moreover, the result of loc. cit.
works for general ramified (at p) small base. A similar statement has been obtained in [Moo22, Theorem
1.4] using the results of [DLMS22].

The second application of Theorem 1.5 is given in Corollary 1.8. Our result provides a new criterion
for checking the crystallinity of a p-adic representation of GR. Note that the analogous statement for
de Rham representations is true from the results of [LZ17]. However, our result in the crystalline case
is entirely new and uses Theorem 1.7 as an important input. At this point, it is worth mentioning that
for general ramified (at p) small base, a statement analogous to Corollary 1.8 appears to be true. In
particular, we expect that one can deduce the statement using [LZ17, Theorem 1.3], the unpublished
results of Tsuji mentioned above and employing arguments similar to our proof of Theorem 4.5.
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For our second main result, Theorem 1.9, the motivation for interpreting a Wach module as a
q-de Rham complex and as the q-deformation of crystalline cohomology, i.e. ODcris, comes from [Fon90,
§B.2.3], [Ber04, Théorème III.4.4] and [Sch17, §6]. In particular, we provide a direct generalisation of
[Ber04, Théorème III.4.4], as well as verify expectations put forth in [Abh21, Remark 4.48] and [Abh23a,
Remark 1.8] (see Remark 5.9 for the latter).

1.4. Setup and notations. In this section we will describe our setup and fix some notations, which
are essentially the same as in [Abh21, §1.4]. We will work under the convention that 0 ∈ N, the set of
natural numbers.

Let p be a fixed prime number, κ a perfect field of characteristic p, OF := W (κ) the ring of p-typical
Witt vectors with coefficients in κ. Then OF is a complete discrete valuation ring with uniformiser p and
set F := OF [1/p] to be the fraction field of OF . Let F denote a fixed algebraic closure of F so that its
residue field, denoted as κ, is an algebraic closure of κ. Furthermore, denote the absolute Galois group of
F to be GF := Gal(F/F ).
Notation. Let Λ be an I-adically complete algebra for a finitely generated ideal I ⊂ Λ. Let Z :=
(Z1, . . . , Zs) denote a set of indeterminates and k := (k1, . . . , ks) ∈ Ns be a multi-index, then we write
Zk := Zk1

1 · · ·Zks
s . For k→ +∞ we will mean that ∑

ki → +∞. Define

Λ⟨Z⟩ :=
{ ∑

k∈Ns

akZ
k, where ak ∈ Λ and ak → 0 I-adically as k→ +∞

}
.

We fix d ∈ N and let X := (X1, X2, . . . , Xd) be some indeterminates. Let R be the p-adic completion
of an étale algebra over R□ := OF ⟨X,X−1⟩, with non-empty geometrically integral special fiber. We fix
an algebraic closure Frac(R) of Frac(R) containing F . Let R denote the union of finite R-subalgebras
S ⊂ Frac(R), such that S[1/p] is étale over R[1/p]. Let η denote the fixed geometric point of the generic
fiber SpecR[1/p] (defined by Frac(R)), and let GR := πét

1
(
SpecR[1/p], η

)
denote the étale fundamental

group. We can write this étale fundamental group as the Galois group (of the fraction field of R[1/p]
over the fraction field of R[1/p]), i.e. GR = πét

1 (Spec (R[1/p]), η) = Gal(R[1/p]/R[1/p]). For k ∈ N,
let Ωk

R denote the p-adic completion of module of k-differentials of R relative to Z. Then, we have
Ω1
R = ⊕di=1RdlogXi, and Ωk

R = ∧kRΩ1
R.

Let φ denote an endomorphism of R□ which extends the natural Frobenius on OF by setting φ(Xi) =
Xp
i , for all 1 ≤ i ≤ d. The morphism φ : R□ → R□ is flat by [Bri08, Lemma 7.1.5], and it is faithfully flat

since φ(m) ⊂ m for any maximal ideal m ⊂ R□. Moreover, using Nakayama Lemma and the fact that
the absolute Frobenius on R□/p is evidently of degree pd, it easily follows that φ on R□ is finite of degree
pd. Recall that the OF -algebra R is given as the p-adic completion of an étale algebra R□, therefore,
the Frobenius endomorphism φ on R□ admits a unique extension φ : R→ R such that the induced map
φ : R/p → R/p is the absolute Frobenius x 7→ xp (see [CN17, Proposition 2.1]). Similar to above, again
note that the endomorphism φ : R→ R is faithfully flat and finite of degree pd.

Let OL := (R(p))∧, where ∧ denotes the p-adic completion. Let L denote a fixed algebraic closure
of L with ring of integers OL such that we have an embedding R → OL. Then we get a continuous
homomorphism GL := Gal(L/L) → GR, inducing an isomorphism ΓL ∼−→ ΓR. The Frobenius on R
extends to a unique Frobenius endomorphism φ : OL → OL, lifting the absolute Frobenius on OL/pOL
(see [CN17, Proposition 2.1]). Similar to above, φ on OL is faithfully flat and finite of degree pd.

Let S be a commutative ring with π := p1/p ∈ S such that S is π-adically complete and π-torsion free,
for example, S = OF∞ , OL∞ , OF , OL, R∞, R. Then the tilt of S is defined as S♭ := limφ S/p and the tilt
of S[1/p] is defined as S[1/p]♭ := S♭[1/p♭], where p♭ := (1, p1/p, . . .) ∈ S♭ (see [Fon77, Chapitre V, §1.4]
and [BMS18, §3]). Finally, consider a Zp-algebra A equipped with a lift of the absolute Frobenius on A/p,
i.e. an endomorphism φ : A→ A such that φ modulo p is the absolute Frobenius. Then for any A-module
M we write φ∗(M) := A⊗φ,AM .
Outline of the paper. This article consists of four main sections. In §2 we collect relevant results in
relative p-adic Hodge theory. In §2.1 we consider localisations of R at minimal primes above (p) ⊂ R
and study their properties. Then in §2.2, §2.3 & §2.4 we define relative period rings and study their
localisations at primes of R above (p) ⊂ R. In §2.5 we quickly recall important rings from the theory
of relative (φ,Γ)-modules and in §2.6 we recall the relation between (φ,Γ)-module theory and p-adic
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representations, as well as, definition and properties of crystalline representations. The aim of §3 is to
define and study properties of a Wach module in the relative case and the associated representation of GR.
In §3.1 we first note some technical lemmas and then in §3.2 we define relative Wach modules, study its
properties and relate these objects to étale (φ,Γ)-modules (see Proposition 3.15). Furthermore, in §3.3,
we functorially attach a Zp-representation of GR to a relative Wach module and in §3.4 we show that such
representations are closely related to finite [p]q-height representations studied in [Abh21]. In §3.5 we study
the Nygaard filtration on relative Wach modules. Finally, in §3.6 we show that the Zp-representation of
GR associated to a relative Wach module, as in §3.3, is a lattice inside a p-adic crystalline representation of
GR (see Theorem 3.34). In §4 we prove our first main result, i.e. Theorem 1.5. Before proving the theorem,
we draw some important conclusions from the statement, in particular, in §4.1 we prove Theorem 1.7 and
Corollary 1.8. Finally, in §4.2 we construct the promised relative Wach module and prove Theorem 1.5.
In §5, we state and prove our second main result, i.e. Theorem 1.9. In §5.1, we recall the formalism on
q-connections. Then in §5.2, we show that a Wach module can be interpreted as a φ-module equipped
with a q-connection (see Proposition 5.3). Finally, using the computations done in the proof of Theorem
3.34, we prove Theorem 1.9.
Acknowledgements: I would like to sincerely thank Takeshi Tsuji for discussing many ideas during
the course of this project, reading an earlier version of the article and suggesting improvements. I would
also like to thank Yong Suk Moon, Koji Shimizu and Alex Youcis for helpful remarks. This research is
supported by JSPS KAKENHI grant numbers 22F22711 and 22KF0094.

2. Period rings and p-adic representations
We will use the setup and notations from §1.4. Recall that R is the p-adic completion of an étale algebra
over OF ⟨X±1

1 , . . . , X±1
d ⟩ and OL := (R(p))∧. Set R∞ := ∪di=1R[µp∞ , X

1/p∞

i ] and recall that R is the union
of finite R-subalgebras S in a fixed algebraic closure Frac(R) ⊃ F , such that S[1/p] is étale over R[1/p].
We have (see [Abh21, §2 & §3]),

GR := Gal(R[1/p]/R[1/p]), HR = Gal(R[1/p]/R∞[1/p]),
ΓR := GR/HR = Gal(R∞[1/p]/R[1/p]) ∼−→ Zp(1)d ⋊ Z×

p ,

Γ′
R := Gal(R∞[1/p]/R(µp∞)[1/p]) ∼−→ Zp(1)d, Gal

(
R(µp∞)[1/p]/R[1/p]) = ΓR/Γ′

R
∼−→ Z×

p .

We fixed L as an algebraic closure of L := OL[1/p] with ring of integersOL and an embeddingR→ OL. So,
we have a continuous homomorphism of groups GL := Gal(L/L) → GR, which induces an isomorphism
ΓL ∼−→ ΓR. For 1 ≤ i ≤ d, we fix X♭

i := (Xi, X
1/p
i , X

1/p2

i , . . .) in R♭∞ and take {γ0, γ1, . . . , γd} in ΓR such
that {γ1, . . . , γd} are topological generators of Γ′

R satisfying γj(X♭
i ) = εX♭

i if i = j and X♭
i otherwise, and

γ0 is a lift of a topological generator of ΓR/Γ′
R.

2.1. Localisation. Let S denote the set of minimal primes of R above pR ⊂ R. The set S is
equipped with a transitive action of GR (see [Mat89, Theorem 9.3]). For each prime p ∈ S , set GR(p) :=
{g ∈ GR such that g(p) = p}, i.e. the decomposition group of G at p. Recall that OL = (R(p))∧ and
L = OL[1/p]. For each p ∈ S , let L(p) denote an algebraic closure of L with ring of integers OL(p)
containing (R)p. Set ĜR(p) := Gal(L(p)/L) so that we have a natural homomorphism ĜR(p) → GR
which factors as ĜR(p) ↠ GR(p) ⊂ GR (see [Bri08, Lemme 3.3.1]). Note that for each p ∈ S , we have
a natural embedding R ⊂ OL(p) and hence we have a (non-canonical) isomorphism of Galois groups
ĜR(p) ∼−→ GL.

Now, for each p ∈ S , let C+
p denote the p-adic completion of OL(p) and let Cp := Frac(C+

p ). Then Cp

is an algebraically closed valuation field equipped with a continuous action of ĜR(p) and (C+
p )ĜR(p) = OL

(see [Hyo86, Theorem 1]). Furthermore, let C+(p) denote the p-adic completion of (R)p and let C(p) :=
C+(p)[1/p] equipped with a continuous action of GR(p).

Lemma 2.1. For each p ∈ S, we have (R)p ⊂ C+(p) and (R)p ∩ pC+(p) = p(R)p. Moreover, (R)p ∩
pOL(p) = p(R)p.



Crystalline representations and Wach modules II 8

Proof. The proof is similar to [Bri08, Proposition 2.0.3]. Let p ∈ S and x ∈ (R)p. Then there exists a
finite normal R-subalgebra S ⊂ R such that S[1/p] is étale over R[1/p] and q := p∩S is a height 1 prime
ideal of S with p ∈ q (since R is integral over S) and x ∈ Sq. Moreover, Sq is a 1-dimensional normal
noetherian domain, in particular, a discrete valuation ring. Now if the image of x is zero in C+(p), then
we have that x ∈ pn(R)p ∩ Sq = pnSq, for each n ∈ N, since Sq is normal. So x must be zero since Sq is
p-adically separated. This shows the first claim. For the second claim, let x = py for some y ∈ C+(p).
We have that y ∈ Sq[1/p] and we need to show that y ∈ Sq. Let Ŝq denote the completion of Sq for the
valuation (say υq) described above. Then Ŝq[1/p] is a finite separable extension of L and Ŝq embeds into
C+
p . Moreover, the image of C+(p) in Cp is contained in C+

p , therefore υq(y) ≥ 0, i.e. y ∈ Sq[1/p]∩ Ŝq = Sq,
as desired. Finally, let x = pz for some z ∈ OL(p). Then similar to above, we have z ∈ Sq[1/p] and
υq(z) ≥ 0, so z ∈ Sq. This shows the third claim.

All rings discussed above are p-torsion free, so from Lemma 2.1, it easily follows that the inclusion
C+(p) ⊂ C+

p is compatible with respective actions of ĜR(p), where the action of ĜR(p) on the left-hand
term factors through ĜR(p) ↠ GR(p). In particular, we get that C+(p)GR(p) = OL (see [Bri08, p. 24]).
Now, note that we have natural injective maps R → (R)p → OL(p). Upon passing to p-adic completions
and setting C+(R) := R̂, we obtain natural maps C+(R) → C+(p) → C+

p , where the first map need not
be injective. However, recall that R is a direct limit of finite and normal R-algebras, therefore the natural
map R/pn → ⊕p∈S(R)p/pn is injective. Passing to the limit over n, we obtain injective maps

C+(R) −→
∏
p∈S

C+(p) −→
∏
p∈S

C+
p . (2.1)

Note that in (2.1) the leftmost term admits a natural action ofGR, the middle term admits a natural action
of ∏

p∈S GR(p) and the rightmost term admits a natural action of ∏
p∈S ĜR(p). The two homomorphisms

in (2.1) are compatible with these respective actions. Moreover, from [Bri08, Remarque 3.3.2] the middle
term of (2.1) can be equipped with an action of GR and the left homomorphism in (2.1) is equivariant
with respect to this action of GR.

Remark 2.2. Note that C+(p) is an OL-algebra for each p ∈ S , so the maps in (2.1) extend to injective
maps OL ⊗R C+(R)→ ∏

p∈S C+(p)→ ∏
p∈S C+

p (see [Bri08, Proposition 3.3.3]).

Lemma 2.3. The OL-algebra C+(p) is perfectoid in the sense of [BMS18, Definition 3.5].

Proof. Note that we have π := p1/p ∈ R ⊂ (R)p ⊂ C+(p) and πp = p divides p. Moreover, it is clear that
C+(p) is π-adically complete. Now, consider the following commutative diagram:

C+(p)/πp C+(p)/π C+(p)/πp

C+
p /π

p C+
p /π C+

p /π
p,

φ

∼
φ

where the left and right vertical arrows are injective by Lemma 2.1 and the middle vertical arrow is also
injective by an argument similar to the proof of Lemma 2.1. So it follows that the top right horizontal
arrow is injective as well. Then, using [BMS18, Lemma 3.9 and Lemma 3.10], we are left to show that
φ : C+(p)/p = (R)p/p → (R)p/p = C+(p)/p is surjective. So let x ∈ (R)p/p and take a lift y ∈ (R)p.
Then there exists an a ∈ R \ p such that ay ∈ R. Now, from [Bri08, Proposition 2.0.1], there exists
z, w ∈ R such that ay = zp + pw. Moreover, there exists b ∈ R \ p and c ∈ R such that a = bp + pc. Then
we can write bpy + pcy = zp + pw, or equivalently, y = (z/b)p + p(cy + w)/bp with (z/b)p ∈ (R)p and
p(cy+w)/bp ∈ p(R)p. Hence, x = (z/b)p mod p(R)p, proving that φ : (R)p/p→ (R)p/p is surjective.

2.2. The period ring Ainf . In this subsection we will study the relative version of Fonatine’s
infinitesimal period ring Ainf to be used in the sequel (see [Abh21, §2 and §3] for details). Let Ainf(R∞) :=
W (R♭∞) and Ainf(R) := W (R♭) admitting the Frobenius on Witt vectors and continuous GR-action (for
the weak topology). Moreover, we have Ainf(R∞) = Ainf(R)HR (see [And06, Proposition 7.2]). Let
ε := (1, ζp, ζp2 , . . .), µ := ε − 1 ∈ O♭F∞ and set µ := [ε] − 1, ξ := µ/φ−1(µ) ∈ Ainf(OF∞). Let χ denote
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the p-adic cyclotomic character, then for g ∈ GR, we have g(1 + µ) = (1 + µ)χ(g). Additionally, we have
a GR-equivariant surjection θ : Ainf(R) → C+(R) and Ker θ = ξAinf(R). The map θ further induces a
ΓR-equivariant surjection θ : Ainf(R∞)→ R̂∞.

Let S denote the set of minimal primes of R above pR ⊂ R and for each prime p ∈ S let Cp denote
the valuation field described in §2.1 and C+

p its ring of integers. Moreover, from Lemma 2.3, we have
that C+(p) is a perfectoid algebra. So we set Ainf(C+

p ) := W (C+,♭
p ) (resp. Ainf(C+(p)) := W (C+(p)♭))

admitting the Frobenius on Witt vectors and continuous ĜR(p)-action (resp. GR(p)-action). Similar to
above, we have a ĜR(p)-equivariant surjection θ : Ainf(C+

p ) → C+
p with Ker θ = ξAinf(C+

p ) (resp. a
GR(p)-equivariant surjection θ : Ainf(C+(p))→ C+(p) with Ker θ = ξAinf(C+(p))).

Lemma 2.4. For each p ∈ S we have (φ, ĜR(p))-equivariant embeddings Ainf(C+(p)) → Ainf(C+
p )

and W (C(p)♭)→W (C♭p), where the action of ĜR(p) on left-hand terms factor through ĜR(p) ↠ GR(p).
Moreover, we have a (φ, ĜR(p))-equivariant identification Ainf(C+(p)) = Ainf(C+

p )∩W (C(p)♭) as subrings
of W (C♭p).

Proof. From the discussion before (2.1), we have a ĜR(p)-equivariant injective map C+(p) → C+
p . By

applying the tilting functor, we further obtain a (φ, ĜR(p))-equivariant commutative diagram of rings

C+(p)♭ C+,♭
p

C(p)♭ C♭p,

(2.2)

where the vertical arrows are injective. Note that the natural map C+(p)/p = (R)p/p→ OL(p)/p = C+
p /p

is injective, so by left exactness of limφ, we obtain that in (2.2) the top horizontal arrow is injective.
Moreover, note that C(p)♭ = limx 7→xp C(p) as a multiplicative monoid, and similarly for C♭p. Therefore,
again by left exactness of lim, it follows that the bottom horizontal arrow in (2.2) is injective. Now, since
C♭p is a valuation field, let υ♭p denote the normalised valuation on it such that υ♭p(p♭) = 1. Then we have
that x ∈ C+,♭

p if and only if υ♭p(x) ≥ 0. Moreover, we have C(p)♭ = C+(p)♭[1/p♭] and C♭p = C+,♭
p [1/p♭].

From (2.2) and injectivity of its arrows, it now follows that for x ∈ C(p)♭ we have x ∈ C+(p)♭ is and only
if υ♭p(x) ≥ 0. In particular,

C+(p)♭ = C(p)♭ ∩ C+,♭
p ⊂ C♭p. (2.3)

Furthermore, recall that the p-typical Witt vector functor is left exact since it is right adjoint to the
forgetful functor from the category of δ-rings to the category of rings (see [Joy85]). Therefore, all maps
in the following natural (φ, ĜR(p))-equivariant commutative diagram are injective

Ainf(C+(p)) Ainf(C+
p )

W (C(p)♭) W (C♭p).

Hence, from (2.3) it follows that Ainf(C+(p)) = W (C(p)♭) ∩Ainf(C+
p ) ⊂W (C♭p).

Remark 2.5. From Lemma 2.4, the discussion preceding it (see the map θ) and the fact that C+(p) is a
subring of C+

p , it easily follows that ξAinf(C+(p)) = Ainf(C+(p)) ∩ ξAinf(C+
p ) ⊂ Ainf(C+

p ).

Remark 2.6. By functoriality of the tilting construction and Witt vector construction, we note that the
action of GR on ∏

p∈S C+(p) described after (2.1) (see [Bri08, Remarque 3.3.2]), extends to respective
natural actions of GR on ∏

p∈S Ainf(C+(p)) and ∏
p∈S W (C(p)♭).

Lemma 2.7. In the notations described above, we have (φ,GR)-equivariant embeddings Ainf(R) →∏
p∈S Ainf(C+(p)) and W (C(R)♭)→ ∏

p∈S W (C(p)♭), where right-hand terms are equipped with a GR-action
as described in Remark 2.6. Moreover, we have a (φ,GR)-equivariant identification Ainf(R) = W (C(R)♭)∩∏

p∈S Ainf(C+(p)) as subrings of
∏

p∈S W (C(p)♭).
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Proof. From (2.1) recall that we have injective maps C+(R)→ ∏
p∈S(R)∧

p . By applying the tilting functor,
we further obtain a (φ,GR)-equivariant commutative diagram:

C+(R)♭ ∏
p∈S C+(p)♭

C(R)♭
( ∏

p∈S C+(p)♭
)[ 1

p♭

] ∏
p∈S C(p)♭,

(2.4)

where the bottom right horizontal arrow and vertical arrows are injective. From the injectivity of R/p→∏
p∈S C+(p)/p and left exactness of limφ, we obtain that in (2.4) the top horizontal arrow is injective and

since we have C(R)♭ = C+(R)♭[1/p♭], it also follows that the bottom left horizontal arrow is injective.
Now let υ♭p denote the valuation on C♭p intriduced in the proof of Lemma 2.4. Then under the composition
of left vertical and bottom horizontal arrows of (2.4), it follows that for any x ∈ C(R)♭ we have that x
belongs to C+(R)♭ if and only if υ♭p(x) ≥ 0 for each p ∈ S . In particular,

C+(R)♭ = C(R)♭ ∩
∏
p∈S

C+(p)♭ ⊂
∏
p∈S

C(p)♭. (2.5)

Furthermore, recall that the p-typical Witt vector functor is left exact since it is right adjoint to the
forgetful functor from the category of δ-rings to the category of rings (see [Joy85]). Therefore, all maps
in the following natural (φ,GR)-equivariant commutative diagram are injective

Ainf(R) ∏
p∈S Ainf(C+(p))

W (C(R)♭) ∏
p∈S W (C(p)♭).

Then from (2.5) we obtain Ainf(R) = W (C(R)♭) ∩∏
p∈S Ainf(C+(p)) as subrings of ∏

p∈S W (C(p)♭).

2.3. de Rham period rings. In this subsection we will recall the de Rham period rings (see
[Abh21, §2.1]). Note that the ΓR-equivariant map θ : Ainf(R∞) ↠ R̂∞ described in §2.2 extends to
a surjective map θ : Ainf(R∞)[1/p] ↠ R̂∞[1/p]. We set B+

dR(R∞) := limn(Ainf(R∞)[1/p])/ξn. Let
t := log(1 + µ) ∈ B+

dR(R∞), then B+
dR(R∞) is t-torsion free and we set BdR(R∞) := B+

dR(R∞)[1/t].
Furthermore, one can define period rings OB+

dR(R∞) and OBdR(R∞). These rings are equipped with a
ΓR-action, an appropriate extension of the map θ and a decreasing filtration. Rings with a prefix “O”
are further equipped with an integrable connection satisfying Griffiths transversality with respect to the
filtration. One can define variations of these rings over R as well.

Next, let S denote the set of minimal primes of R above pR ⊂ R as in §2.1. Similar to above, for
each p ∈ S , we set B+

dR(C+
p ) := limn(Ainf(C+

p )[1/p])/(Ker θ)n and BdR(C+
p ) := B+

dR(C+
p )[1/t] equipped

with a ĜR(p)-action (resp. B+
dR(C+(p)) := limn(Ainf(C+(p))[1/p])/(Ker θ)n as well as BdR(C+(p)) :=

B+
dR(C+(p))[1/t] equipped with a GR(p)-action), an appropriate extension of the map θ and a decreasing

filtration.

Lemma 2.8. The ĜR(p)-equivariant embedding Ainf(C+(p)) → Ainf(C+
p ) of Lemma 2.4 extends to a

ĜR(p)-equivariant embedding BdR(C+(p))→ BdR(C+
p ).

Proof. Note that by definition, the ĜR(p)-equivariant embedding Ainf(C+(p)) → Ainf(C+
p ) induces a

ĜR(p)-equivariant map B+
dR(C+(p)) → B+

dR(C+
p ). Then from Remark 2.5 and the fact that lim is a left

exact functor on the category of abelian groups, we get that the map B+
dR(C+(p))→ B+

dR(C+
p ) is injective.

The claim now follows sinceB+
dR(C+

p ) andB+
dR(C+(p)) are t-torsion free (see [Bri08, Proposition 5.1.4]).

Moreover, for each p ∈ S we have big period rings OB+
dR(C+

p ) and OBdR(C+
p ) equipped with an

L-linear ĜR(p)-action (resp. OB+
dR(C+(p)) and OBdR(C+(p)) equipped with an L-linear GR(p)-action),

an appropriate extension of the map θ, a decreasing filtration and a connection. From [Bri08, §5.2 &
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§5.3], in particular, from the alternative description of OB+
dR(C+

p ) (resp. OB+
dR(C+(p))) as a power series

ring over B+
dR(C+

p ) (resp. B+
dR(C+(p))) and using Lemma 2.8, the following is obvious:

Lemma 2.9. The ĜR(p)-equivariant embedding BdR(C+(p)) → BdR(C+
p ) of Lemma 2.8 extends to an

L-linear ĜR(p)-equivariant embedding OBdR(C+(p))→ OBdR(C+
p ) compatible with respective filtrations

and connections.

Remark 2.10. Recall that product is an exact functor on the category of abelian groups. So the nat-
ural embeddings Ainf(C+(p)) → BdR(C+(p)) → OBdR(C+(p)), for each p ∈ S , extend to embeddings∏

p∈S Ainf(C+(p)) → ∏
p∈S BdR(C+(p)) → ∏

p∈S OBdR(C+(p)). By an argument similar to [Bri08, Re-
marque 3.3.2] the products ∏

p∈S BdR(C+(p)) and ∏
p∈S OBdR(C+(p)) can respectively be equipped with

an action of GR, extending the GR-action on ∏
p∈S Ainf(C+(p)) (see Remark 2.6), in particular, the

embeddings ∏
p∈S Ainf(C+(p))→ ∏

p∈S BdR(C+(p))→ ∏
p∈S OBdR(C+(p)) are GR-equivariant.

Lemma 2.11. In the notations described above, we have an R[1/p]-linear GR-equivariant embedding
OBdR(R) → ∏

p∈S OBdR(C+(p)), where the right-hand term is equipped with a GR-action as described
in Remark 2.10. Moreover, for each p ∈ S, the induced natural map OBdR(R) → OBdR(C+(p)) is
compatible with respective filtrations and connections.

Proof. Note that from Lemma 2.7 and Remark 2.10, we have GR-equivariant injective maps Ainf(R) →∏
p∈S Ainf(C+(p)) → ∏

p∈S BdR(C+(p)) → ∏
p∈S OBdR(C+(p)). Then from the definition of BdR(R)

and OBdR(R), the preceding maps naturally induce an R[1/p]-linear and GR-equivariant commutative
diagram:

BdR(R) ∏
p∈S BdR(C+(p)) BdR(C+(p))

OBdR(R) ∏
p∈S OBdR(C+(p)) OBdR(C+(p)),

(2.6)

where the vertical maps are injective, with the leftmost and rightmost vertical arrows being compatible
with respective filtrations and connections for each p ∈ S . We need to show that the top left and
bottom left horizontal arrows are injective. But first, let us note that from the explicit description of
filtration on BdR and OBdR in [Bri08, §5.2], it easily follows that compositions of horizontal arrows in
(2.6) are compatible with respective filtrations and connections, i.e. for each k ∈ Z, the respective images
of FilkBdR(R) and FilkOBdR(R) are contained in FilkBdR(C+(p)) and FilkOBdR(C+(p)), under the
composition of horizontal arrows. Similarly, from the explicit description of connection on OBdR in [Bri08,
§5.3], it easily follows that the composition of bottom horizontal arrows in (2.6) is further compatible
with respective connections, for each p ∈ S . Note that the injectivity of the top left horizontal arrow in
(2.6) will follow from the injectvity of the the lower horizontal arrow, which we show next (our argument
will be similar to [Bri08, Proposition 6.2.6]). Note that the filtration on OBdR(R) and OBdR(C+(p)),
for each p ∈ S , is separated. Therefore, it is enough to show that the induced map on grading of the
filtration is injective. From [Bri08, Proposition 5.2.7] recall that gr•OBdR(R) ∼−→ C+(R)[z1, . . . , zd, t

±1],
where zi denotes the image of (Xi − [Xi]♭)/t in gr0OBdR(R) ∼−→ C+(R)[z1, . . . , zd]. Similarly, we have
gr•OBdR(C+(p)) ∼−→ C+(p)[z1, . . . , zd, t

±1], for each p ∈ S . The claim now follows from injectivity of the
natural map C+(R)→ ∏

p∈S C+(p) (see (2.1)). This concludes our proof.

Remark 2.12. TheGR-equivariant embedding OBdR(R)→ ∏
p∈S OBdR(C+(p)) of Lemma 2.11 admits a

naturalL-linear andGR-equivariant extension to an embeddingL⊗R[1/p]OBdR(R)→ ∏
p∈S OBdR(C+(p)).

Indeed, this follows from an argument similar to Lemma 2.11 or directly from [Bri08, Proposition
6.2.6]. Furthermore, from Lemma 2.11, it also follows that for each p ∈ S , the induced natural map
L⊗R[1/p] OBdR(R)→ OBdR(C+(p)) is compatible with respective filtrations and connections, where the
left-hand term is equipped with filtration on OBdR(R) and tensor product connection.

2.4. Crystalline period rings. In this subsection we will recall crystalline period rings (see [Abh21,
§2.2]). We set Acris(R∞) := Ainf(R∞)⟨ξk/k!, k ∈ N⟩ and we have t = log(1 + µ) ∈ Acris(OF∞) and
Acris(R∞) is p-torsion free and t-torsion free. So, we set B+

cris(R∞) := Acris(R∞)[1/p] and Bcris(R∞) :=



Crystalline representations and Wach modules II 12

B+
cris(R∞)[1/t]. Furthermore, one can define period rings OAcris(R∞), OB+

cris(R∞) and OBcris(R∞).
These rings are equipped with a continuous action of ΓR, a Frobenius endomorphism φ and a natural
extension of the map θ. Rings with a subscript “cris” are equipped with a natural decreasing filtration
and rings with a prefix “O” are additionally equipped with an integrable connection satisfying Griffiths
transversality with respect to the filtration. Moreover, we have GR-equivariant and filtration compatible
natural embeddings Bcris(R∞) ⊂ BdR(R∞) and OBcris(R∞) ⊂ OBdR(R∞). One can define variations
of these rings over R as well. From [MT20, Corollary 4.34] we have a (φ,ΓR)-equivariant isomorphism
OAcris(R∞) ∼−→ OAcris(R)HR .

As in §2.1, let S denote the set of minimal primes of R above pR ⊂ R. Similar to above, for each
p ∈ S , we have ringsAcris(C+

p ),Bcris(C+
p ), OAcris(C+

p ) and OBcris(C+
p ) equipped with a ĜR(p)-action (resp.

Acris(C+
p ), Bcris(C+(p)), OAcris(C+(p)) and OBcris(C+(p)) equipped with aGR(p)-action), an appropriate

extension of the map θ, a Frobenius endomorphism φ, a decreasing filtration and a connection (for rings
with prefix “O”). Then, we have the following:

Lemma 2.13. The (φ, ĜR(p))-equivariant embedding Ainf(C+(p))→ Ainf(C+
p ) of Lemma 2.4 extends to

(φ, ĜR(p))-equivariant and filtration compatible embeddings Bcris(C+(p))→ Bcris(C+
p ) and OBcris(C+(p))→

OBcris(C+
p ), where the latter is L-linear and also compatible with respective connections.

Proof. By definition, the (φ, ĜR(p))-equivariant embedding Ainf(C+(p))→ Ainf(C+
p ) naturally extends to

(φ, ĜR(p))-equivariant maps Acris(C+(p))→ Acris(C+
p ) and OAcris(C+(p))→ OAcris(C+

p ), where the lat-
ter isOL-linear and compatible with respective connections. Now consider the following ĜR(p)-equivariant
commutative diagram

Acris(C+(p)) OAcris(C+(p)) OBdR(C+(p))

Acris(C+
p ) OAcris(C+

p ) OBdR(C+
p ),

where all horizontal arrows are injective and compatible with respective filtrations and the right vertical
arrow is injective and compatible with respective filtrations and connections. Therefore, it follows that the
left and middle vertical arrows are injective and compatible with respective filtrations and connections.
Finally, the claims for Bcris and OBcris follow by inverting t in the left and middle columns of the
diagram.

Remark 2.14. From Remark 2.10 it is easy to see that we have injective maps ∏
p∈S Ainf(C+(p)) →∏

p∈S Bcris(C+(p)) → ∏
p∈S OBcris(C+(p)) → ∏

p∈S OBdR(C+(p)), where the first two maps are com-
patible with respective Frobenii. By an argument similar to [Bri08, Remarque 3.3.2] the products∏

p∈S Bcris(C+(p)) and ∏
p∈S OBcris(C+(p)) are stable under the GR-action on ∏

p∈S OBdR(C+(p)) (see
Remark 2.10) and we equip them with the induced action. Then it follows that the injective maps∏

p∈S Ainf(C+(p))→ ∏
p∈S Bcris(C+(p))→ ∏

p∈S OBcris(C+(p))→ ∏
p∈S OBdR(C+(p)) areGR-equivariant

as well.

Lemma 2.15. In the notations described above, we have an R[1/p]-linear (φ,GR)-equivariant embedding
OBcris(R)→ ∏

p∈S OBcris(C+(p)), where the right-hand term is equipped with a GR-action as described
in Remark 2.14. Moreover, for each p ∈ S, the induced natural map OBcris(R) → OBcris(C+(p)) is
compatible with respective Frobenii, filtrations and connections.

Proof. From Lemma 2.7 and Remark 2.14, note that we have (φ,GR)-equivariant injective mapsAinf(R)→∏
p∈S Ainf(C+(p))→ ∏

p∈S OBcris(C+(p)). Then from the definition of OBcris, the preceding maps natu-
rally induce an R[1/p]-linear and (φ,GR)-equivariant map OBcris(R)→ ∏

p∈S OBcris(C+(p)). The claim
on injectivity of the latter map follows in a manner similar to [Bri08, Proposition 6.2.6]. Indeed, consider
the following natural diagram

OBcris(R) ∏
p∈S OBcris(C+(p))

OBdR(R) ∏
p∈S OBdR(C+(p)),
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where the left and right vertical arrows are natural inclusions and the bottom arrow is injective from
Lemma 2.11. The diagram commutes since the top and bottom horizontal arrows are defined using the
embedding Ainf(R) → ∏

p∈S Ainf(C+(p)) of Lemma 2.7. In particular, it follows that the top horizontal
arrow is injective, proving the first claim. Finally, for each p ∈ S , the induced natural map OBcris(R)→
OBcris(C+(p)) is tautologically compatible with respective Frobenii and the claims on filtrations and
connections follow from the corresponding claims on OBdR in Lemma 2.11. Hence, the lemma is proved.

Remark 2.16. The (φ,GR)-equivariant embedding OBcris(R) → ∏
p∈S OBcris(C+(p)) of Lemma 2.15

admits a natural L-linear and (φ,GR)-equivariant extension to an embedding L ⊗R[1/p] OBcris(R) →∏
p∈S OBcris(C+(p)). Indeed, this follows from an argument similar to Lemma 2.15 or directly from

[Bri08, Proposition 6.2.6]. Furthermore, from Lemma 2.15 it also follows that the induced natural map
L⊗R[1/p] OBcris(R)→ OBcris(C+(p)) is compatible with respective Frobenii, filtrations and connections,
where the left-hand term is equipped with filtration on OBcris(R) and tensor product Frobenius and
connection.

2.5. Rings of (φ, Γ)-modules. Let us fix Teichmüller lifts [X♭
i ] ∈ Ainf(R∞), for 1 ≤ i ≤ d, and let

A+
□ denote the (p, µ)-adic completion of OF [µ, [X♭

1]±1, . . . , [X♭
d]±1]. By defininition, there exists a natural

embedding A+
□ ⊂ Ainf(R∞) and its image is stable under the Witt vector Frobenius endomorphism φ

and the ΓR-action on Ainf(R∞) (see [Abh21, §3]); we equip A+
□ with induced structures. Furthermore,

note that we have an embedding ι : R□ → A+
□ defined by the map Xi 7→ [X♭

i ] and it is easy to see that
ι extends to an isomorphism of rings R□JµK ∼−→ A+

□ (enough to check modulo µ since both source and
target are µ-adically complete and µtorsion-free). We extend the Frobenius endomorphism on R□ to a
Frobenius endomorphism φ on R□JµK by setting φ(µ) = (1 + µ)p − 1. Then the Frobenius on R□JµK is
finite and faithfully flat of degree pd+1 . Moreover, by the preceding discussion, it also follows that the
embedding ι and the isomorphism R□JµK ∼−→ A+

□ are Frobenius-equivariant.
Let A+

R denote the (p, µ)-adic completion of the unique extension of the embedding A+
□ → Ainf(R∞)

along the p-adically completed étale mapR□ → R (see [Abh21, §3.3.2] and [CN17, Proposition 2.1]). Then
there exists a natural embedding A+

R ⊂ Ainf(R∞) and its image is stable under the Witt vector Frobenius
and ΓR-action on Ainf(R∞); we equip A+

R with induced structures. Furthermore, the embedding ι : R□ →
A+

□ ⊂ A
+
R and the isomorphism R□JµK ∼−→ A+

□ ⊂ A
+
R naturally extend to a unique embedding ι : R→ A+

R

and an isomorphism of rings RJµK ∼−→ A+
R. We extend the Frobenius endomorphism on R to a Frobenius

endomorphism φ onRJµK by setting φ(µ) = (1+µ)p−1. Then the Froebnius onRJµK is finite and faithfully
flat of degree pd+1 . Moreover, by the preceding disucssion, it is easy to see that the embedding ι and the
isomorphismRJµK ∼−→ A+

R are Frobenius-equivariant. In particular, the induced Frobenius endomorphism
φ on A+

R is finite and faithfully flat of degree pd+1 and we have φ∗(A+
R) := A+

R⊗φ,A+
R
A+
R

∼−→ ⊕αφ(A+
R)uα,

where uα := (1 + µ)α0 [X♭
1]α1 · · · [X♭

d]αd for α = (α0, α1, . . . , αd) ∈ {0, 1, . . . , p− 1}[0,d].
Set AR := A+

R[1/µ]∧ as the p-adic completion and note that the Frobenius endomorphism φ and
the continuous action of ΓR on A+

R naturally extend to AR. Similar to above, the induced Frobenius
endomorphism φ on AR is finite and faithfully flat of degree pd+1 and φ∗(AR) := AR ⊗φ,AR

AR
∼−→

⊕αφ(AR)uα = (⊕αφ(A+
R)uα)⊗φ(A+

R) φ(AR) ∼←− A+
R ⊗φ,A+

R
AR.

Recall that C(R) = C+(R)[1/p] and we set Ã := W
(
C(R)♭

)
and B̃ := Ã[1/p], equipped with the

Frobenius on Witt vectors and a continuous (for the weak topology) action of GR. Moreover, the natural
Frobenius and ΓR-equivariant embedding A+

R ⊂ Ainf(R∞) extends to a Frobenius and ΓR-equivariant
embeddingAR ⊂ ÃHR and we setBR := AR[1/p] equipped with induced Frobenius and ΓR-action. TakeA
to be the p-adic completion of the maximal unramified extension of AR inside Ã and set B := A[1/p] ⊂ B̃.
The rings A and B are stable under the action of GR and Frobenius endomorphism on B̃ and we equip
A and B with induced structures. Moreover, we have AR = AHR and BR = BHR . Next, let us set
A+ := Ainf(R)∩A ⊂ Ã and B+ := A+[1/p] ⊂ B and note that these rings are stable under the Frobenius
and GR-action on B. Furthemore, we have A+

R = (A+)HR and B+
R = (B+)HR .

Also note that by identifying the groups ΓL ∼−→ ΓR, we have a (φ,ΓL)-equivariant isomorphism
A+
L

∼−→ ((A+
R)(p,µ))∧, where ∧ denotes the (p, µ)-adic completion. The preceding isomorphism extends to

an isomorphism AL
∼−→ ((AR)(p))∧, where ∧ denotes the p-adic completion. It is easy to see that we have
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A+
R = A+

L ∩AR as subrings of AL and B+
R := A+

R[1/p] = B+
L ∩BR as subrings of BL.

2.6. p-adic representations. Let T be a finite free Zp-representation of GR. By the theory of étale
(φ,Γ)-modules (see [Fon90] and [And06]), one can functorially associate to T a finite projective étale
(φ,ΓR)-module DR(T ) := (A⊗Zp T )HR over AR of rank = rkZpT . Moreover, D̃R(T ) := (Ã⊗Zp T )HR

∼−→
ÃHR ⊗AR

DR(T ) and we have a natural (φ,ΓR)-equivariant isomorphism

A⊗AR
DR(T ) ∼−→ A⊗Zp T. (2.7)

These constructions are functorial in Zp-representations and induce an exact equivalence of ⊗-categories
(see [And06, Theorem 7.11])

RepZp
(GR) ∼−→ (φ,ΓR)-Modét

AR
, (2.8)

with an exact ⊗-compatible quasi-inverse given as TR(D) := (A ⊗AR
D)φ=1 = (Ã ⊗AR

D)φ=1. Similar
statements are also true for p-adic representations of GR. Furthermore, let D+

R(T ) := (A+ ⊗Zp T )HR

be the (φ,ΓR)-module over A+
R associated to T and for V := T [1/p] let D+

R(V ) := D+
R(T )[1/p] be the

(φ,ΓR)-module over B+
R associated to V .

Let V be a p-adic representation of GR. From p-adic Hodge theory of GR (see [Bri08]), one can attach
to V a filtered (φ, ∂)-module over R[1/p] of rank ≤ dimQp V given by the functor

ODcris,R : RepQp
(GR) −→ MFR(φ, ∂)

V 7−→ (OBcris(R)⊗Qp V )GR .

The representation V is said to be crystalline if the natural map OBcris(R) ⊗R[1/p] ODcris,R(V ) →
OBcris(R)⊗Qp V is an isomorphism, in particular, if V is crystalline then rkR[1/p]ODcris,R(V ) = dimQp V .
Restricting ODcris,R to the category of crystalline representations of GR and writing MFad

R (φ, ∂) for the
essential image of restricted functor, we have an exact equivalence of ⊗-categories (see [Bri08, Théorème
8.5.1])

ODcris,R : Repcris
Qp

(GR) ∼−→ MFad
R (φ, ∂), (2.9)

with an exact ⊗-compatible quasi-inverse given as OVcris,R(D) := (Fil0(OBcris(R) ⊗R[1/p] D))∂=0,φ=1.
Furthermore, we have a continuous homomorphism GL → GR, i.e. V is also a p-adic representation of GL.
Base changing the isomorphism OBcris(R)⊗R[1/p] ODcris,R(V ) ∼−→ OBcris(R)⊗Qp V along OBcris(R)→
OBcris(OL), we obtain a GL-equivariant isomorphism OBcris(OL)⊗LODcris,L(V ) ∼−→ OBcris(OL)⊗Qp V ,
i.e. V is a crystalline representation of GL. Taking GL-invariants in the preceding isomorphism we further
obtain a natural isomorphism L⊗R[1/p]ODcris,R(V ) ∼−→ ODcris,L(V ) compatible with respective Frobenii,
filtrations and connections.

3. Relative Wach modules

In this section we will describe relative Wach modules and finite [p]q-height representations of GR and
relate them to crystalline representations. We start by noting some technical lemmas.

3.1. Some technical results. In Ainf(OF∞), let us fix q := [ε], µ := [ε] − 1 = q − 1 and [p]q :=
φ(µ)/µ.

Definition 3.1. Let N be a finitely generated A+
R-module. The sequence {p, µ} in A+

R is said to
be N -regular if N is p-torsion free and N/pN is µ-torsion free. Similarly, {µ, p} is N -regular if N is
µ-torsion free and N/µN is p-torsion free. The sequence {p, µ} in A+

R is said to be strictly N -regular if
both {p, µ} and {µ, p} are N -regular.

Remark 3.2. In Definition 3.1 note that the sequence {p, µ} is strictly N -regular if and only if N is
a-torsion free for every nonzero element a in the ideal (p, µ) ⊂ A+

R and N/µN is p-torsion free. Indeed,
the “only if” direction is obvious and for the converse one needs to check that N/pN is µ-torsion free. So
let x ∈ N such that µx = py for some y ∈ N ; we claim that x ∈ pN . Reducing the preceding equality
modulo p and using (N/µN)[p] = 0, we get that y = µz for some z ∈ N. From µ-torsion freeness of N , it
follows that x = pz, as claimed.
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Lemma 3.3. Let N be a finitely generated A+
R-module and consider the complex,

C• : N (p,µ)−−−→ N ⊕N (µ,−p)−−−−→ N,

where the first map is given by x 7→ (px, µx) and the second map is given by (x, y) 7→ µx − py. Then
the sequence {p, µ} is strictly N -regular if and only if H1( C•) = 0. Moreover, under these equivalent
conditions H0( C•) = 0.

Proof. If {p, µ} is strictly N -regular then (N/p)[µ] = (N/µ)[p] = 0. Therefore, we must have H0( C•) =
H1( C•) = 0. For the converse, consider the following diagram

N [p, µ] N [p] N [p] (N/µ)[p]

0 N [µ] N N N/µ 0

0 N [µ] N N N/µ 0

(N/p)[µ] N/p N/p N/(p, µ).

µ

p

µ

p p p

µ

µ

(3.1)

Since H1( C•) = 0, we get that the top right and bottom left corners of (3.1) are zero, i.e. (N/µ)[p] =
(N/p)[µ] = 0. Now let x ∈ N [µ], then from the surjectivity of the leftmost vertical arrow from second to
third row it follows that there exists x1 ∈ N [µ] such that x = px1. Proceeding by induction it is easy to see
that x ∈ pnN [µ] ⊂ pnN for all n ∈ N. But since N is finitely generated over A+

R, which is (p, µ)-adically
complete, it follows that N is p-adically separated, i.e. x = 0, in particular, N [µ] = 0. A similar argument
shows that N [p] = 0, in particular, N [p, µ] = 0. This proves both claims in the lemma.

Remark 3.4. The complex C• in Lemma 3.3 computes local cohomology of N with respect to the ideal
(p, µ) ⊂ A+

R (see [Wei94, Theorem 4.6.8]). So, if we set Z := V (p, µ) ⊂ Spec (A+
R) =: X as a closed subset,

then one also says that C• computes H i
Z(X,N), i.e. cohomology of X with compact support along Z (see

[Wei94, Generalization 4.6.2]).

Lemma 3.5. Let N be a finitely generated A+
R-module such that {p, µ} is strictly N -regular. Then

we have N = N [1/p] ∩ N [1/µ] ⊂ N [1/p, 1/µ] as A+
R-modules. Moreover, N = N [1/p] ∩ N [1/µ]∧ ⊂

N [1/µ]∧[1/p], where ∧ denotes the p-adic completion.

Proof. Note that from definitions we have (N/p)[µ] = (N/µ)[p] = 0 and (N [1/µ])/p = (N/p)[1/µ].
So it follows that N/pnN ⊂ (N/pn)[1/µ], for all n ∈ N, and therefore, N ∩ pnN [1/µ] = pnN . Hence,
N [1/p]∩N [1/µ] = N . Furthermore, since (N [1/µ]∧)/pn = (N [1/µ])/pn = (N/pn)[1/µ], therefore, similar
to above we also get that N ∩ pnN [1/µ]∧ = pnN , for all n ∈ N . Hence, N [1/p] ∩N [1/µ]∧ = N .

Lemma 3.6. Let N be a finitely generated A+
R-module. Then the sequence {p, µ} is strictly N -regular

if and only if the sequence {p, [p]q} is strictly N -regular.

Proof. Let us first assume that the sequence {p, µ} is strictly N -regular. Note that we have [p]q =
µp−1 mod pA+

R, therefore, it follows that N/p is [p]q-torsion free, in particular, the sequence {p, [p]q} is
regular on N . Moreover, as [p]q is an element of the ideal (p, µ) ⊂ A+

R, from Remark 3.2 we have that
N is [p]q-torsion free. Now considering a diagram similar to (3.1) with µ replaced by [p]q and using that
N is p-torsion free and N/p is [p]q-torsion free, it follows that N/[p]q is p-torsion free, i.e. the sequence
{p, [p]q} is strictly N -regular. Conversely, assume that the sequence {p, [p]q} is strictly N -regular. Then,
again as we have [p]q = µp−1 mod pA+

R, so from [Sta23, Tag 07DV], it follows that {p, µ} is a regular
sequence on N . Next, let us note that µp−1 is an element of the ideal (p, [p]q) ⊂ A+

R, so it follows that
N is µp−1-torsion free, therefore, µ-torsion free. Now considering the diagram (3.1) and using that N is
p-torsion free and N/p is µ-torsion free, it follows that N/µ is p-torsion free, i.e. the sequence {p, µ} is
strictly N -regular. Hence, the lemma is proved.

https://stacks.math.columbia.edu/tag/07DV
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Finally, let us note an important observation for the action of ΓR on A+
R-modules. Note that the action

of ΓR is continuous on A+
R for the (p, µ)-adic topology and the induced action of ΓR on A+

R/µ
∼−→ R is

trivial. More generally, we claim the following:

Lemma 3.7. Let N be a finitely generated A+
R-module equipped with a semilinear action of ΓR such

that the induced action of ΓR on N/µN is trivial. Then the action of ΓR on N is continuous for the
(p, µ)-adic topology.

Proof. Recall that from §2 we have ΓR ∼−→ Γ′
R ⋊ ΓF ∼−→ Zp(1)d ⋊Z×

p . Moreover, we fixed {γ1, . . . , γd} as
topological generators of Γ′

R and γ0 in ΓR to be a lift of a topological generator of ΓR/Γ′
R. Additionally, we

may assume that χ(γ0) = 1+pa, for p ≥ 3, and χ(γ0) = 1+4a, for p = 2, where χ is the p-adic cyclotomic
character and a is a unit in Zp. To show that the action of ΓR is continuous on N , for the (p, µ)-adic
topology, we need to show that for any x in N , any n ≥ 1 and for each γi, there exists an m ∈ N such that
γp

m

i (x) = x mod (p, µ)n. As the action of ΓR is trivial on N/µN , let us note that for each 0 ≤ i ≤ d, the
operators ∇q,i := γi−1

µ : N → N are well-defined (see §5.2 for more on such operators). Moreover, note
that for any a in A+

R, x in N and 0 ≤ i ≤ d, we have (γi − 1)(a⊗ x) = (γi − 1)a⊗ x+ γi(a)⊗ (γi − 1)(x),
and therefore, ∇q,i(a⊗ x) = ∇q,i(a)⊗ x+ γi(a)⊗∇q,i(x). Now for 1 ≤ i ≤ d, note that ∇q,i(µ) = µ, so
by setting m = n, we get that

γp
n

i (x) = (1 + µ∇q,i(x))pn = x+ ∑pn

k=1
(pn

k

)
µk∇kq,i(x),

where the summation in the third term is easily seen to be an element of (p, µ)nN . Next, let i = 0 and
using the action of γ0 on µ, it is easy to see that ∇q,0(µ) = (1 + µ)((1 + µ)pa − 1)/µ is an element of
(p, µ)A+

F . Then an easy induction on k ≥ 1 shows that for any x in N , we must have that (µ∇q,0)k(x) is
an element of (p, µ)kN . In particular, by setting m = n, it follows that we have

γp
n

0 (x) = (1 + µ∇q,0(x))pn = x+ ∑pn

k=1
(pn

k

)
(µ∇q,0)k(x),

where the summation in the third term is again an element of (p, µ)nN . Hence, we conclude that the
action of ΓR is continuous on N .

3.2. Wach modules over A+
R. We start with the definition of Wach modules.

Definition 3.8. A Wach module over A+
R with weights in the interval [a, b], for some a, b ∈ Z with b ≥ a,

is a finitely generated A+
R-module N satisfying the following assumptions:

(1) The sequences {p, µ} and {µ, p} are regular on N .

(2) N is equipped with a semilinear action of ΓR such that the induced action of ΓR on N/µN is trivial.

(3) There is a Frobenius-semilinear operator φ : N [1/µ] → N [1/φ(µ)] compatible with respective
actions of ΓR such that φ(µbN) ⊂ µbN , and the map (1⊗ φ) : φ∗(µbN)→ µbN is injective and its
cokernel is killed by [p]b−aq .

We define the [p]q-height of N to be the largest value of −a for a ∈ Z as above. The module N is said to
be effective if we can take b = 0 and a ≤ 0. A Wach module over B+

R is a finitely generated module M
equipped with a semilinear action of ΓR and a Frobenius-semilinear operator φ : M [1/µ] → M [1/φ(µ)]
compatible with respective actions of ΓR and such that there exists a ΓR-stable and φ-stable (after
inverting µ) A+

R-submodule N ⊂M and equipped with induced (φ,ΓR)-action N is a Wach module over
A+
R and N [1/p] = M . Denote by (φ,ΓR)-Mod[p]q

A+
R

, the category of Wach modules over A+
R with morphisms

between objects being A+
R-linear φ-equivariant (after inverting µ) and ΓR-equivariant morphisms.

Remark 3.9. In Definition 3.8, note that from the triviality of the action of ΓR on N/µN and Lemma
3.7, it follows that the action of ΓR on N is continuous.

Next, we note some structural properties of Wach modules.

Lemma 3.10. Let N be a finitely generated A+
R-module. Then (3) of Definition 3.8 is equivalent to giving

an A+
R-linear and ΓR-equivariant isomorphism φN : (φ∗N)[1/[p]q] = (A+

R⊗φ,A+
R
N)[1/[p]q] ∼−→ N [1/[p]q].
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Proof. Suppose N satisfes condition (3) of Definition 3.8. Then, the map 1⊗φ : φ∗(µbN)→ µbN induces
an isomorphism 1⊗ φ : (µbφ∗N)[1/[p]q] ∼−→ (µbN)[1/[p]q]. Hence, we obtain an isomorphism

φN : (φ∗N)[1/[p]q]
µb

−−→
∼

(µbφ∗N)[1/[p]q]
1⊗φ−−−→

∼
(µbN)[1/[p]q]

µb

←−−
∼

N [1/[p]q].

Since, 1⊗ φ commutes with the action of ΓR, we deduce that φN is ΓR-equivariant.
Conversely, suppose that we have an A+

R-linear ΓR-equivariant isomorphism φN : (φ∗N)[1/[p]q] ∼−→
N [1/[p]q]. Then note that for some a, b ∈ Z with b ≥ awe can write [p]bqφN (φ∗N) ⊂ N ⊂ [p]aqφN (φ∗N). So
we get an A+

R-semilinear and ΓR-equivariant map as the composition φ : µbN can−−−→ φ∗(µbN) φN−−−→ µbN .
This extends to an A+

R-semilinear ΓR-equivariant map φ : N [1/µ]→ N [1/φ(µ)] and we have

φN (φ∗(µbN)) = µb[p]bqφN (φ∗N) ⊂ µbN ⊂ [p]a−b
q φN (φ∗(µbN))

Then it easily follows that 1⊗ φ = φN : φ∗(µbN) → µbN is injective, its cokernel is killed by [p]b−aq and
it commutes with the action of ΓR. Hence, N satisfies condition (3) of Definition 3.8.

Proposition 3.11. Let N be a Wach module over A+
R. Then N [1/p] is finite projective over A+

R[1/p]
and N [1/µ] is finite projective over A+

R[1/µ].

Proof. For r ∈ N large enough, note that the Wach module µrN(−r) is always effective. So without
loss of generality, we may assume that N is effective. Then the first claim follows from Lemma 3.10 and
Proposition A.1. For the second claim, note that N is p-torsion free, so AR ⊗A+

R
N is a p-torsion free

étale (φ,ΓR)-module over AR, and therefore, finite projective by [And06, Lemma 7.10]. Since A+
R[1/µ]

is noetherian, we have N [1/µ]∧ ∼−→ AR ⊗A+
R[1/µ] N [1/µ] = AR ⊗A+

R
N , where ∧ denotes the p-adic

completion. Moreover, the natural map Spec (A+
R[1/µ]∧)∪Spec (A+

R[1/µ, 1/p])→ Spec (A+
R[1/µ]) is a flat

cover. Therefore, by faithfully flat descent it follows that N [1/µ] is finite projective over A+
R[1/µ].

Remark 3.12. Note that the map Spec (A+
R[1/[p]q]∧p )∪Spec (A+

R[1/[p]q, 1/p])→ Spec (A+
R[1/[p]q]) is a flat

cover and A+
R[1/µ]∧p = A+

R[1/[p]q]∧p . Now for a Wach moduleN over A+
R, we have that the A+

R[1/p]-module
N [1/p] is finite projective and the A+

R[1/µ]-module N [1/µ] is finite projective (see Proposition 3.11).
Therefore, by faithfully flat descent, we get that the A+

R[1/[p]q]-module N [1/[p]q] is finite projective.
Moreover, from Lemma 3.6 we also have that the sequence {p, [p]q} is strictly N -regular and equivalent
to condition (1) in Definition 3.8.

Remark 3.13. Note that for a Wach module N over A+
R, we have that N is p-torsion free, in particular,

N is contained in N [1/p]. As N [1/p] is finite projective over A+
R[1/p] by Proposition 3.11, therefore, we

obtain that N is a torsion free A+
R-module.

Lemma 3.14. Let N be a Wach module over A+
R, then we have N = (A+

L ⊗A+
R
N) ∩ (AR ⊗A+

R
N) ⊂

AL ⊗A+
R
N as A+

R-modules.

Proof. Let NR := N , NL := A+
L ⊗A+

R
N and DR := AR⊗A+

R
N . Note that NR[1/p] is finite projective over

B+
R , with NL[1/p] = B+

L ⊗B+
R
NR[1/p] and DR[1/p] = BR ⊗B+

R
NR[1/p], therefore NL[1/p] ∩DR[1/p] =

(B+
L ∩ BR)⊗B+

R
NR[1/p] = NR[1/p]. Moreover, we have NL ∩DR ⊂ NL[1/p] ∩DR[1/p] = NR[1/p], and

using Lemma 3.5 we see that NL ∩DR = NL ∩DR ∩NR[1/p] = NR.

From the proof of Proposition 3.11, it is clear that extending scalars along A+
R → AR induces a functor

(φ,ΓR)-Mod[p]q
A+

R

→ (φ,ΓR)-Modét
AR

, and we make the following claim:

Proposition 3.15. The following natural functor is fully faithful

(φ,ΓR)-Mod[p]q
A+

R

−→ (φ,ΓR)-Modét
AR

N 7−→ AR ⊗A+
R
N.
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Proof. Let N,N ′ be two Wach modules over A+
R. Write NR := N , NL := A+

L ⊗A+
R
N , DL := AR ⊗A+

R
N

and similarly for N ′. We need to show that for Wach modules NR and N ′
R, we have

Hom
(φ,ΓR)-Mod[p]q

A+
R

(NR, N
′
R) ∼−→ Hom(φ,ΓR)-Modét

AR

(DR, D
′
R) (3.2)

Note that A+
R → AR = A+

R[1/µ]∧ is injective, in particular, the map in (3.2) is injective. To check that
(3.2) is surjective, take an AR-linear and (φ,ΓR)-equivariant map f : DR → D′

R. We need to show
that f(NR) ⊂ N ′

R. Base changing f along AR → AL and using the isomorphism ΓL ∼−→ ΓR induces
an AL-linear and (φ,ΓL)-equivariant map f : DL → D′

L. Then from [Abh23a, Proposition 3.3] we have
f(NL) ⊂ N ′

L. Finally, using Lemma 3.14, we get that inside D′
L we have f(NR) = f(NL ∩ DR) =

f(NL) ∩ f(DR) ⊂ N ′
L ∩D′

R = N ′
R, concluding the proof.

Analogous to above, one can define categories (φ,ΓR)-Mod[p]q
B+

R

and (φ,ΓR)-Modét
BR

and a functor
from the former to latter by extending scalars along B+

R → BR. Then passing to the associated isogeny
categories and using Proposition 3.15, we get the following:

Corollary 3.16. The natural functor (φ,ΓR)-Mod[p]q
B+

R

→ (φ,ΓR)-Modét
BR

is fully faithful.

3.3. GR-representations attached to Wach modules. Composing the functor in Proposition
3.15 with the equivalence in (2.8), we obtain a fully faithful functor,

TR : (φ,ΓR)-Mod[p]q
A+

R

−→ RepZp
(GR)

N 7−→
(
A⊗A+

R
N

)φ=1 ∼−→
(
W (C(R)♭)⊗A+

R
N

)φ=1
.

(3.3)

Proposition 3.17. Let N be a Wach module over A+
R and T := TR(N), the associated finite free

Zp-representation of GR. Then we have a natural GR-equivariant comparison isomorphism

Ainf(R)[1/µ]⊗A+
R
N

∼−→ Ainf(R)[1/µ]⊗Zp T. (3.4)

Additionally, (3.4) is compatible with Frobenius after base change along Ainf(R)[1/µ]→W (C(R)♭).

Proof. Note that for T = TR(N), from the equivalence in (2.8), we have DR(T ) ∼−→ AR ⊗A+
R
N as étale

(φ,ΓR)-modules over AR. Then extending scalars of the isomorphism in (2.7) along A→W (C(R)♭) gives
(φ,GR)-equivariant isomorphism,

W (C(R)♭)⊗A+
R
N

∼−→W (C(R)♭)⊗Zp T. (3.5)

Nowa, for r ∈ N large enough, the Wach module µrN(−r) is always effective and we have TR(µrN(−r)) =
T (−r) (the twist (−r) denotes the Tate twist on which ΓR acts via the cyclotomic character). Therefore,
we see that it is enough to show the claim for effective Wach modules (see Definition 3.8), in particular,
in the rest of the proof we will assume that N is effective.

Let S denote the set of minimal primes of R above pR ⊂ R. From §2.1, recall that for each p ∈ S , we
have L(p) ⊂ Cp, an algebraic closure of L containing (R)p, and we have ĜR(p) = Gal(L(p)/L). Moreover,
we have an isomorphism of groups ΓL ∼−→ ΓR and for each prime p ∈ S , let A+

L (p) denote the base ring
for Wach modules in the imperfect residue field case (see [Abh23a, §2.1.2]). To avoid confusion, let us
write NR := N and NL(p) := A+

L (p)⊗A+
R
N , in particular, NL(p) is a Wach module over A+

L (p) finite free
of rank = rkZpT . From [Abh23a, Lemma 3.6] note that we have ĜR(p)-equivariant inclusions for each
p ∈ S ,

µsAinf(C+
p )⊗Zp T ⊂ Ainf(C+

p )⊗A+
L (p) NL(p) ⊂ Ainf(C+

p )⊗Zp T. (3.6)

Now, note that the (φ,GR(p))-equivariant compositionA+
R →W (C(R)♭)→W (C(p)♭) naturally factors as

the (φ,GR(p))-equivariant mapsA+
R → A+

L (p)→W (C(p)♭). So, by base changing the (φ,GR)-equivariant
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isomorphism in (3.5) along the (φ,GR(p))-equivariant map W (C(R)♭)→ W (C(p)♭), we obtain a natural
(φ,GR(p))-equivariant isomorphism,

W (C(p)♭)⊗A+
L (p) NL(p) ∼−→W (C(p)♭)⊗Zp T. (3.7)

All terms in (3.6) and (3.7) admit (φ, ĜR(p))-equivariant embedding into W (C♭p) ⊗A+
L (p) NL(p) ∼−→

W (C♭p) ⊗Zp T , where the action of ĜR(p) on (3.7) factors through ĜR(p) ↠ GR(p). Therefore, tak-
ing the intersection of (3.6) with (3.7) inside W (C♭p) ⊗A+

L (p) NL(p) ∼−→ W (C♭p) ⊗Zp T and using Lemma
2.4, for each p ∈ S , we obtain the following (φ,GR(p))-equivariant inclusions:

µsAinf(C+(p))⊗Zp T ⊂ Ainf(C+(p))⊗A+
L (p) NL(p) ⊂ Ainf(C+(p))⊗Zp T, (3.8)

where the middle term can be written as Ainf(C+(p))⊗A+
L (p) NL(p) = Ainf(C+(p))⊗A+

R
NR.

Now, from Remark 2.6, recall that ∏
p∈S Ainf(C+(p)) is equipped with an action of GR and from

Lemma 2.7 we have a (φ,GR)-equivariant embedding Ainf(R)→ ∏
p∈S Ainf(C+(p)). Then, we can equip∏

p∈S(Ainf(C+(p))⊗Zp T ) = (∏p∈S Ainf(C+(p)))⊗Zp T with the diagonal action of (φ,GR) and similarly
for ∏

p∈S(Ainf(C+(p))⊗A+
L (p)NL(p)) = ∏

p∈S(Ainf(C+(p))⊗A+
R
NR) = (∏p∈S Ainf(C+(p)))⊗A+

R
NR, where

the second equality follows from the fact that product is an exact functor on the category of A+
R-modules

and NR is finitely presented over the noetherian ring A+
R (see [Sta23, Tag 059K]). So, taking the product

of (3.8) over all p ∈ S , we obtain the following (φ,GR)-equivariant inclusions:

µs
∏
p∈S

(
Ainf(C+(p))⊗Zp T

)
⊂

∏
p∈S

(
Ainf(C+(p))⊗A+

R
NR

)
⊂

∏
p∈S

(
Ainf(C+(p))⊗Zp T

)
. (3.9)

Inverting µ in (3.9) and from the discussion above we get a GR-equivariant isomorphism( ∏
p∈S

Ainf(C+(p))
)[ 1

µ

]
⊗A+

R[1/µ] NR

[ 1
µ

] ∼−→
( ∏
p∈S

Ainf(C+(p))
)[ 1

µ

]
⊗Zp T. (3.10)

Furthermore, the (φ,GR)-equivariant isomorphism in (3.5) can be written as

W (C(R)♭)⊗A+
R[1/µ] NR

[ 1
µ

] ∼−→W (C(R)♭)⊗Zp T. (3.11)

Using Lemma 2.7, all terms in (3.10) and (3.11) admit an embedding into
( ∏

p∈S W (C(p)♭)
)
⊗A+

R
NR

∼−→( ∏
p∈S W (C(p)♭)

)
⊗Zp T compatible with respective actions of φ and GR. Note that NR[1/µ] is finite

projective over A+
R[1/µ] (see Proposition 3.11), so the intersection of the left-hand terms in (3.10) and

(3.11), inside
( ∏

p∈S W (C(p)♭)
)
⊗A+

R
NR, gives

(
W (C(R)♭)⊗A+

R[1/µ] NR

[ 1
µ

])
∩

(( ∏
p∈S

Ainf(C+(p))
)[ 1

µ

]
⊗A+

R[1/µ] NR

[ 1
µ

])
= Ainf(R)

[ 1
µ

]
⊗A+

R[1/µ] NR

[ 1
µ

]
= Ainf(R)

[ 1
µ

]
⊗A+

R
NR,

where the first equality follows from Lemma 2.7. Similarly, the intersection of the right-hand terms in
(3.10) and (3.11), inside

( ∏
p∈S W (C(p)♭)

)
⊗Zp T , gives(

W (C(R)♭)⊗Zp T
)
∩

(( ∏
p∈S

Ainf(C+(p))
)[ 1

µ

]
⊗Zp T

)
= Ainf(R)

[ 1
µ

]
⊗Zp T,

where the equality again follows from Lemma 2.7. Since (3.10) and (3.11) are isomorphisms, we obtain
the natural GR-equivariant isomorphism claimed in (3.4) as,

Ainf(R)[1/µ]⊗A+
R
NR

∼−→ Ainf(R)[1/µ]⊗Zp T.

From the proof, it also follows that the isomorphism above is compatible with Frobenius after base change
along Ainf(R)→W (C(R)♭).

https://stacks.math.columbia.edu/tag/059K
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Corollary 3.18. Let N be a Wach module over A+
R and let T := TR(N) denote the associated finite

free Zp-representation of GR. Then we have a natural (φ,GR)-equivariant comparison isomorphism

A+[1/µ]⊗A+
R
N

∼−→ A+[1/µ]⊗Zp T.

Additionally, the isomorphism above is compatible with Frobenius after base change along A+[1/µ]→ A.

Proof. Since N [1/µ] is finite projective over A+
R[1/µ], taking the intersection of the isomorphism in

Proposition 3.17 with the isomorphism in (2.7), inside Ã ⊗Zp T , we obtain a GR-equivariant isomor-
phism A+[1/µ] ⊗A+

R[1/µ] N [1/µ] ∼−→ A+[1/µ] ⊗Zp T , as claimed. Moreover, from §2.5, recall that
A+ = Ainf(R) ∩ A ⊂ Ã, therefore, from Proposition 3.17 it also follows that the isomorphism above
is compatible with Frobenius after base change along A+[1/µ]→ A.

Proposition 3.19. Let N be an effective Wach module over A+
R and T := TR(N) the associated finite

free Zp-representation of GR. Then we have (φ,ΓR)-equivariant inclusions µsD+
R(T ) ⊂ N ⊂ D+

R(T ) (see
§2.6 for notations).

Proof. The proof follows in a manner similar to the proof of Proposition 3.17, so we will freely use the
notation of that proof. Inverting p in (3.9) we get (φ,GR)-equivariant inclusions

µs
( ∏
p∈S

(
Ainf(C+(p))⊗Zp T

))[1
p

]
⊂

( ∏
p∈S

(
Ainf(C+(p))⊗A+

R
NR

))[1
p

]
⊂

( ∏
p∈S

(
Ainf(C+(p))⊗Zp T

))[1
p

]
.

(3.12)

The last term of (3.12) can be written as
( ∏

p∈S Ainf(C+(p))
)[1

p

]
⊗Qp V and similarly for the first term.

Moreover, we have ∏
p∈S(Ainf(C+(p)) ⊗A+

R
NR) = (∏p∈S Ainf(C+(p))) ⊗A+

R
NR, so the middle term of

(3.12) can be written as
( ∏

p∈S Ainf(C+(p))
)[1

p

]
⊗B+

R
NR

[1
p

]
. Furthermore, by inverting p in (3.5), we

have the following (φ,GR)-equivariant comparison isomorphism:

W (C(R)♭)
[1
p

]
⊗B+

R
NR

[1
p

] ∼−→W (C(R)♭)
[1
p

]
⊗Qp V. (3.13)

Using Lemma 2.7, we embed all terms in (3.12) and (3.13) inside
( ∏

p∈S W (C(p)♭)
)
[1/p]⊗B+

R
NR[1/p] ∼−→( ∏

p∈S W (C(p)♭)
)
[1/p] ⊗Qp V , compatible with respective actions of φ and GR. Since NR[1/p] is finite

projective over B+
R , the intersection of the middle term in (3.12) and the left-hand term in (3.13), inside( ∏

p∈S W (C(p)♭)
)
[1/p]⊗B+

R
NR[1/p], gives(

W (C(R)♭)
[1
p

]
⊗B+

R
NR

[1
p

])
∩

(( ∏
p∈S

Ainf(C+(p))
)[1

p

]
⊗B+

R
NR

[1
p

])
= Ainf(R)

[1
p

]
⊗B+

R
NR

[1
p

]
,

where the equality follows from Lemma 2.7. Similarly, the intersection of the right-hand terms in (3.10)
and (3.13), inside

( ∏
p∈S W (C(p)♭)

)
[1/p]⊗Qp V , gives(

W (C(R)♭)
[1
p

]
⊗Qp V

)
∩

(( ∏
p∈S

Ainf(C+(p))
)[1

p

]
⊗Qp V

)
= Ainf(R)

[1
p

]
⊗Qp V,

where the equality again follows from Lemma 2.7. Therefore, from (3.12) and (φ,GR)-equivariance of
(3.13), we obtain the following (φ,GR)-equivariant inclusions

µs
(
Ainf(R)

[1
p

]
⊗Qp V

)
⊂ Ainf(R)

[1
p

]
⊗B+

R
NR

[1
p

]
⊂ Ainf(R)

[1
p

]
⊗Qp V. (3.14)

Inverting p in the isomorphism obtained in Corollary 3.18 and by taking its intersection with (3.14),
insideW (C(R)♭)[1/p]⊗B+

R
NR[1/p] ∼−→W (C(R)♭)[1/p]⊗QpV , we obtain the following (φ,GR)-equivariant

inclusions
µs

(
B+ ⊗Qp V

)
⊂ B+ ⊗B+

R
NR

[1
p

]
⊂ B+ ⊗Qp V.

In the preceding equation, by taking HR-invariants and its intersection with DR(T ) = NR[1/µ]∧, inside
DR(V ), we obtain µsD+

R(T ) ⊂ NR ⊂ D+
R(T ), since NR = NR[1/p] ∩ NR[1/µ]∧ from Lemma 3.5 and

D+
R(T ) = DR(T ) ∩D+

R(V ) ⊂ DR(V ) by definition. Hence, the proposition is proved.
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3.4. Finite [p]q-height representations. In this section we will generalise the definition of finite
[p]q-height representations from [Abh21, Definition 4.9] in the relative case.

Definition 3.20. A finite [p]q-height Zp-representation of GR is a finite free Zp-module T admitting a
linear and continuous action of GR such that there exists a finitely generated A+

R-submodule NR(T ) ⊂
DR(T ), stable under the action of ΓR on DR(T ), and such that NR(T ), equipped with the induced actions
of φ and ΓR, satisfies the following:

(1) NR(T ) is a Wach module in the sense of Definition 3.8.

(2) AR-linearly extending the inclusion NR(T ) → DR(T ) induces a (φ,ΓR)-equivariant isomorphism
AR ⊗A+

R
NR(T ) ∼−→ DR(T ).

The height of T is defined to be the height of NR(T ). Say that T is positive if NR(T ) is effective.
A finite [p]q-height p-adic representation of GR is a finite dimensional Qp-vector space admitting a

linear and continuous action of GR such that there exists a GR-stable Zp-lattice T ⊂ V , with T of finite
[p]q-height. We set NR(V ) := NR(T )[1/p] satisfying properties analogous to (1) and (2) above. The
height of V is defined to be the height of T . Say that V is positive if NR(V ) is effective.

Lemma 3.21. Let T be a finite [p]q-height Zp-representation of GR then the A+
R-module NR(T ), asso-

ciated to T in Definition 3.20, is unique.

Proof. By definition, AR⊗A+
R

NR(T ) ∼−→ DR(T ) and this scalar extension induces a fullly faithful functor
in Proposition 3.15. So from (2.8) we obtain the uniqueness of N(T ). Alternatively, the uniquess can also
be deduced using Proposition 3.19 and [Abh21, Proposition 4.13].

Remark 3.22. Let V be a finite [p]q-height p-adic representation of GR and T ⊂ V a finite [p]q-height
GR-stable Zp-lattice. Then we have NR(V ) = NR(T )[1/p] and from Proposition 3.19 we get that if V is
positive then µsD+

R(V ) ⊂ NR(V ) ⊂ D+
R(V ). Moreover, similar to [Abh21, Remark 3.10], we can show

that NR(V ) is unique, in particular, it is independent of choice of the lattice T by Corollary 3.16.

Remark 3.23. By the definition of finite [p]q-height representations, Lemma 3.21 and the fully faithful
functor in (3.3) it follows that the data of a finite height representation is equivalent to the data of a Wach
module.

3.5. Nygaard filtration on Wach modules. In this section we consider the Nygaard filtration
on Wach modules as follows:

Definition 3.24. Let N be a Wach module over A+
R. Define a decreasing filtration on N called the

Nygaard filtration, for k ∈ Z, as

FilkN := {x ∈ N such that φ(x) ∈ [p]kqN}.

From the definition it is clear that N is effective if and only if Fil0N = N . Similarly, we define Nygaard
filtration on M := N [1/p] and it easily follows that FilkM = (FilkN)[1/p].

Lemma 3.25. Let N be a Wach module A+
R.

(1) For any k, r ∈ Z, and the Wach module µ−rN(r) over A+
R, we have that Filk(µ−rN(r)) =

µ−r(Filr+kN)(r).

(2) For all k ∈ Z, we have that FilkN ∩ µN = µFilk−1N ⊂ N .

Similar statements are also true for the B+
R -module N [1/p].

Proof. The proof follows from arguments similar to [Abh23b, Lemma 3.3 & Lemma 3.4]. In (1), the
inclusion µ−r(Filr+kN)(r) ⊂ Filk(µ−rN(r)) is obvious. For the converse, let µ−rx ⊗ ϵ⊗r be an element
of Filk(µ−rN(r)), where x is an element of N and ϵ⊗r is a Zp-basis of Zp(r). By assumption, note that
φ(µ−rx ⊗ ϵ⊗r) = ([p]qµ)−rφ(x) ⊗ ϵ⊗r is in [p]kqµ−rN(r). Therefore, φ(x) belongs to [p]r+kq N , i.e. x is
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in Filr+kN . For (2), note that using (1) we may assume that N is effective. The claim is obvious if
Filk−1N = N , so we assume that k ≥ 2. Let x be an element of FilkN ∩ µN and write x = µy, for some
y in N . Now, as φ(x) is in [p]kqN , therefore, µφ(y) is in [p]k−1

q N , i.e. µφ(y) = [p]k−1
q z, for some z in N .

In particular, we have that [p]r−1
q z = pr−1z = 0 mod µN . But N/µN is p-torsion free, so it follows that

z = 0 mod µN , i.e. y is in Filk−1N . The other inclusion is obvious because µFilk−1N ⊂ FilkN . This
allows us to conclude.

Remark 3.26. The Nygaard filtration from Definition 3.24, on a Wach module N over A+
R, is stable

under the action of ΓR. Therefore, using Lemma 3.25 (2) we see that for any g in ΓR and k ∈ Z, we have
that (g − 1)FilkN ⊂ (FilkN) ∩ µN = µFilk−1N .

The reason for considering the Nygaard filtration as above is the following: note that Acris(R) is
equipped with a filtration by divided power ideals and the embedding Ainf(R) ⊂ Acris(R) induces a
filtration on Ainf(R) given as FilkAinf(R) := ξkAinf(R) for k ∈ N. We equip A+ with the induced
filtration FilkA+ := A+ ∩ FilkAinf(R) ⊂ Ainf(R).

Lemma 3.27. Let N be an effective Wach module over A+
R and let T := TR(N) denote the associated

Zp-representation of GR. Then, for k ∈ N, we have (FilkA+ ⊗Zp T ) ∩N = FilkN .

Proof. Let V := T [1/p], M := N [1/p] and FilkB+ := (FilkA+)[1/p]. Then it is enough to show that
(FilkB+⊗Qp V )∩M = FilkM . Indeed, from Definition 3.24 we have FilkN := FilkM ∩N = (FilkB+⊗Qp

V )∩M∩N = (FilkA+⊗ZpT )∩N since FilkB+∩A+ = FilkA+. Now the inclusion FilkM ⊂ (FilkB+⊗QpV )
is obvious and for the converse it is enough to show ([p]kqB+⊗Qp V )∩M = [p]kqM . Indeed, if we have x in
(FilkB+⊗QpV )∩M then φ(x) is in ([p]kqB+⊗QpV )∩M = [p]kqM , i.e. x is in FilkM . For the reduced claim,
note that the inclusion [p]kqM ⊂ ([p]kqB+⊗Qp V )∩M is obvious. To show the converse, let x in B+⊗Qp V

such that [p]kqx is in M , in particular, x is in M [1/[p]q]. Then it follows that h(x) = x for all h ∈ HR,
i.e. x is in (B+ ⊗Qp V )HR =: D+

R(V ) = D+
R(T )[1/p]. From Proposition 3.19 recall that µsD+

R(V ) ⊂ M ,
where s is the [p]q-height of N . So we get that µsx is in M , in particular, x is in M [1/µ]. Combining this
with the previous observation we get that x is in M [1/µ]∩M [1/[p]q] ⊂ BR⊗B+

R
M . But from Proposition

3.11 we know that M is finite projective over B+
R and note that B+

R = B+
R [1/µ] ∩B+

R [1/[p]q] ⊂ BR, since
[p]q = p mod µB+

R . Hence, it follows that we have x is in M [1/µ] ∩M [1/[p]q] = M , as desired.

3.5.1. Nygaard filtration on scalar extension of Wach modules. Let NR be a Wach module
over A+

R. Then by Remark 1.4 we know that NL := A+
L ⊗A+

R
NR is a Wach module over A+

L equipped
with the natural action of φ and ΓL ∼−→ ΓR (in the sense of [Abh23a, Definition 3.1]). Note that similar
to Definition 3.24, we can equip NL with the Nyggard filtration (see [Abh23a, Definition 3.2]), and we
claim the following:

Lemma 3.28. For each k ∈ Z, we have that

A+
L ⊗A+

R
FilkNR

∼−→ FilkNL. (3.15)

Proof. Using Lemma 3.25 (1), note that it is enough to prove the claim for effective Wach modules, in
particular, we will assume that Fil0NR = NR. Note that the case k = 0 is trivial. We will first prove
the claim rationally and use it to deduce the integral claim. Set MR := NR[1/p] and ML := NL[1/p],
equipped with induced structures. Now, consider the following commutative diagram with exact rows:

0 Filk+1MR FilkMR grkMR 0

0 Filk+1ML FilkML grkML 0,

(3.16)

where the left and the middle vertical arrows are natural inclusions. For the induced right vertical
arrow note that we have FilkMR ∩ Filk+1ML = Filk+1MR ⊂ ML, since [p]kqMR ∩ [p]k+1

q ML = (B+
R ∩

[p]qB+
L )⊗B+

R
[p]kqMR = [p]k+1

q MR. So we get that the right vertical arrow of (3.16) is injective. From the
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preceding conclusion, it follows that B+
L ⊗B+

R
grkMR

∼−→ L⊗R[1/p] grkMR is a finitely generated module
over gr0B+

L = B+
L /µB

+
L

∼−→ L, i.e. a finite dimensional L-vector space, and further it is easy to see that
the natural map L⊗R[1/p] grkMR → grkML is injective. Now, consider the following diagram with exact
rows:

0 B+
L ⊗B+

R
Filk+1MR B+

L ⊗B+
R

FilkMR L⊗R[1/p] grkMR 0

0 Filk+1ML FilkML grkML 0,

(3.17)

4 where the top row is the scalar extension of the top exact row in (3.16) along the natural flat map
B+
R → B+

L and the vertical maps are induced from the isomorphism A+
L ⊗A+

R
NR

∼−→ NL. Now, we
will proceed by induction on k, i.e. assume that the middle vertical arrow of (3.17) is an isomorphism
for some k ≥ 0. Then, it follows that the right vertical arrow is surjective and it is injective by the
discussion after (3.16), hence bijective. So, we conclude that the left vertical arrow is bijective as well,
i.e. B+

L ⊗B+
R

Filk+1MR
∼−→ Filk+1ML. Finally, note the natural map A+

R → A+
L is flat, therefore, for any

k ∈ Z we have that

A+
L ⊗A+

R
FilkNR = A+

L ⊗A+
R

(FilkMR ∩NR)

= (A+
L ⊗A+

R
FilkMR) ∩ (A+

L ⊗A+
R
NR) ∼−→ FilkML ∩NL = FilkNL.

This completes our proof.

Remark 3.29. The ideas emplyed in the proof of Lemma 3.28 enables us to relate the Nygaard filtration
on NL to classical Wach modules. Indeed, let OL̆ := (∪di=1OL[X1/p∞

i ])∧, where ∧ denotes the p-adic
completion. TheOL-algebraOL̆ is a complete discrete valuation ring with perfect residue field, uniformiser
p and fraction field L̆ := OL̆[1/p]. The Witt vector Frobenius on OL̆ is given by the Frobenius on OL

described in §1.4 and setting φ(X1/pn

i ) = X
1/pn−1

i for all 1 ≤ i ≤ d and n ∈ N. Let L̆∞ := L̆(µp∞)
and let L̆ ⊃ L denote a fixed algebraic closure of L̆. We have the Galois groups GL̆ := Gal(L̆/L̆) ∼−→
Gal(L/∪di=1L(X1/p∞

i )) and ΓL̆ := Gal(L̆∞/L̆) ∼−→ Gal(L(µp∞)/L) ∼−→ Z×
p . Note thatGL̆ can be identified

with a subgroup of GL and ΓL̆ can be identified with a quotient of ΓL. Next, recall that from [Ber04], we
have the theory of Wach modules over A+

L̆
= OL̆JµK (see [Abh23a, §4.1] for a quick recollection). Now,

if NL is a Wach module over A+
L , then NL̆ := A+

L̆
⊗A+

L
NL is naturally a Wach module over A+

L̆
(see

[Abh23a, Corollary 4.27]). Euipping NL̆ with the Nygaard filtration as in Definition 3.24 and employing
an argument similar to Lemma 3.28 shows that, for each k ∈ Z, we have that A+

L̆
⊗A+

L
FilkNL

∼−→ FilkNL̆.

3.5.2. Reduction modulo µ of the Nygaard filtration. Let NR be a Wach module over A+
R and

note that (NR/µNR)[1/p] is a φ-module over R[1/p] since [p]q = p mod µA+
R, and NR/µNR is equipped

with a filtration Filk(NR/µNR) given as the image of FilkNR under the surjection NR ↠ NR/µNR. We
equip (NR/µNR)[1/p] with the induced filtration Filk((NR/µNR)[1/p]) := Filk(NR/µNR)[1/p], and note
that it is a filtered φ-module over R[1/p].

Lemma 3.30. For each k ∈ Z, the following sequence is exact:

0 −→ Filk−1NR
µ−−→ FilkNR −→ Filk(NR/µNR) −→ 0. (3.18)

Moreover, by taking the associated graded pieces, we get that grkNR
∼−→ grk(NR/µNR). Similar state-

ments are also true for the B+
R -module N [1/p]. Furthermore, similar claims hold for Wach modules over

A+
L and A+

L̆
(see Remark 3.29 for the latter ring) as well as after inverting p.

Proof. Exactness of (3.18) easily follows from Lemma 3.25 (2). Then, by taking the associated graded
pieces, we obtain the following exact sequence:

0 −→ grk−1NR
µ−−→ grkNR −→ grk(NR/µNR) −→ 0.

It is clear that the map grk−1NR
µ−−→ grkNR is trivial, i.e. grkNR

∼−→ grk(NR/µNR). Rest is obvious.
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Let NL := A+
L ⊗A+

R
NR equipped with the natural action of φ and ΓL ∼−→ ΓR and set MR := NR[1/p]

and ML := NL[1/p].

Lemma 3.31. The natural isomorphism of φ-modules OL ⊗R (NR/µNR) ∼−→ NL/µNL is compatible
with filtrations, i.e. for each k ∈ Z we have that

OL ⊗R Filk(NR/µNR) ∼−→ Filk(NL/µNL). (3.19)

In particular, L⊗R (MR/µMR) ∼−→ML/µML is a natural isomorphism of filtered φ-modules over L.

Proof. Consider the following diagram with exact rows:

0 A+
L ⊗A+

R
µFilk−1NR A+

L ⊗A+
R

FilkNR OL ⊗R Filk(NR/µNR) 0

0 µFilk−1NL FilkNL Filk(NL/µNL) 0,

≀ (3.15) ≀ (3.15) (3.19) (3.20)

where the top row is the extension of (3.18) along the flat map A+
R → A+

L and the bottom row is the exact
sequence (analogous to (3.18)) for Wach modules over A+

L . Note that the map in (3.19) is compatible
with the natural map in (3.15), i.e. the the right square in (3.20) commutes. Hence, the right vertical
arrow, i.e. (3.19) is bijective.

Remark 3.32. In the notation of Remark 3.29, let NL be a Wach module over A+
L and set NL̆ :=

A+
L̆
⊗A+

L
NL. Then then natural isomorphism of φ-modules OL̆⊗OL

(NL/µNL) ∼−→ NL̆/µNL̆ is compatible
with filtrations, i.e. for each k ∈ Z we have that OL̆⊗OL

Filk(NL/µNL) ∼−→ Filk(NL̆/µNL̆). In particular,
L̆⊗OL

(NL/µNL) ∼−→ (NL̆/µNL̆)[1/p] is a natural isomorphism of filtered φ-modules over L̆.

3.6. Wach modules are crystalline. The goal of this subsection is to prove Theorem 3.34. In
order to prove our results, we will need auxiliary period rings APD

R,ϖ and OAPD
R,ϖ from [Abh21, §4.3.1].

We briefly recall their definitions. Let ϖ := ζp − 1 and set A+
R,ϖ := A+

R[φ−1(µ)] ⊂ Ainf(R∞), stable
under the (φ,ΓR)-action on the latter. By restricting the map θ on Ainf(R∞), to A+

R,ϖ (see §2.2), we
obtain a surjective ring homomorphism θ : A+

R,ϖ ↠ R[ϖ]. We define APD
R,ϖ to be the p-adic completion

of the divided power envelope of the map θ with respect to Ker θ. Furthermore, the map θ extends
R-linearly to a surjective ring homomorphism θR : R ⊗Z A

+
R,ϖ ↠ R[ϖ], given as x⊗ y 7→ xθ(y). Similar

to above, we define OAPD
R,ϖ to be the p-adic completion of the divided power envelope of the map θR with

respect to Ker θR. The morphisms θ and θR naturally extend to respective surjections θ : APD
R,ϖ ↠ R[ϖ]

and θR : OAPD
R,ϖ ↠ R[ϖ]. Now, from loc. cit., we have natural inclusions APD

R,ϖ ⊂ Acris(R∞) and
OAPD

R,ϖ ⊂ OAcris(R∞), and it is easy to verify that the former rings are stable under respective actions of
φ and ΓR on the latter rings. Therefore, we equip APD

R,ϖ and OAPD
R,ϖ with induced structures, in particular,

a filtration and an APD
R,ϖ-linear connection ∂A on OAPD

R,ϖ satisfying Griffiths transversality with respect to
the filtration, and it is easy to show that (OAPD

R,ϖ)∂A=0 = APD
R,ϖ. Note that the aforementioned filtration

on APD
R,ϖ and OAPD

R,ϖ coincide with the divided power filtration by Ker θ and Ker θR respectively (see
[Abh21, Remark 4.23]).

Remark 3.33. Let us first remark that the ring APD
R,ϖ is flat over A+

R. Indeed, note that APD
R,ϖ is the

p-adic completion of a divided power algebra over A+
R,ϖ, given as A+

R,ϖ[ξk/k!, k ∈ N], where ξ = µ/φ−1µ.
Now, since (p, ξ) is a regular sequence on A+

R,ϖ, therefore, using [BS22, Lemma 2.38 and Lemma 2.43],
it follows that APD

R,ϖ is p-completely flat over A+
R,ϖ, therefore, flat since A+

R,ϖ is noetherian (see [Sta23,
Tag 0912]). As A+

R,ϖ is flat over A+
R, it follows that APD

R,ϖ is flat over A+
R. Furthermore, from [Abh21,

Lemma 4.20], note that OAPD
R,ϖ is a PD-polynomial algebra over APD

R,ϖ in d variables. So again from [BS22,
Lemma 2.38 and Lemma 2.43], it follows that OAPD

R,ϖ is p-completely flat over APD
R,ϖ. As APD

R,ϖ is flat over
A+
R, we get that OAPD

R,ϖ is p-completely flat over A+
R, hence flat. Next, note that for any k ∈ N, the

graded quotient grk(APD
R,ϖ) = Filk(APD

R,ϖ)/Filk+1(APD
R,ϖ) is isomorphic to ξ[k]R[ϖ], in particular, we have

https://stacks.math.columbia.edu/tag/0912
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that grk(APD
R,ϖ) is a free R-module. Now, since OAPD

R,ϖ is a PD-polynomial algebra over APD
R,ϖ, we also get

that for any k ∈ N, the graded quotient grk(OAPD
R,ϖ) = Filk(OAPD

R,ϖ)/Filk+1(OAPD
R,ϖ) is a free R-module.

Moreover, we have A+
R/µ

∼−→ R, so the flat dimension of R as an A+
R-module is 1, and it follows that

the flat dimension of grkOAPD
R,ϖ as an A+

R-module is also 1. Since Fil0OAPD
R,ϖ = OAPD

R,ϖ, therefore, using
induction on k ∈ N, we conclude that FilkOAPD

R,ϖ is flat as an A+
R-module.

Theorem 3.34. Let N be a Wach module over A+
R and let T := TR(N) be the associated finite free

Zp-representation of GR. Then V := T [1/p] is a p-adic crystalline representation of GR and we have
a natural isomorphism of R[1/p]-modules (OAPD

R,ϖ ⊗A+
R
N [1/p])ΓR

∼−→ ODcris,R(V ) compatible with the
respective Frobenii and connections.

Proof. For r ∈ N large enough, the Wach module µrN(−r) is always effective and TR(µrN(−r)) =
TR(N)(−r) (the twist (−r) denotes a Tate twist on which ΓR acts via χ−r, where χ is the p-adic cyclotomic
character). Therefore, it follows that it is enough to show the claim for effective Wach modules. So, in the
rest of the proof, we will assume that N is effective. Now, let us set ODR := (OAPD

R,ϖ ⊗A+
R
N [1/p])ΓR ⊂

ODcris,R(V ), and using Proposition 3.35, we note that ODR is a finite projective R[1/p]-module of rank
= rkB+

R
N [1/p]. Moreover, ODR is equipped with the tensor product Frobenius. Next, we note that ODR

is equipped with a connection induced from the connection on OAPD
R,ϖ. Using Proposition 3.35, note that

we have a natural isomorphism OAPD
R,ϖ ⊗R ODR

∼−→ OAPD
R,ϖ ⊗A+

R
N [1/p]. Now, consider the following

diagram:
OBcris(R)⊗R[1/p] ODR OBcris(R)⊗B+

R
N [1/p]

OBcris(R)⊗R[1/p] ODcris,R(V ) OBcris(R)⊗Qp V,

(3.23)
∼

(3.24) (3.4) ≀ (3.21)

where the left vertical arrow is the extension of theR[1/p]-linear injective map ODR → ODcris,R(V ), from
(3.24), along the faithfully flat ring homomorphism R[1/p] → OBcris(R) (see [Bri08, Thèoréme 6.3.8]),
the top horizontal arrow is the extension along OAPD

R,ϖ[1/p] → OBcris(R) of the isomorphism (3.23) in
Proposition 3.35, the right vertical arrow is the extension along A+[1/µ]→ OBcris(R) of the isomorphism
in Proposition 3.17 and the bottom horizontal arrow is the natural injective map (see [Bri08, Proposition
8.2.6]). Commutativity of the diagram (3.21) and compatibility of its arrows with the respective actions
of (φ,GR) and connections follow from (3.24). Since the top horizontal and right vertical arrows in (3.21)
are bijective, we conclude that its left vertical arrow and the bottom horizontal arrow are also bijective.
Therefore, V is a p-adic crystalline representation of GR, and by taking GR fixed part of the left vertical
arrow in (3.21), we obtain an isomorphism of R[1/p]-modules

ODR
∼−→ ODcris,R(V ) (3.22)

compatible with the respective Frobenii and connections. This concludes our proof.

The following observation was used above:

Proposition 3.35. Let N be an effective Wach module over A+
R, then ODR :=

(
OAPD

R,ϖ ⊗A+
R
N [1/p]

)ΓR

is a finite projective R[1/p]-module of rank = rkB+
R
N [1/p] equipped with a Frobenius and a connection.

Moreover, we have a natural comparison isomorphism

f : OAPD
R,ϖ ⊗R ODR

∼−→ OAPD
R,ϖ ⊗A+

R
N [1/p]

a⊗ b⊗ x 7−→ ab⊗ x,
(3.23)

compatible with the respective Frobenii, connections and actions of ΓR.

Remark 3.36. In (3.23), the Frobenius on each term is given as φ⊗φ; the connection on the right-hand
term is given as the natural APD

R,ϖ-linear differential operator ∂ ⊗ 1 and on the left-hand term, it is given
as ∂ ⊗ 1 + 1⊗ ∂D, where ∂D is the connection on ODR; the action of any g in ΓR on the left-hand term
is given as g ⊗ 1 and on the the right-hand term, it is given as g ⊗ g.
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Proof of Proposition 3.35. We will adapt the proof of [Abh21, Proposition 4.28]. Recall the following rings
from [Abh21, §4.4.1]: for n ∈ N, we take a p-adically complete ring SPD

n := A+
R

〈 µ
pn ,

µ2

2!p2n , . . . ,
µk

k!pkn , . . .
〉
.

We have a Frobenius homomorphism φ : SPD
n → SPD

n−1, in particular, φn(SPD
n ) ⊂ APD

R,ϖ and the ring SPD
n

is further equipped with a continuous (for the p-adic topology) action of ΓR. The reader should note that
in [Abh21, §4.4.1] we consider a further completion of SPD

n , with respect to certain filtration by PD-ideals,
which we denote as ŜPD

n in loc. cit. However, such a completion is not strictly necessary and all the proofs
of loc. cit. can be carried out without it. In particular, many good properties of ŜPD

n restrict to good
properties on SPD

n as well (for example, (φ,ΓR)-action above).
Let us now consider the OF -linear homomorphism of rings ι : R → SPD

n , defined by sending Xj 7→
[X♭

j ], for 1 ≤ j ≤ d. Using ι we can define an OF -linear homomorphism of rings f : R ⊗OF
SPD
n →

SPD
n , sending a ⊗ b 7→ ι(a)b. Let OSPD

n denote the p-adic completion of the divided power envelope of
R ⊗OF

SPD
n , with respect to Ker f . The tensor product Frobenius induces φ : OSPD

n → OSPD
n−1, such

that φn(OSPD
n ) ⊂ OAPD

R,ϖ, and the action of ΓR extends to a continuous (for the p-adic topology) action
on OSPD

n . Moreover, we have a (φ,ΓR)-equivariant embedding SPD
n ⊂ OSPD

n and the latter is equipped
with a ΓR-equivariant SPD

n -linear integrable connection given as the universal continuous SPD
n -linear de

Rham differential d : OSPD
n → Ω1

OSPD
n /SPD

n
. Furthermore, we have R = (OSPD

n )ΓR and with Vj = Xj⊗1
1⊗[X♭

j ] ,

for 1 ≤ j ≤ d, we have the p-adically complete divided power ideals of OSPD
n as follows:

J [i]OSPD
n :=

〈
µ[k0]

pnk0

d∏
j=1

(1− Vj)[kj ], k = (k0, k1, . . . , kd) ∈ Nd+1 such that
d∑
j=0

kj ≥ i
〉
.

We equip OSPD
n ⊗A+

R
N with the tensor product Frobenius and the connection on OSPD

n induces an
SPD
n -linear integrable connection on OSPD

n ⊗A+
R
N . ThenDn :=

(
OSPD

n ⊗A+
R
N [1/p]

)ΓR is anR[1/p]-module
equipped with a Frobenius φ : Dn → Dn−1 and an integrable connection. In particular, it follows that
φn(Dn) ⊂ ODR =

(
OAPD

R,ϖ ⊗A+
R
N [1/p]

)ΓR ⊂
(
OAcris(R) ⊗A+

R
N [1/p]

)HR , where we have OAPD
R,ϖ ⊂

OAcris(R∞) = OAcris(R)HR (see [MT20, Corollary 4.34] for the equality). Let T := TR(N) denote the
finite free Zp-representation of GR, associated to N , and set V := T [1/p], then we have

ODR ⊂
(
OB+

cris(R)⊗B+
R
N [1/p]

)GR ⊂
(
OBcris(R)⊗B+

R
N [1/p]

)GR

∼−→
(
OBcris(R)⊗Qp V

)GR = ODcris,R(V ),
(3.24)

where the isomorphism follows by taking GR-fixed elements of the isomorphism (3.4) in Proposition 3.17,
after extending scalars along Ainf(R)[1/µ] → OBcris(R). Since φn(Dn) ⊂ ODR, or equivalently, the
R[1/p]-linear map 1 ⊗ φn : R[1/p] ⊗φn,R[1/p] Dn → ODR is injective, we get that R[1/p] ⊗φn,R[1/p] Dn

is a finitely generated R[1/p]-module. Moreover, recall that φn : R[1/p] → R[1/p] is finite flat (see
§1.4), so it follows that Dn is finitely generated over the source of φn, i.e. Dn is a finitely generated
R[1/p]-module equipped with an integrable connection, in particular, it is finite projective over R[1/p]
by [Bri08, Proposition 7.1.2]. Furthermore, recall that N [1/p] is a finite projective B+

R -module (see
Proposition 3.11), therefore OSPD

n ⊗A+
R
N [1/p] is a finite projective OSPD

n [1/p]-module, and from [AGT16,
Lemma IV.3.2.2], it follows that OSPD

n ⊗A+
R
N is p-adically complete. Now, for n ≥ 1, similar to the

proof of [Abh21, Lemmas 4.32 & 4.36], it is easy to show that log γi := ∑
k∈N(−1)k (γi−1)k+1

k+1 converges as
a series of operators on OSPD

n ⊗A+
R
N , where {γ0, γ1, . . . , γd} are topological generators of ΓR (see §2).

Lemma 3.37. Let m ≥ 1 (let m ≥ 2 if p = 2), then we have a ΓR-equivariant isomorphism via the
natural map a⊗ b⊗ x 7→ ab⊗ x:

OSPD
m ⊗R Dm

∼−→ OSPD
m ⊗A+

R
N [1/p]. (3.25)

Proof. The map in (3.25) is obviously compatible with the respective actions of ΓR, so we need to check
that it is bijective. Let us first check the injectivity of (3.25). We have a composition of injective
homomorphisms OSPD

m [1/p] φm

−−−→ OAPD
R,ϖ[1/p]→ OBcris(R). As Dm is finite projective over R[1/p], the

map
OSPD

m ⊗R Dm = OSPD
m [1/p]⊗R[1/p] Dm −→ OBcris(R)⊗φm,R[1/p] Dm, (3.26)
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is injective. Next, we have V = T [1/p] and we consider the following composition,

OBcris(R)⊗φm,R[1/p] Dm
1⊗φm

−−−−−→ OBcris(R)⊗R[1/p] ODR −→ OBcris(R)⊗R[1/p] ODcris,R(V ). (3.27)

As R[1/p] → OBcris(R) is faithfully flat (see [Bri08, Théorème 6.3.8]) and (3.24) is injective, so in
(3.27), the second map is injective and the first map is injective because 1 ⊗ φm : R[1/p] ⊗φm,R[1/p]
Dm → ODR is injective, in particular, we see that (3.27) is injective. Moreover, since N [1/p] is a finite
projective B+

R -module, therefore, similar to (3.26), it can be shown that the map OSPD
m ⊗A+

R
N [1/p] =

OSPD
m [1/p] ⊗B+

R
N [1/p] −→ OBcris(R) ⊗φm,B+

R
N [1/p] is injective. Furthermore, from the definition

of Wach modules (see Definition 3.8), we have an isomorphism 1 ⊗ φ : B+
R ⊗φ,B+

R
N [1/p, 1/[p]q] ∼−→

N [1/p, 1/[p]q]. Therefore, iterating itm times and by extending scalars along B+
R → OBcris(R), we obtain

an isomorphism OBcris(R)⊗φm,B+
R
N [1/p] ∼−→ OBcris(R)⊗B+

R
N [1/p], since [p]q is unit in OBcris(R). So,

from the preceding observations, it follows that the following composition,

OSPD
m ⊗A+

R
N [1/p] −→ OBcris(R)⊗φm,B+

R
N [1/p] 1⊗φm

−−−−−→
∼

OBcris(R)⊗B+
R
N [1/p], (3.28)

is injective. Let us now consider the following diagram:

OSPD
m ⊗R Dm OBcris(R)⊗φm,R[1/p] Dm OBcris(R)⊗R ODcris,R(V )

OSPD
m ⊗A+

R
N [1/p] OBcris(R)⊗B+

R
N [1/p] OBcris(R)⊗Qp V,

(3.26)

(3.25)

(3.27)

(3.28) (3.4)

where the right vertical arrow is the natural injective map (see [Bri08, Proposition 8.2.6]). From the
definitions, it easily follows that the diagram commutes, therefore, we see that the left vertical arrow, i.e.
(3.25) is injective.

Next, let us check the surjectivity of the map in (3.25). We define the following operators on ONPD
m :=

OSPD
m ⊗A+

R
N [1/p],

∂i :=
{
−(log γ0)/t for i = 0,
(log γi)/(tVi) for 1 ≤ i ≤ d,

where Vi = Xi⊗1
1⊗[X♭

i ] , for 1 ≤ i ≤ d (see [Abh21, §4.4.2]). Note that for any g ∈ ΓR and any x ∈ OSPD
m ⊗A+

L
N ,

we have (g−1)(ax) = (g−1)a ·x+g(a)(g−1)x. Then, from the identity log(γi) = limn→+∞(γp
n

i −1)/pn,
it easily follows that the operators ∂i satisfy the Leibniz rule for all 0 ≤ i ≤ d. In particular, the operator
∂ : ONPD

m → ONPD
m ⊗OSPD

m
Ω1
OSPD

m /R
, given by x 7→ ∂0(x)dt + ∑d

i=1 ∂i(x)d[X♭
i ], defines a connection

on ONPD
m . Furthermore, from [Abh21, Lemma 4.38] the operators ∂i commute with each other, so the

connection ∂ is integrable and using the finite [p]q-height property of N , similar to [Abh21, Lemma 4.39],
it is easy to show that ∂ is p-adically quasi-nilpotent. Now, similar to the proof of [Abh21, Lemma 4.39
& Lemma 4.41], it follows that for x ∈ N [1/p], the following sum converges in Dm = (ONPD

m )ΓR =
(ONPD

m )∂=0:
y =

∑
k∈Nd+1

∂k0
0 ◦ ∂

k1
1 ◦ · · · ◦ ∂

kd
d (x) t[k0]

pmk0 (1− V1)[k1] · · · (1− Vd)[kd]. (3.29)

Using the construction above we define an OSPD
m [1/p]-linear transformation α on the finite projective

module ONPD
m and claim that α is an automorphism of ONPD

m . Indeed, let us first choose a presentation
ONPD

m ⊕ N ′ = (OSPD
m )r, for some r ∈ N. Then, on a chosen basis of (OSPD

m )r, we can define a linear
transformation β using (3.29) over ONPD

m and the identity on N ′. Note that the transformation β
preserves ONPD

m and we set detα = detβ, which is independent of the chosen presentation (see [Gol61,
Proposition 1.2]). Now by an argument similar to the proof of [Abh21, Lemma 4.43], it easily follows that
for someN ∈ N large enough, one can write pN detα = pN detβ ∈ 1+J [1]OSPD

m , in particular, we get that
detα is a unit in OSPD

m [1/p], so α defines an automorphism of ONPD
m (see [Gol61, Proposition 1.3]). Since

the formula considered in (3.29) converges in Dm, we conclude that the natural map OSPD
m ⊗R Dm →

OSPD
m ⊗A+

R
N [1/p], is surjective. Hence, (3.25) is bijective, proving the lemma.
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Recall that ODR is an R[1/p]-module equipped with an integrable connection and it is finite over
R[1/p] since we have an inclusion ODR ⊂ ODcris,R(V ) of R[1/p]-modules from (3.24). In particular, we
see that ODR is a finite projective module over R[1/p] by [Bri08, Proposition 7.1.2]. Moreover, ODR is
equipped with a Frobenius-semilinear operator φ. Now consider the following diagram:

OAPD
R,ϖ ⊗φm,R Dm OAPD

R,ϖ ⊗R ODR

OAPD
R,ϖ ⊗φm,A+

R
N [1/p] OAPD

R,ϖ ⊗A+
R
N [1/p],

1⊗φm

(3.25) ≀ (3.23)

∼

(3.30)

where the left vertical arrow is the extension along φm : OSPD
m → OAPD

R,ϖ of the isomorphism (3.25)
in Lemma 3.37 and the bottom horizontal isomorphism follows from an argument similar to [Abh21,
Lemma 4.46]. By the description of the arrows, it follows that the diagram is (φ,ΓR)-equivariant and
commutative. Taking ΓR-invariants of the diagram (3.30), we obtain an isomorphism of R[1/p]-modules
1⊗φm : R⊗φm,R[1/p] Dm

∼−→ ODR. In particular, it follows that the top horizontal arrow of (3.30) is an
isomorphism. Hence, we conclude that the right vertical arrow of (3.30) is bijective as well, in particular,
the comparison in (3.23) is an isomorphism compatible with the respective Frobenii, connections and
actions of ΓR. This finishes our proof.

Remark 3.38. Let us make an observation that will be useful for the proof of Theorem 5.6. In the
basis {dlog(X1), . . . , dlog(Xd)} of Ω1

R, let ∂A,i denote the ith component of the connection on OAPD
R,ϖ,

for 1 ≤ i ≤ d, and let ∂D,i denote the induced operator on ODR. Moreover, employing arguments similar
to [Abh23b, Lemmas 4.12, 5.17 & 5.18], we can show that, for 1 ≤ i ≤ d, the operator ∇i = (log γi)/t =
1
t

∑
k∈N(−1)k (γi−1)k+1

k+1 converges as a series of operators on OAPD
R,ϖ ⊗A+

L
N . Now, using (3.29) and the

top horizontal arrow in diagram (3.30), we note that for any x ∈ N [1/p], there exists w ∈ ODR and
z ∈ (Fil1OAPD

R,ϖ) ⊗A+
R
N [1/p], such that x = f(w) + z, where f is the isomorphism in (3.23). Then an

easy computation shows that ∇i(x)− f(∂D,i(w)) = ∇i(z) + ∂A,i(z) ∈ (Fil1OAPD
R,ϖ)⊗A+

R
N [1/p].

4. Crystalline implies finite height
The goal of this section is to prove the following claim:

Theorem 4.1. Let T be a finite free Zp-representation of GR such that V := T [1/p] is a p-adic crystalline
representation of GR. Then there exists a unique Wach module NR(T ) over A+

R attached to T . In other
words, T is of finite [p]q-height.

Proof. For a p-adic representation, the property of being crystalline and of finite [p]q-height is invariant
under twisting the representation by χr, where χ is the p-adic cyclotomic character and r ∈ N. Therefore,
we can assume that V is positive crystalline. Note that V is also a positive crystalline representation of
GL, and therefore, it is also positive and of finite [p]q-height as a p-adic representation of GL (see [Abh23a,
Definition 3.7]). In particular, we also get that T is positive and of finite [p]q-height as a Zp-representation
of GL. Moreover, associated to T , from loc. cit. we have the Wach module NL(T ) over A+

L and we set
NR(T ) := NL(T )∩DR(T ) ⊂ DL(T ) as an A+

R-module. From Proposition 4.7, the module NR(T ) satisfies
all the axioms of Definition 3.8 and Definition 3.20. Hence, it follows that NR(T ) is the unique Wach
module attached to T , or equivalently, T is of finite [p]q-height.

Remark 4.2. From Theorem 4.1, note that T is a Zp-representation of GL such that V := T [1/p] is
crystalline forGL. Then, from [Abh23a, Theorem 4.1] it follows T is of finite [p]q-height as a representation
of GL, i.e. there exists a unique Wach module NL(T ) over A+

L attached to T . Moreover, note that
A+
L ⊗A+

R
NR(T ) is also a Wach module over A+

L attached to T , where we use ΓL ∼−→ ΓR. Now, using
Proposition 4.12, we have that AL ⊗A+

R
NR(T ) ∼−→ AL ⊗AR

DR(T ) ∼−→ DL(T ) as étale (φ,ΓL)-modules
over AL. Hence, by the uniqueness of the Wach module attached to T over A+

L in [Abh23a, Lemma 3.9]
it follows that A+

L ⊗A+
R

NR(T ) ∼−→ NL(T ) as (φ,ΓL)-modules over A+
L .
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4.1. Consequences of Theorem 4.1. Let Repcris
Zp

(GR) denote the category of Zp-lattices inside
p-adic crystalline representations of GR. Then, by combining Theorem 3.34 and Theorem 4.1, we obtain
the following:

Corollary 4.3. The Wach module functor induces an equivalence of categories

Repcris
Zp

(GR) ∼−→ (φ,ΓR)-Mod[p]q
A+

R

T 7−→ NR(T ),

with a quasi-inverse given as N 7→ TR(N) :=
(
W

(
R
♭[1/p♭]

)
⊗A+

R
N

)φ=1.

Passing to associated isogeny categories, we obtain the following:

Corollary 4.4. The Wach module functor induces an exact equivalence of ⊗-categories Repcris
Qp

(GR) ∼−→
(φ,ΓR)-Mod[p]q

B+
R

, via V 7→ NR(V ), and with an exact ⊗-compatible quasi-inverse given as M 7→ VR(M) :=(
W

(
R
♭[1/p♭]

)
⊗A+

R
M

)φ=1.

Proof. The equivalence of categories follows from Theorem 4.1. For the rest of the proof, let us remark that
for a p-adic crystalline representation V ofGR, from Proposition 4.7, we have NR(V ) = NL(V )∩DR(V ) ⊂
DL(V ) as finite projective (φ,ΓR)-modules over B+

R . Moreover, from Proposition 4.12 and Remark 4.2,
note that B+

L ⊗B+
R

NR(V ) ∼−→ NL(V ) and BR⊗B+
R

NR(V ) ∼−→ DR(V ) compatible with resepctive natural
actions of (φ,ΓR).

Now, let V1 and V2 be two crystalline representations of GR, then V1 ⊗Qp V2 is again crystalline (see
[Bri08, Théorèm 8.4.2]). We have

NR(V1)⊗B+
R

NR(V2) = NR(V1)⊗B+
R

(NL(V2) ∩DR(V2))

= (NR(V1)⊗B+
R

NL(V2)) ∩ (NR(V1)⊗B+
R

DR(V2))

= (NL(V1)⊗B+
L

NL(V2)) ∩ (DR(V1)⊗B+
L

DR(V2))

= NL(V1 ⊗Qp V2) ∩DR(V1 ⊗Qp V2) = NR(V1 ⊗ V2),

where the first equality follows from the discussion above, the second equality follows since NR(V1) is
projective, the third equality again follows from the discussion above and the last equality follows from
[Abh23a, Corollary 4.3] and (2.8). This shows the compatibility of NR with tensor products. Conversely,
letN1 andN2 be two Wach modules overA+

R and setN3 := (N1⊗A+
R
N2)/(p-torsion) as a finitely generated

A+
R-module. Then, note that we have N3 ⊂ N3[1/p] = N1[1/p] ⊗B+

R
N2[1/p], where the right-hand term

is a projective B+
R -module. Therefore, N3 is torsion free and by definition N3/µ is also p-torsion free,

in particular, the sequence {p, µ} is strictly N3-regular by Remark 3.2. Furthermore, assumptions for
the (φ,ΓR)-action on N3, as in Definition 3.8, can be verified similar to [Abh21, Proposition 4.14]. So it
follows that N3 is a Wach module over A+

R. Since, N3[1/p] = N1[1/p] ⊗B+
R
N2[1/p], compatibility of the

functor VR with tensor products now follows from (2.8).
It remains to show the exactness of NR since exactness of the quasi-inverse functor VR follows from

Proposition 3.15 and the exact equivalence in (2.8). So, let us consider an exact sequence of p-adic
crystalline representations of GR as 0→ V1 → V2 → V3 → 0, and we wish to show that the sequence

0 −→ NR(V1) −→ NR(V2) −→ NR(V3) −→ 0, (4.1)

is exact. Let T2 ⊂ V2 be a GR-stable Zp-lattice, then T1 := V1 ∩ T2 ⊂ V2 is a GR-stable Zp-lattice inside
V1 and set T3 := T2/T1 ⊂ V3 as a GR-stable Zp-lattice. By definition, we have Wach modules NR(T1),
NR(T2) and NR(T3) and we set N := NR(T2)/NR(T1) as a finitely generated A+

R-module equipped with
a Frobenius φ : N [1/µ] → N [1/φ(µ)] and a continuous action of ΓR induced from the corresponding
structures on NR(T2). We claim that N [1/p] ∼−→ NR(V3) as (φ,ΓR)-modules over B+

R .
Indeed, first recall that DR is an exact functor from the category of Zp-representations ofGR to the cat-

egory of étale (φ,ΓR)-modules overAR (see §2.6). So we get that the natural mapN = NR(T2)/NR(T1)→
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NR(T3) is injective, and since A+
R → AR is flat, therefore, we have AR ⊗A+

R
N

∼−→ DR(T2)/DR(T1) ∼−→
DR(T3) ∼←− AR ⊗A+

R
NR(T3) as étale (φ,ΓR)-modules over AR. Moreover, since φ : A+

R → A+
R is flat,

therefore, using the finite [p]q-height property of NR(T1) and NR(T2), we get thatN is of finite [p]q-height,
i.e. 1⊗ φ : (φ∗N)[1/[p]q] ∼−→ N [1/[p]q]. In particular, N [1/p] is finite projective over B+

R by Proposition
A.1. Next, for i ∈ {1, 2, 3}, considering Vi as a p-adic crystalline representation of GL, from [Abh23a,
Corollary 4.3], we have an exact sequence 0→ NL(V1)→ NL(V2)→ NL(V3)→ 0 of Wach modules over
B+
L = A+

L [1/p]. Note that the natural map B+
R → B+

L is flat, so we get that B+
L ⊗B+

R
N [1/p] ∼−→ NL(V3)

as (φ,ΓL)-modules over B+
L . Moreover, from Remark 4.2, we have that B+

L ⊗B+
R

NR(Vi) ∼−→ NL(Vi),
for i ∈ {1, 2, 3}. Now, since N [1/p] is finite projective over B+

R , therefore, as submodules of DL(V3), we
obtain an isomorphism of (φ,ΓR)-modules over B+

R as follows:

N [1/p] = (B+
L ⊗B+

R
N [1/p]) ∩ (BR ⊗B+

R
N [1/p]) ∼−→ NL(V3) ∩DR(V3) ∼←− NR(V3).

Hence, (4.1) is exact, concluding our proof.

We obtain applications of Theorem 4.1 as follows:

Theorem 4.5. Let V be a p-adic representation of GR. Then the following are equivalent:

(1) V is crystalline as a representation of GR;

(2) V is crystalline as a representation of GL;

(3) rkR[1/p]ODcris,R(V ) = dimQp V .

Proof. Let V ∈ Repcris
Qp

(GR), then obviously we have that V ∈ Repcris
Qp

(GL). Conversely, let V ∈
Repcris

Qp
(GL) and choose a GR-stable Zp-lattice T ⊂ V such that T is of finite [p]q-height as a repre-

sentation of GL. Then, using Proposition 4.7, note that T is of finite [p]q-height as a representation of GR.
Therefore, V = T [1/p] is a crystalline representation of GR by Theorem 3.34. This shows the equivalence
of (1) and (2).

Next, if V ∈ Repcris
Qp

(GR), then rkR[1/p]ODcris,R(V ) = dimQp V (see §2.6), proving that (1) implies
(3). So it remains to show that (3) implies (2). Let V be a p-adic representation of GR such that
rkR[1/p]ODcris,R(V ) = dimQp V . From [Bri06, §3.3] recall that V is crystalline for GL if and only if
dimLODcris,L(V ) = dimQp V . So we will show that dimLODcris,L(V ) = dimQp V by constructing a nat-
ural isomorphism of L-vector spaces L ⊗R[1/p] ODcris,R(V ) ∼−→ ODcris,L(V ). Since dimLODcris,L(V ) ≤
dimQp V , it is enough to construct a natural L-linear injective map L⊗R[1/p] ODcris,R(V )→ ODcris,L(V )
and the claim would follow by considering L-dimensions.

From Remark 2.16, note that we have a natural (φ,GR)-equivariant L-linear injective map L⊗R[1/p]
OBcris(R) → ∏

p∈S OBcris(C+(p)). Tensoring this map with V and considering the diagonal action of
GR, we obtain a (φ,GR)-equivariant injective map

L⊗R[1/p] OBcris(R)⊗Qp V −→
( ∏
p∈S

OBcris(C+(p))
)
⊗Qp V =

∏
p∈S

(OBcris(C+(p))⊗Qp V ). (4.2)

The map in (4.2) further induces a natural map L ⊗R[1/p] OBcris(R) ⊗Qp V → OBcris(C+(p)) ⊗Qp V ,
compatible with the respective Frobenii, filtrations and connections (see Remark 2.16). Now, we take the
GR-invariant part of (4.2) and note that product commutes with the left exact functors, in particular,
with taking GR-invariants. So we obtain φ-equivariant L-linear injective maps

L⊗R[1/p] ODcris,R(V ) −→
( ∏
p∈S

OBcris(C+(p))⊗Qp V
)GR

=
∏
p∈S

(OBcris(C+(p))⊗Qp V )GR

−→
∏
p∈S

(OBcris(C+(p))⊗Qp V )GR(p),

(4.3)
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where note that the last arrow is injective since GR(p) ⊂ GR is a subgroup. Moreover, since GR acts
transitively on S , it transitively permutes the components of ∏

p∈S(OBcris(C+(p)) ⊗Qp V )GR(p), i.e. if
0 ̸= x ∈ L⊗R[1/p] ODcris,R(V ), then its image (xp)p∈S under the composition (4.3) satisfies that xp ̸= 0,
for all p ∈ S . Therefore, for each p ∈ S , composing (4.3) with the natural φ-equivariantL-linear projection∏

p∈S(OBcris(C+(p)) ⊗Qp V )GR(p) → (OBcris(C+(p)) ⊗Qp V )GR(p) gives a natural φ-equivariant L-linear
injective map

L⊗R[1/p] ODcris,R(V ) −→ (OBcris(C+(p))⊗Qp V )GR(p), (4.4)

compatible with the respective Frobenii, filtrations and connections (see above and Remark 2.16), where
the left-hand term is equipped with the tensor product Frobenius, the filtration on ODcris,R(V ) and
natural connection.

Finally, from Lemma 2.13, recall that we have a natural L-linear (φ, ĜR(p))-equivariant injective
map OBcris(C+(p))→ OBcris(C+

p ) compatible with respective filtrations and connections and where the
ĜR(p)-action on the left term factors through ĜR(p) ↠ GR(p). Tensoring the preceding injective map
with V , equipping each term with the diagonal action of ĜR(p) and taking ĜR(p)-invariants produces a
natural L-linear injective map (OBcris(C+(p))⊗QpV )GR(p) → ODcris,L(V ), compatible with the respective
Frobenii, filtrations and connections. Composing (4.4) with the preceding L-linear map gives a natural
L-linear injective map

L⊗R[1/p] ODcris,R(V ) −→ ODcris,L(V ), (4.5)

compatible with the respective Frobenii, filtrations and connections. By considering L-dimensions, it
follows that (4.5) is bijective (see Corollary 4.6 for a stronger statement). Hence, dimLODcris,L(V ) =
rkR[1/p]ODcris,R(V ) = dimQp V , showing that (3) implies (2). This concludes our proof.

Corollary 4.6. Let V be a p-adic representation of GR. Under the equivalent conditions of Theorem
4.5, the map in (4.5) induces a natural isomorphism of filtered (φ, ∂)-modules over L.

Proof. Assume that V is a crystalline representation of GR, so that we have a natural OBcris(R)-linear
isomorphism OBcris(R)⊗R[1/p] ODcris(V ) ∼−→ OBcris(R)⊗Qp V , compatible with the respective Frobenii,
filtrations, connections and GR-actions (see [Bri08, Proposition 8.4.3]). For any p ∈ S , by base changing
the preceding isomorphism along the composition OBcris(R)→ ∏

p∈S OBcris(C+(p))→ OBcris(C+(p))→
OBcris(C+

p ), we get a OBcris(C+
p )-linear isomorphism

OBcris(C+
p )⊗R[1/p] ODcris(V ) ∼−→ OBcris(C+

p )⊗Qp V, (4.6)

compatible with the respective Frobenii, filtrations, connections and ĜR(p)-actions. In (4.6), by taking
ĜR(p)-invariants we get (4.5), i.e. L ⊗R[1/p] ODcris,R(V ) ∼−→ ODcris,L(V ), and by construction, the
preceding isomorphism is compatible with the respective Frobenii, filtrations and connections. Hence,
the claim follows.

4.2. Main ingredients for the proof of Theorem 4.1. In this subsection, let T be a finite
free Zp-representation of GR such that T is a finite [p]q-height representation of GL (see Definition 3.20
and [Abh23a, Definition 3.7]). In particular, we can attach to T a (φ,ΓR)-module DR(T ) over AR, as
well as, a Wach module NL(T ) over A+

L . Our goal is to prove the following claim:

Proposition 4.7. The A+
R-module NR(T ) := NL(T ) ∩ DR(T ) ⊂ DL(T ) satisfies all the axioms of

Definition 3.20. In particular, T is a finite [p]q-height representation of GR.

Proof. It is immediate that NR(T ) is p-torsion free and µ-torsion free. From Lemma 4.8 and its proof,
note that NR(T ) is finitely generated over A+

R and we have that NR(T )/p ⊂ (NL(T )/p) ∩ (DR(T )/p) ⊂
DL(T )/p, in particular, NR(T )/p is µ-torsion free. Next, from Lemma 4.9, we know that NR(T ) is of
finite [p]q-height, i.e. the cokernel of the injective map 1⊗φ : φ∗(NR(T ))→ NR(T ) is killed by [p]sq, where
s is the height of NL(T ). Furthermore, from Proposition 4.12 we have that AR ⊗A+

R
NR(T ) ∼−→ DR(T ).

Finally, recall that the action of ΓL is trivial on NL(T )/µNL(T ) and ΓL ∼−→ ΓR, so for any g ∈ ΓR, we
have (g − 1)NL(T ) ⊂ µNL(T ). Therefore, we get that (g − 1)NR(T ) ⊂ (µNL(T )) ∩DR(T ) = µNR(T ),
so it follows that ΓR acts trivially on NR(T )/µNR(T ). This concludes our proof.
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Lemma 4.8. The A+
R-module NR(T ) := NL(T ) ∩DR(T ) is finitely generated.

Proof. We first claim that for each n ∈ N≥1, the natural A+
R/p

n-linear map NR(T )/pn → (NL(T )/pn) ∩
(DR(T )/pn) ⊂ DL(T )/pn is injective and the intersection (NL(T )/pn)∩(DR(T )/pn) is a finitely generated
A+
R/p

n-module. Since NR(T ), NL(T ) and DR(T ) are p-torsion free, it is enough to show the claim for
n = 1 and the claim for n ≥ 1 can be deduced by an easy induction. So we are reduced to showing
that the natural map NR(T )/p → (NL(T )/p) ∩ (DR(T )/p) ⊂ DL(T )/p is injective and the module
(NL(T )/p) ∩ (DR(T )/p) is finitely generated over A+

R/p =: E+
R . Note that we have pNL(T ) ∩NR(T ) ↪→

pDL(T ) ∩ DR(T ) = pDR(T ), so we get that pNL(T ) ∩ NR(T ) ↪→ pNL(T ) ∩ pDR(T ) = pNR(T ), in
particular, NR(T )/p ↪→ NL(T )/p. Similarly, we have pDR(T ) ∩NR(T ) ↪→ pDL(T ) ∩NL(T ) = pNL(T ),
so we get that pDR(T ) ∩NR(T ) ↪→ pDR(T ) ∩ pNL(T ) = pNR(T ), in particular, NR(T )/p ↪→ DR(T )/p.

Next, we will show that (NL(T )/p)∩(DR(T )/p) is a finitely generatedE+
R -module. Assume thatDR :=

DR(T )/p is finite free (a priori it is finite projective) of rank h over ER := AR/p. Let e = {e1, . . . , eh}
be a basis of NL := NL(T )/p over E+

L := A+
L/p and f = {f1, . . . , fh} a basis of DR over ER. Then, for

EL := AL/p, we have f = Ae, for some A := (aij) ∈ GL(h,EL), and write A−1 = (bij) ∈ GL(h,EL). Set
M := ⊕hi=1E

+
Rfi, so that M [1/µ] = DR. Let x ∈M [1/µ] ∩NL and write x = ∑h

i=1 ciei = ∑h
i=1 difi with

ci ∈ E+
L and di ∈ ER, for all 1 ≤ i ≤ h. So we obtain that di = ∑h

j=1 bjicj , for all 1 ≤ i ≤ h. In particular,
for some k large enough, we have di ∈ µ−kE+

L , for all 1 ≤ i ≤ h. Note that µ−kE+
L ∩ ER = µ−kE+

R , so
we obtain that di ∈ µ−kE+

R . Hence, M [1/µ] ∩ NL ⊂ µ−kM , in particular, M [1/µ] ∩ NL = DR ∩ NL is
finitely generated over E+

R .
In general, when DR is finite projective, we choose an E+

R -module D′ such that DR ⊕ D′ = E⊕k
R ,

for some k ∈ N. Let D′
L := EL ⊗ER

DR, so we have that DL ⊕ D′
L = E⊕k

L . Note that since EL is a
field with ring of integers E+

L , therefore, we can choose a lattice of D′
L over E+

L , i.e. there exists a free
E+
L -submodule N ′

L ⊂ D′
L such that N ′

L[1/µ] = D′
L. So, we get that NL ⊕N ′

L is a free E+
L -module such

that EL ⊗E+
L

(NL ⊕N ′
L) = DL ⊕D′

L = E⊕k
L . Inside E⊕k

L , consider the inclusion of E+
R -modules

(DR ∩NL)⊕ (D′ ∩N ′
L) = (DR ⊕D′) ∩ (NL ⊕N ′

L) ⊂ E⊕k
R ∩ (NL ⊕N ′

L). (4.7)

Using the conclusion in the free case from the previous paragraph, we get that the last term in (4.7) is a
finite E+

R -module. Hence, DR ∩NL is also a finite E+
R -module, proving the claim.

To prove the lemma, it remains to show that NR(T ) is p-adically complete. Indeed, from the claim
above note that, for all n ∈ N≥1, NR(T )/pn is a finitely generated A+

R/p
n-module. Since A+

R is noetherian,
therefore, for each n ∈ N and k ∈ N as in the previous paragraph, we have a presentation 0 → Mn →
(A+

R/p
n)⊕k → NR(T )/pn → 0, where Mn is a finitely generated A+

R/p
n-module. By taking a finite

presentation of Mn as an A+
R/p

n-module, it is easy to see that the system {Mn}n∈N≥1 is Mittag-Leffler.
In particular, it follows that limn NR(T )/pn is a finitely generated module over limnA

+
R/p

n = A+
R. Now

consider the following natural A+
R-linear maps:

f : NR(T ) −→ lim
n

NR(T )/pn −→ lim
n

((NL(T )/pn) ∩ (DR(T )/pn))

−→ (lim
n

NL(T )/pn) ∩ (lim
n

DR(T )/pn)
∼−→ NL(T ) ∩DR(T ) = NR(T ),

where the first arrow is the natural projection map, the second arrow is injective by the claim proved
above, the third arrow is injective by definition and the fourth arrow is bijective since NL(T ) and DR(T )
are p-adically complete. Chasing an element of x ∈ NR(T ) through the composition, we see that f(x) = x.
Hence, we get that NR(T ) ∼−→ limn NR(T )/pn, in particular, it is a finitely generated A+

R-module.

Lemma 4.9. The A+
R-module NR(T ) is of finite [p]q-height, i.e. the cokernel of the injective map 1⊗φ :

φ∗(NR(T ))→ NR(T ) is killed by [p]sq, for some s ∈ N.

Proof. Note that φ : A+
R → A+

R is finite and faithfully flat of degree pd+1 (see §2.2). Moreover,
from §2.2 we have that φ∗(AR) ∼−→ A+

R ⊗φ,A+
R
AR and φ∗(A+

L ) := A+
L ⊗φ,A+

L
A+
L

∼−→ ⊕αφ(A+
L )uα =

(⊕αφ(A+
R)uα)⊗φ(A+

R) φ(A+
L ) ∼←− A+

R ⊗φ,A+
R
A+
L . Therefore, we also obtain that φ∗(NL(T )) := A+

L ⊗φ,A+
L
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NL(T ) ∼−→ A+
R ⊗φ,A+

R
NL(T ) and φ∗(DR(T )) := AR ⊗φ,AR

DR(T ) ∼−→ A+
R ⊗φ,A+

R
DR(T ). Hence, as

A+
R-submodules of φ∗(DL(T )), we have that

φ∗(NR(T )) := A+
R ⊗φ,A+

R
NR(T ) = A+

R ⊗φ,A+
R

(NL(T ) ∩DR(T ))

= (A+
R ⊗φ,A+

R
NL(T )) ∩ (A+

R ⊗φ,A+
R

DR(T )) ∼−→ φ∗(NL(T )) ∩ φ∗(DR(T )).

Since the cokernel of the injective map (1⊗φ) : φ∗(NL(T ))→ NL(T ) is killed by [p]sq, for some s ∈ N, and
(1⊗ φ) : φ∗(DR(T )) ∼−→ DR(T ), therefore, it easily follows that the cokernel of (1⊗ φ) : φ∗(NR(T )) →
NR(T ) is killed by [p]sq as well.

Finally, we will show that A+
L ⊗A+

R
NR(T ) ∼−→ NL(T ) and AR ⊗A+

R
NR(T ) ∼−→ DR(T ), using an

approach parallel to [DLMS22, Proposition 4.24 & Lemma 4.25]. For n ∈ N≥1, let NR,n := NR(T )/pn,
DR,n := DR(T )/pn, NL,n := NL(T )/pn, DL,n := DL(T )/pn and Mn := NL,n ∩DR,n ⊂ DL,n. Then have
the following commutative diagram,

Mn M1

DR,n DR,1,

fn

fn

where the vertical arrows are natural inclusions, the bottom horizontal arrow fn is the natural projection
map and the top arrow is the induced map. We have a similar diagram with the bottom row replaced by
NL,n ↠ NL,1.

Lemma 4.10. We have the following,

(1) Mn is a finitely generated A+
R/p

n-module and NR(T ) ∼−→ limnMn.

(2) Mn is of finite [p]q-height s, for s ∈ N as in Lemma 4.9.

(3) Mn[1/µ] = AR ⊗A+
R
Mn

∼−→ DR,n and A+
L ⊗A+

R
Mn

∼−→ NL,n.

Proof. The claim in (1) follows from the proof of Lemma 4.8 and the claim in (2) follows similar to Lemma
4.9. As the maps A+

R → AR and A+
R → A+

L are flat, the last claim follows from the following equalities:

AR ⊗A+
R
Mn = (AR ⊗A+

R
DR,n) ∩ (AR ⊗A+

R
NL,n) = (AR ⊗A+

R
DR,n) ∩ (A+

L ⊗A+
R
DR,n) = DR,n,

A+
L ⊗A+

R
Mn = (A+

L ⊗A+
R
DR,n) ∩ (A+

L ⊗A+
R
NL,n) = (AR ⊗A+

R
NL,n) ∩ (A+

L ⊗A+
R
NL,n) = NL,n.

Hence, the lemma is proved.

Let S denote the set of A+
R-submodules M ′ ⊂ M1 such that M ′ is stable under the action of φ, it is

of finite [p]q-height s and M ′[1/µ] = M1[1/µ] = DR,1 = DR(T )/p. Set M◦ := ∩M ′∈SM
′ ⊂M1.

Lemma 4.11. The A+
R-module M◦ belongs to S and fn(Mn) is also in S, for all n ∈ N≥1.

Proof. The idea of the proof is motivated from [DLMS22, Lemma 4.25]. Let M ′ be an element of S . For
the first claim, we need to show that there exists r ∈ N such that µrM1 ⊂M ′ ⊂M1. Let M ′′ := M1/M

′

such that M ′′ ̸= 0 and let k = p(p − 1)s ∈ N. Also, let φ∗(M ′′) := φ∗(M1)/φ∗(M ′) and let 1 ⊗ φM ′′ :
φ∗(M ′′) → M ′′ denote the map induced from 1 ⊗ φM . Since M1 (resp. M ′) is of finite [p]q-height k
(since s < k), we define ψM : M1

µk

−→ µkM1 → φ∗(M1) (resp. ψM ′ : M ′ µk

−→ µkM ′ → φ∗(M ′)) to be
the unique A+

R/p-linear map such that ψM ◦ (1 ⊗ φM ) = µkIdφ∗
M

(resp. ψM ′ ◦ (1 ⊗ φM ′) = µkIdφ∗
M′ ).

Let ψM ′′ : M ′′ → φ∗(M ′′) denote the map induced from ψM . Now, consider the following commutative
diagram:
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0 φ∗(M ′) φ∗(M1) φ∗(M ′′) 0

0 M ′ M1 M ′′ 0

0 φ∗(M ′) φ∗(M1) φ∗(M ′′) 0.

1⊗φM′ 1⊗φM 1⊗φM′′

ψM′ ψM ψM′′

Note that [p]q = µp−1 mod p, φ(µ) = µp mod p and φ([p]q) = µp(p−1) mod p. Since M1[1/µ] =
M ′[1/µ], let i ∈ N≥1 such that µpiM ′′ = 0 and µp(i−1)M ′′ ̸= 0. Let x ∈ M ′′ such that µpix ̸= 0 and set
y = 1⊗ x ∈ φ∗(M ′′). Then φ(µpi)y = 1⊗ µpix = 0, but µp2(i−1)y = φ(µp(i−1))y = 1⊗ µp(i−1)x ̸= 0. Let
z = (1 ⊗ φM ′′)y ∈ M ′′, then µpiz = 0. So we have 0 = ψM ′′(µpiz) = µpi(ψM ′′ ◦ (1 ⊗ φM ′′)y) = µpi+ky.
Therefore, we get that pi+k = pi+ p(p− 1)s > p2(i− 1), i.e. i < s+ p

p−1 . Hence, µs+1M ′′ = 0. Since the
constant obtained is independent of M ′, we also get that µs+1M1 ⊂M◦ ⊂M1 and M◦[1/µ] = M1[1/µ].

Next, we will show that M◦ is of finite height s. Let x ∈ M◦, so that x ∈ M ′ for each M ′ ∈ S and
there exists some y ∈ φ∗(M ′) ⊂ φ∗(M1) such that (1⊗φ)y = [p]sqx. Note that y is unique in φ∗(M1) and
since φ : A+

R → A+
R is flat, we get that y ∈ ∩M ′∈S(A+

R ⊗φ,A+
R
M ′) = A+

R ⊗φ,A+
R

(∩M ′∈SM
′) = φ∗(M◦).

Therefore, we concldue that M◦ ∈ S .
For the second part of the claim note that Mn[1/µ] = DR,n and fn(DR,n) = DR,n/p = DR(T )/p (see

Lemma 4.10). So we get that fn
(
Mn[1/µ]

)
= DR(T )/p and we are left to show that fn(Mn) is of finite

height s. Note that we have a commutative diagram with exact rows:

0 φ∗(kernel) φ∗(Mn) φ∗(fn(Mn)) 0

0 kernel Mn fn(Mn) 0.

1⊗φ 1⊗φ 1⊗φ
fn

The rightmost vertical arrow is injective since fn(Mn) ⊂ DR,n and the cokernel of the middle vertical
arrow is killed by [p]sq (see Lemma 4.10). Hence, the cokernel of the rightmost vertical arrow is also killed
by [p]sq. This concludes our proof.

Proposition 4.12. The natural inclusion NR(T ) ⊂ DR(T ) extends to a (φ,ΓR)-equivariant isomor-
phism AR ⊗A+

R
NR(T ) ∼−→ DR(T ).

Proof. Since everything is p-adically complete and DR(T ) and NR(T ) are p-torsion free, it is enough to
show the claim modulo p. Recall that we have NR(T )/p ⊂ M1 = DR(T )/p ∩NL(T )/p ⊂ DL(T )/p and
from Lemma 4.11 we have M◦ ⊂ NR(T )/p. Therefore, we get that DR(T )/p = M◦[1/µ] ⊂ AR/p⊗A+

R/p

NR(T )/p ⊂M1[1/µ] = DR(T )/p.

5. Wach modules and q-connections

In this section we will interpret Wach modules over A+
R (resp. B+

R) as modules with q-connection and
show that Wach modules over B+

R can be seen as q-deformation of filtered (φ, ∂)-modules over R[1/p],
coming from p-adic crystalline representations of GR (see Theorem 5.6). For our definitions, we will follow
[MT20, §2], with slight modifications.

5.1. Formalism on q-connection. Let D be a commutative ring and consider a D-algebra A

equipped with d commuting D-algebra automorphisms γ1 . . . , γd, i.e. an action of Zd. Moreover, fix an
element q ∈ D such that q−1 is a nonzerodivisor of D and γi = 1 mod (q−1)A, for all 1 ≤ i ≤ d. Assume
that we have units U1, . . . , Ud ∈ A× such that γi(Uj) = qUj , if i = j or Uj if i ̸= j. We fix these choices
for the rest of the section.

Definition 5.1 ([MT20, Definition 2.1]). Let qΩ•
A/D := ⊕dk=0qΩk

A/D be a differential graded D-algebra
defined as:

• qΩ0
A/D := A and qΩ1

A/D is a free left A-module on formal basis elements dlog(Ui).
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• The right A-module structure on qΩ1
A/D is twisted by the rule dlog(Ui) · f = γi(f)dlog(Ui).

• dlog(Ui)dlog(Uj) = −dlog(Uj)dlog(Ui) if i ̸= j and 0 if i = j.

• The following map is an isomorphism of A-modules:

⊕i∈Ik
A

∼−→ qΩk
A/D

(fi) 7−→
∑

i∈Ik
fidlog(Ui1) · · · dlog(Uik),

where Ik = {i = (i1, . . . , ik) ∈ Nk such that 1 ≤ i1 < · · · < ik ≤ d}.

• The 0th differential dq : A→ Ω1
A/D is given as f 7→∑d

i=1
γi(f)−f
q−1 dlog(Ui).

• The elements dlog(Ui) ∈ qΩ1
D/A are cocycles, for all 1 ≤ i ≤ d.

The data dq : A→ qΩ1
A/D forms a differential ring over D, i.e. qΩ1

A/D is a D-bimodule and dq is D-linear
satisfying the Leibniz rule dq(fg) = dq(f)g + fdq(g) (see [And01, §II.1.2.1]).

Definition 5.2 ([MT20, Definition 2.2]). A module with q-connection over A is a right A-module N
equipped with a D-linear map ∇q : N → N ⊗A qΩ1

A/D satisfying the Leibniz rule ∇q(xf) = ∇q(x)f +x⊗
dq(f), for all f ∈ A and x ∈ N . The q-connection ∇q extends uniquely to a map of graded D-modules
∇q : N ⊗A qΩ•

A/D → N ⊗A qΩ•+1
A/D satisfying ∇q((n⊗ω) ·ω′) = ∇q(n⊗ω) ·ω′ + (−1)deg ω(n⊗ω) · dq(ω′).

The q-connection ∇q is said to be flat or integrable if ∇q ◦ ∇q = 0.

Now, assume that D is equipped with an endomorphism φ : D → D such that it is a lift of the absolute
Frobenius on D/pD and φ(q) = qp. Further, assume that A is equipped with a compatible (with φ on
D) endomorphism φ : A→ A such that it is a lift of the absolute Frobenius on A/p and commutes with
the action of γ1, . . . , γd on A. The endomorphism φ induces an endomorphism φΩ on qΩ1

A/D given as
φΩ(∑d

i=1 fidlog(Ui)) = [p]q
∑d
i=1 φ(fi)dlog(Ui). In particular, from [MT20, Lemma 2.12] the following

diagram commutes

A qΩ1
A/D

A qΩ1
A/D.

dq

φ φΩ

dq

It follows that given a q-connection (N,∇q) we can define the base change via Frobenius, of the q-connection,
denoted φ∗∇q on φ∗N := N ⊗A,φ A, as

φ∗∇q : φ∗N −→ N ⊗A,φ qΩ1
A/D = φ∗N ⊗ qΩ1

A/D

x⊗ f 7−→ (1⊗ φΩ)(∇q(x)) · f + n⊗ dq(f).

A φ-module with q-connection is a pair (N,∇q) as above equipped with an A-linear isomorphism φN :
(φ∗N)[1/[p]q] ∼−→ N [1/[p]q] such that the following diagram commutes:

(φ∗N)[1/[p]q] (φ∗N)[1/[p]q]⊗ qΩ1
A/D

N [1/[p]q] N [1/[p]q]⊗ qΩ1
A/D.

φ∗∇q

φN φN ⊗1
∇q

(5.1)

5.2. Wach modules as q-deformations. In this subsection, we take D := OF JµK, A := A+
R

equipped with the action of ΓR and {γ1, . . . , γd} as topological generators of Γ′
R, the geometric part of

ΓR (see §2). Then, by setting q := 1 + µ and Ui := [X♭
i ], for 1 ≤ i ≤ d, we have γi = 1 mod µA+

R,
for all 1 ≤ i ≤ d. In particular, A+

R satisfies the hypotheses of Definition 5.1. Moreover, the Frobenius
endomorphism on A+

R extends the Frobenius on D given by identity on Zp and φ(µ) = (1 + µ)p − 1.
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Furthermore, in this case, qΩ1
A+

R/D
identifies with Ω1

A+
R/D

given as (p, µ)-adic completion of the module of
Kähler differentials of A+

R with respect to D.
Note that we have a Frobenius-equivariant isomorphism of ringsA+

R/µ
∼−→ R, so from [MT20, Remarks

2.4 & 2.10], reduction modulo q − 1 of the differential ring dq : A+
R → Ω1

A+
R/D

is the usual de Rham
differential d : R → Ω1

R. Similarly, the reduction modulo q − 1 of a module with q-connection over A+
R

(Definition 5.2) is an R-module with connection. We say that a q-connection is (p, [p]q)-adically quasi-
nilpotent (equivalently, (p, q − 1)-adically quasi-nilpotent) if ∇q mod q − 1 is p-adically quasi-nilpotent.

Proposition 5.3. Let N be a Wach module over A+
R. Then the geometric q-connection

∇q : N −→ N ⊗A+
R

Ω1
A+

R/D

x 7−→
d∑
i=1

γi(x)−x
µ dlog([X♭

i ]),

describes (N,∇q) as a φ-module equipped with a (p, [p]q)-adically quasi-nilpotent flat q-connection over
A+
R.

Proof. Flatness of the q-connection ∇q follows from the first part of the proof of [MT20, Proposition
2.6]. Moreover, from Definition 3.8 and Lemma 3.10, note that we have φ⊗ 1 : (N ⊗A+

R,φ
A+
R)[1/[p]q] ∼−→

N [1/[p]q]. So we get that the pair (N,∇q) is a φ-module equipped with a q-connection overA+
R. Moreover,

since the action of φ and Γ′
R commute on N , therefore, it follows that the corresponding diagram (5.1)

is commutative. Now, from the commutativity of the action of φ and ΓR and the diagram (5.1), note
that we have ∇q ◦ φ = [p]q∇q ◦ φ. Frurthermore, from the Frobenius finite height condition on N , we
have that for any x in N , there exists r ∈ N large enough, such that [p]rqx belongs to φ∗(N). So, using
the relation ∇q ◦ φ = [p]q∇q ◦ φ and the fact that [p]q = p mod q − 1, we see that ∇kq ([p]rqx) mod q − 1
converges p-adically to 0 as k → +∞. Hence, it follows that ∇kq (x) = [p]−rq ∇q([p]rqx) modulo q − 1
converges p-adically to 0, i.e. ∇q is (p, [p]q)-adically quasi-nilpotent. This concludes our proof.

Remark 5.4. In Proposition 5.3 we call the q-connection “geometric” because in the definition we only
use the geometric part of ΓR, i.e. Γ′

R.

Remark 5.5. From §3.6 recall that we have the ring APD
R,ϖ ⊂ Acris(R∞) stable under the Frobenius and

the action of ΓR. For R = OF , we denote the aforementioned ring, i.e. APD
F,ϖ by DPD and for general R,

we denote it by APD := APD
R,ϖ (we do not use D and A for these rings to avoid conflict with assumptions

at the beginning of this subsection). Then, it is easy to see that the hypotheses of Definition 5.1 are
satisfied for DPD, APD with ΓR-action and Ui := [X♭

i ]. Now, given a Wach module N over A+
R, similar to

Propostion 5.3, one can show that for NPD := APD ⊗A+
R
N , the q-connection

∇q : NPD −→ NPD ⊗APD Ω1
APD/DPD , x 7−→

∑d
i=1

γi(x)−x
µ dlog([X♭

i ]),

describes (NPD,∇q) as a φ-module equipped with a p-adically quasi-nilpotent flat q-connection over APD.
Set ∇q,i := (γi − 1)/µ, for 1 ≤ i ≤ d. Furthermore, employing arguments similar to [Abh23b, Lemmas
4.12, 5.17 & 5.18] we can show that for 1 ≤ i ≤ d, the operator ∇i := (log γi)/t = 1

t

∑
k∈N(−1)k (γi−1)k+1

k+1
converges as a series of operators on NPD. So using the explicit formulas described above, it is easy to
see that for any x ∈ N , we have ∇q,i(x) −∇i(x) = (γi−1

µ − log γi
t )(x) ∈ (Fil1APD) ⊗A+

R
N , since t/µ is a

unit in APD by [Abh21, Lemma 3.14].

We are now ready to state the main result of this section. Let N be a Wach module over A+
R equipped

with a q-connection as in Proposition 5.3 and a Nygaard filtration as in Definition 3.24. Then, from
the discussion preceding Proposition 5.3, we note that N/µN is a φ-module over R equipped with a
p-adically quasi-nilpotent flat connection and a filtration Filk(N/µN) given as the image of FilkN under
the surjection N ↠ N/µN . Using Reamrk 3.26 note that the connection on N/µN satisfies Griffiths
transversality with respect to the filtration, i.e. ∇(Filk(N/µN)) ⊂ Filk−1(N/µN) ⊗ Ω1

R. We equip
N [1/p]/µN [1/p] = (N/µN)[1/p] with the induced structures, in particular, we note that it is a filtered
(φ, ∂)-module over R[1/p].
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Theorem 5.6. Let N be a Wach module over A+
R and V := TR(N)[1/p] the associated crystalline rep-

resentation from Theorem 3.34. Then we have (N/µN)[1/p] ∼−→ ODcris,R(V ) as filtered (φ, ∂)-modules
over R[1/p].

Proof. For r ∈ N large enough, note that the Wach module µrN(−r) is always effective and we have that
TR(µrN(−r)) = TR(N)(−r) (the twist (−r) denotes a Tate twist on which ΓR acts via χ−r, where χ
is the p-adic cyclotomic character). Therefore, it is enough to show both the claims for effective Wach
modules. So we assume that N is effective and set M := N [1/p] equipped with an induced action
of ΓR, a Frobenius-semilinear operator φ and the Nygaard filtration. It follows that the finite projec-
tive R[1/p]-module M/µM is equipped with a Frobenius-semilinear operator φ, induced from M . Note
that [p]q = p mod µA+

R, therefore, we have 1⊗ φ : φ∗(M/µM) ∼−→M/µM . Furthermore, the filtration
Filk(M/µM) is defined to be the image of FilkM under the surjective mapM ↠M/µM . Next, from The-
orem 3.34, we have the R[1/p]-module ODR := (OAPD

R,ϖ⊗A+
R
M)ΓR equipped with a Frobenius-semilinear

operator φ and a connection, and an R[1/p]-linear isomorphism ODR
∼−→ ODcris,R(V ) compatible with

the respective Frobenii and connections (see (3.22) in Theorem 3.34). So, let us consider the following
diagram with exact rows

0 µM M M/µM 0

0 (Fil1OAPD
R,ϖ)⊗A+

R
M OAPD

R,ϖ ⊗A+
R
M R[ϖ]⊗R (M/µM) 0

0 (Fil1OAPD
R,ϖ)⊗R ODR OAPD

R,ϖ ⊗R ODR R[ϖ]⊗R ODR 0.

≀ ≀ (3.23) ≀

Note that (Fil1OAPD
R,ϖ⊗A+

R
M)∩M = (Fil1OAPD

R,ϖ ∩A
+
R)⊗A+

R
M = µM . Then, from the exactness of the

second row, it follows that the vertical maps from the first to the second row are natural inclusions. The
middle vertical arrow from the third to the second row is the isomorphism (3.23) in Proposition 3.35 from
which it follows that the left vertical arrow is an isomorphism as well. In particular, we get that the right
vertical arrow is also an isomorphism. Taking the Gal(R[1/p][ϖ]/R[1/p]) = Gal(F (ζp)/F )-invariants of
the right vertical arrows gives a natural isomorphism

ODR
∼−→M/µM, (5.2)

compatible with the respective Frobenii and we claim that it is compatible with the respective connections
as well. Indeed, note that the connection on M/µM is obtained by first reducing, the q-connection ∇q
on N , modulo µ = q − 1 and then inverting p. On the other hand, the connection ∂D on ODR =
(OAPD

R,ϖ ⊗A+
R
M)ΓR is induced from the natural APD

R,ϖ-linear connection on OAPD
R,ϖ. Let ∇q,i and ∂D,i

respectively denote the ith component of the q-connection on N and the connection on ODR. Now
take x in M , and note that from Remark 3.38 there exists some w in OAPD

R,ϖ ⊗R ODR such that x =
f(w) mod (Fil1OAPD

R,ϖ) ⊗A+
R
M , where f is the isomorphism in (3.23). Then it follows that to check

the compatibility of the isomorphism ODR
∼−→ M/µM with connections, it is enough to show that

∇q,i(x)−f(∂D,i(w)) belongs to (Fil1OAPD
R,ϖ)⊗A+

R
M . From Remark 3.38 for∇i = (log γi)/t, we know that

∇i(x)−f(∂D,i(w)) is in (Fil1OAPD
R,ϖ)⊗A+

R
M . Furthermore, from Remark 5.5 we have that∇q,i(x)−∇i(x)

is in (Fil1OAPD
R,ϖ)⊗A+

R
M . Upon combining the two, we get that∇q,i(x)−f(∂Di(w)) is in (Fil1OAPD

R,ϖ)⊗A+
R

M , i.e. the isomorphism (5.2) is compatible with the respective connections.
Now, by composing the inverse of (5.2) with (3.22) from Theorem 3.34, we get isomorphisms

M/µM
∼−→ ODR

∼−→ ODcris,R(V ), (5.3)

compatible with the respective Frobenii and connections. By transport of structure, we equip ODR

with a filtration induced from the Hodge filtration on ODcris,R(V ). Then, by Lemma 5.7 we get that the
isomorphisms in (5.3) are further compatible with the respective filtrations. This allows us to conclude.

The following observation was used above:
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Lemma 5.7. Let N be a Wach module over A+
R, set M := N [1/p] and let V := TR(N)[1/p] denote the

associated crystalline representation of GR. Then the isomorphism f : M/µM
∼−→ ODcris,R(V ) from

Theorem 5.6 is compatible with filtrations, i.e. for each k ∈ Z, we have that

Filk(M/µM) ∼−→ FilkODcris,R(V ). (5.4)

Proof. For r ∈ N large enough, note that the Wach module µrN(−r) is always effective and we have
TR(µrN(−r)) = TR(N)(−r) (the twist (−r) denotes a Tate twist on which ΓR acts via χ−r, where χ is
the p-adic cyclotomic character). Therefore, it is enough to show the claim for effective Wach modules.
To avoid confusion, let us write NR := N , MR := M , NL := A+

L ⊗A+
R
NR (a Wach module over A+

L )
and ML := NL[1/p], equipped with the induced structures. From Lemma 3.28, note that the natural
map NR → NL induces natural maps grkMR → grkML and grk(MR/µMR) → grk(ML/µML), and
we claim that these are injective. Indeed, the injectivity of the first map follows from the discussion
after (3.16). For the second map, note that from Lemma 3.30 we have that grkMR

∼−→ grk(MR/µMR)
and grkML

∼−→ grk(ML/µML). So it follows that the natural map grk(MR/µMR) → grk(ML/µML) is
injective as well. In particular, inside ML/µML, we get that

Filk+1(MR/µMR) ∼−→ Filk(MR/µMR) ∩ Filk+1(ML/µML). (5.5)

Next, recall that we have the finite projective R[1/p]-module ODR := (OAPD
R,ϖ ⊗A+

R
MR)ΓR and

similarly we have the finite dimensional L-vector space ODL := (OAPD
L,ϖ ⊗A+

L
ML)ΓL , where the ring

OAPD
L,ϖ (depending on L) is analogous to OAPD

R,ϖ (see [Abh23a, §3.3] for precise definitions), and admits a
natural map OAPD

R,ϖ → OAPD
L,ϖ compatible with supplementary structures. From [Abh23a, Theorem 1.8

& Corollary 3.16], recall that we have isomorphisms of φ-modules ML/µML
∼−→ ODL

∼−→ ODcris,L(V )
over L (similar to (5.3)), and note that the constructions of loc. cit. are compatible with the constructions
of this paper. Now, consider the following diagram:

L⊗R[1/p] (MR/µMR) L⊗R[1/p] L⊗R[1/p] ODcris,R(V )

ML/µML ODL ODcris,L(V ),

∼

≀

∼
(3.22)

≀ (4.5)

∼ ∼

(5.6)

where the top row is (5.3) and the bottom row is as discussed above (see the proof of [Abh23a, Corollary
3.16] for details). In (5.6), the left and the middle vertical arrows are the natural maps. Then, by the
discussion above we see that the left square commutes. Moreover, as the top right and the bottom right
horizontal isomorphisms are induced by natural inclusions and the crystalline period rings over R and L
are compatible, therefore, it follows that the right square commutes as well. Furthermore, in (5.6), the
left vertical arrow is a filtered isomorphism by Lemma 3.31, the composition of the bottom arrows is a
filtered isomorphism by [Abh23a, Theorem 1.8] (see Remark 5.8 for another proof) and the right vertical
arrow is a filtered isomorphism by Corollary 4.6.

Note that the composition of the arrows in the top row of (5.6) is the isomorphism f : MR/µMR
∼−→

ODcris,R(V ) and we need to show that f induces the map in (5.4) and that the induced map is bijective. We
will proceed by induction on k, where the case k = 0 is trivial. So assume that f induces an isomorphism
Filk(MR/µMR) ∼−→ FilkODcris,R(V ), for some k ≥ 0. Then, by using (5.5), the filtered isomorphism
ML/µML

∼−→ ODcris,L(V ) and its compatibility with f (see (5.6)) and the induction assumption, it
follows that

Filk+1(MR/µMR) ∼−→ Filk(MR/µMR) ∩ Filk(ML/µML)
∼−→ FilkODcris,R(V ) ∩ Filk+1ODcris,L(V ) = Filk+1ODcris,R(V ),

where the terms of the last row are conatined in ODcris,L(V ) via the filtered isomorphism (4.5) (see
Corollary 4.6). Hence, it follows that (5.4) is bijective for each k ∈ Z. This allows us to conclude.

Remark 5.8. LetNL be a Wach module overA+
L and let T be the associated crystalline Zp-representation

of GL from [Abh23a, Theorem 1.6]. In [Abh23a, Theorem 1.8 & Corollary 3.16], we have shown that the
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natural isomorphism (NL/µNL)[1/p] ∼−→ ODcris,L(V ) is compatible with the respective filtrations. We
claim that the compatibility between filtrations can also be obtained by using the analogous result in
the perfect residue field case from [Ber04, Théorème III.4.4]. Indeed, consider the extension L̆/L with
perfect residue field from Remark 3.29. Then NL̆ := A+

L̆
⊗A+

L
NL is a Wach module over A+

L̆
and T is a

Zp-representation of GL̆. Set ML := NL[1/p], ML̆ := NL̆[1/p] and V := T [1/p]. Then from Remark 3.29,
Lemma 3.30 and Remark 3.32, it follows that inside ML̆/µML̆, we have that

Filk+1(ML/µML) ∼−→ Filk(ML/µML) ∩ Filk+1(ML̆/µML̆). (5.7)
Now, consider the following diagram:

L̆⊗L (ML/µML) L̆⊗L ODcris,L(V )

ML̆/µML̆ Dcris,L̆(V ),

∼

≀ ≀

∼

(5.8)

where the left vertical arrow is the natural map, the top horizontal arrow is induced from [Abh23a,
Equations (4.6) & (4.10)] and coincides the bottom row of (5.6) by [Abh23a, Equations (4.5), (4.11) &
(4.15)], the right vertical arrow is the natural isomorphism of filtered φ-modules over L̆ (see [Abh23a,
Equation (2.5)]) and the bottom horizontal arrow is the inverse of the natural isomorphism of filtered
φ-modules over L̆ from [Ber04, Théorème III.4.4]. The diagram commutes by the compatibilty between
the constructions of [Abh23a] and [Ber04] (more precisely, by using [Abh23a, Equations (4.6) & (4.14)]).
Now, note that to obtain the claim, it is enough to show that the top horizontal arrow of (5.8) induces
a map Filk(ML/µML) → FilkODcris,L(V ) and that the induced map is bijective. We will proceed by
induction on k, where the case k = 0 is trivial. So assume that the top horizontal arrow of (5.8) induces
an isomorphism Filk(MR/µMR) ∼−→ FilkODcris,R(V ), for some k ≥ 0. Then, by using (5.7), the filtered
isomorphism ML̆/µML̆

∼−→ Dcris,L̆(V ) from (5.8) and the induction assumption, it follows that

Filk+1(ML/µML) ∼−→ Filk(ML/µML) ∩ Filk(ML̆/µML̆)
∼−→ FilkODcris,L(V ) ∩ Filk+1Dcris,L̆(V ) = Filk+1ODcris,L(V ),

where the terms of the last row are conatined in Dcris,L̆(V ) via the right vertical filtered isomorphism in
(5.8). Hence, the claim follows.
Remark 5.9. The obvious variation of Theorem 5.6 also holds true in the imperfect residue field case. In-
deed, for OL, recall that all compatibilities except for the connection part was already proven in [Abh23a,
Corollary 3.15] (Remark 5.8 another proof of compatibility between filtrations). To verify the compati-
bility of connections, similar to Proposition 5.3, we can define a q-connection over a Wach module over
A+
L . Then, using the results of [Abh23a, §3.3], one obtains an obvious variation of Remark 5.5 over APD

L,ϖ.
Finally, proceeding exactly as in the proof of Theorem 5.6 (after replacing each object by analogous object
for L), we obtain the desired isomorphism of filtered (φ, ∂)-modules over L.

Let us summarise the relationship between various categories considered in (2.9), Corollary 4.4 and
Theorem 5.6. Recall that Repcris

Qp
(GR) is the category of p-adic crystalline representations of GR and

MFad
R (φ, ∂) denotes the essential image of the functor ODcris,R restricted to Repcris

Qp
(GR).

Corollary 5.10. Functors in the following diagram induce exact equivalence of ⊗-categories

Repcris
Qp

(GR) (φ,ΓR)-Mod[p]q
B+

R

MFad
R (φ, ∂).

NR

ODcris,R

VR

q 7→1OVcris,R

Proof. The exact equivalence induced by functors NR and VR is from Corollary 4.4 and the exact equiv-
alence induced by ODcris,R and OVcris,R is from [Bri08, Théorème 8.5.1]. Moreover, from Theorem 5.6,
note that for a Wach module M over B+

R we have M/(q− 1)M = M/µM
∼−→ ODcris,R(VR(M)). Hence,

from the preceding exact equivalence of ⊗-categories, it follows that the slanted arrow labelled “q 7→ 1”
is also an exact equivalence of ⊗-categories.
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A. Structure of φ-modules
We will use setup and notations from §1.4 and the rings defined in §2.2. Let q be an indeterminate and
recall that we have a Frobenius-equivariant isomorphism RJq − 1K ∼−→ A+

R, via the map Xi 7→ [X♭
i ] and

q 7→ 1 + µ. We will show the following structural result:

Proposition A.1. Let N be a finitely generated A+
R-module and suppose that N is equipped with a

Frobenius-semilinear endomorphism φ : N → N such that 1 ⊗ φ : φ∗(N)[1/[p]q] ∼−→ N [1/[pq]]. Then
N [1/p] is finite projective over B+

R .

Proof. The proof is essentially the same as [DLMS22, Proposition 4.13]. Compared to loc. cit., the
Frobenius endomorphism on A+

R and finite height assumption on N are different and we do not assume N
to be torsion free. However, one observes that torsion freeness of N is not used in the proof and one can
use [Abh23a, Lemma 2.14] and Lemma A.2 instead of [BMS18, Proposition 4.3] and [DLMS22, Lemma
4.12].

Lemma A.2. Let k be a perfect field of characteristic p and S := W (k)Ju1, . . . , umK equipped with a
Frobenius endomorphism φ extending the Witt vector Frobenius on W (k) such that φ(ui) ∈ S has zero
constant term for each 1 ≤ i ≤ m. Let A := SJq−1K equipped with a Frobenius endomorphism extending
the one on S by φ(q) = qp and let N be a finitely generated A-module equipped with a Frobenius-semilinear
endomorphism φ : N → N such that 1⊗φ : φ∗(N)[1/[p]q] ∼−→ N [1/[p]q]. Then N [1/p] is finite projective
over A[1/p].

Proof. The proof is essentially the same as [DLMS22, Lemma 4.12], except for a few changes. One
proceeds by induction on m. The case m = 0 follows from [Abh23a, Lemma 2.14], so let m ≥ 1. Take
J to be the smallest non-zero Fitting ideal of N over A. It suffices to show that JA[1/p] = A[1/p].
Compatibility of Fitting ideals under base change implies that JA[1/[p]q] = φ(J)A[1/[p]q] as ideals of
A[1/[p]q], therefore, (A/J)[1/[p]q] = (A/φ(J))[1/[p]q]. Let us assume JA[1/p] ̸= A[1/p] and we will show
a contradiction.

In our setting, the Frobenius endomorphism on A and the finite height condition are different from
[DLMS22, Lemma 4.12]. Therefore, we need some modifications in the arguments of loc. cit.; let us
point out the differences in terms of their notations. Let K = W (k)[1/p], fix K as an algebraic closure of
K. Consider the K-valued points of Spec (A[1/p]/J) and let Z = {(|u1|, . . . , |um|, |q − 1|) ∈ Rm+1}
be the corresponding set of (m + 1)-tuple norms. Define the set Z ′ = {(|u1|, . . . , |um|, |q − 1|) ∈
Rm+1 such that (|φ(u1), . . . |φ(um)|, |qp − 1|) ∈ Z} and take ζp − 1 as the chosen uniformiser. Then,
one proceeds as in loc. cit. to show that JA[1/p] ⊂ (u1, . . . , um, q − 1)A[1/p] and JA[1/p] ̸⊂ IA[1/p],
where I = (u1, . . . , um) ⊂ A[1/p].

Finally, consider the Frobenius-equivariant projection A → A = A/I = W (k)Jq − 1K and let J ⊂ A
denote the image of J . Since JA[1/p] ̸⊂ IA[1/p], we get that J ̸= 0. Moreover, JA[1/p] ̸= A[1/p] since
JA[1/p] ⊂ (u1, . . . , um, q−1)A[1/p]. However, the equality (A/J)[1/[p]q] = (A/φ(J))[1/[p]q] implies that
(A/J)[1/[p]q] = (A/φ(J))[1/[p]q], i.e. JA[1/p] = A[1/p] by inductive hypothesis (see [Abh23a, Lemma
2.14]). This gives a contradiction. Hence, we must have JA[1/p] = A[1/p], thus proving the lemma.
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