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ABSTRACT. We study relative Wach modules, generalising our previous works on this subject. Our
main result shows a categorical equivalence between relative Wach modules and lattices inside rela-
tive crystalline representations. Using this result, we deduce a purity statement for relative crystalline
representations and provide a criteria for checking the crystallinity of relative p-adic representations.
Furthermore, we interpret relative Wach modules as modules with g-connections and show that for a
crystalline representation, its associated Wach module together with the Nygaard filtration is the canon-
ical g-deformation (after inverting p) of the filtered (¢, @)-module associated to the representation.

1. INTRODUCTION

The study of arithmetic Wach modules and their relationship to crystalline representations is of classical
nature, having been taken up in the works of Fontaine [Fon90], Wach [Wac96; Wac97], Colmez [Col99] and
Berger [Ber04]. More precisely, in op. cit. the authors studied the situation of an absolutely unramified
extension of Q, with perfect residue field. In [Abh21] we defined a similar concept in the relative case, i.e.
for certain étale algebras over a formal torus (see §1.4 for precise setup) and showed that such objects give
rise to crystalline representations of the fundamental group of the generic fiber. On the other hand, in
[Abh23a], we generalised the theory of Wach modules and their relationship to crystalline representations,
to the imperfect residue field case. In this article, we combine these two generalisations of the classical
theory, to discuss the equivalence between Wach modules and crystalline representations in its most
natural generality. In addition, we provide some applications of the preceding result and also show
that Wach modules are g-deformations of lattices inside the filtered (¢, d)-module attached to crystalline
representations.

Before providing further motivations for our results, let us remark that recent developments in the
theory of prismatic F-crystals [BS23; DLMS22; GR22] provide a new approach to the classification of
lattices inside crystalline representations. These exciting new developments have motivated us in seeking
the results of the current paper. However, instead of using the tools from the prismatic theory, we employ
techniques from the classical theory of (¢, I')-modules to obtain our results due to the very nature of the
objects studied in this article, i.e. relative Wach modules. Additionally, our proof enables us to provide
interesting applications as well, for example, using [Abh23a, Theorem 1.5] and Theorem 1.5, we provide
a new criteria for checking the crystallinity of a p-adic representation in the relative case (see Theorem
1.7 and Corollary 1.8). We refer the reader to §1.1.2 for precise statements of these results, to §1.1.3 for a
sketch of our proof strategy and to §1.3 for more details on relation of our results to the prismatic theory.

Our motivation for studying relative Wach modules is twofold, largely stemming from geometry. In
[Abh23b], for smooth (p-adic formal) schemes, we defined the notion of crystalline syntomic complex with
coefficients in global relative Fontaine-Laffaille modules. Moreover, [Abh23b, Theorem 1.15] showed that
such a complex is naturally comparable to the complex of p-adic nearby cycles of the associated crystalline
Z,-local system on the (rigid analytic) generic fiber of the (formal) scheme. The work in loc. cit. was
motivated by the results of [FM&7], [Tsu96], [Tsu99] and [CN17], and the proof of [Abh23b, Theorem
1.15] follows via careful computations in the local setting in which relative Wach modules play a pivotal
role (see [Abh23b, Corollary 1.12]). To generalise these results beyond the Fontaine-Laffaille case, it is
therefore necessary to understand the relationship between crystalline representations of the fundamental
group and general relative Wach modules (see Theorem 1.5).
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On the other hand, in [BMS19], for smooth p-adic formal schemes, the authors defined a prismatic
syntomic complex and compared it to the complex of p-adic nearby cycles integrally. In the same vein,
comparison results beyond the smooth case, have also been obtained in [AMMN22] and [BM23], where the
latter uses the theory of prismatic cohomology from [BS22]. The aforementioned results were obtained
in the case of constant coefficients and it is natural to ask if [BMS19, Theorem 10.1] could be generalised
to non-constant coefficients, i.e. prismatic F-crystals. In our approach to resolving this question, results
pertaining to Wach modules from the current paper will play a critical role.

Another motivation for considering Wach modules is to construct a deformation of crystalline coho-
mology, i.e. the functor D¢ from classical p-adic Hodge theory, to better capture mixed characteristic
information. In [Fon90, §B.2.3] Fontaine expressed similar expectations which were verified by Berger in
[Ber04, Théoréme I11.4.4] and generalised to finer integral conjectures in [Sch17, §6]. Some conjectures of
[Sch17] were resolved by the introduction of prismatic cohomology [BS22]. Furthermore, it is also worth
mentioning that the proof of the result comparing prismatic syntomic complex to p-adic nearby cycles,
i.e. [BMS19, Theorem 10.1], relies on a local computation of prismatic cohomology using the g-de Rham
complex, i.e. a g-deformation of the usual de Rham complex. Additionally, the importance of g-de Rham
cohomology in computation of prismatic cohomology has also been emphasised in [BL.22, §3].

In this paper, we interpret Wach modules as ¢g-de Rham complexes (see Theorem 1.9). Moreover,
we show that such an object is the g-deformation of a lattice inside the filtered (¢, d)-module attached
to a crystalline representation. In a subsequent work [Abh24], we show that in our setting, a relative
Wach module can be regarded as the evaluation of a prismatic F-crystal over a covering (by a suitable
g-de Rham prism) of the final object of a certain prismatic topos. Hence, from these apparent tight
connections between Wach modules and prismatic F-crystals and p-adic crystalline representations, we
expect these objects to play a pivotal role in the study of p-adic nearby cycles of crystalline Z,-local systems
(for smooth formal schemes) and its comparison to prismatic syntomic complex with coefficients.

In summary, within the overarching program sketched above, this paper realises two of our goals (see
Theorem 1.5 and Theorem 1.9). Additionally, we provide interesting applications of our results to purity
statements in p-adic Hodge theory (see Theorem 1.7 and Corollary 1.8).

1.1. Crystalline representations and Wach modules. Let p be a fixed prime number and
k a perfect field of characteristic p; set Op := W(k) to be the ring of p-typical Witt vectors with
coefficients in k and F := Op[l/p]. Let d € N and take X1, Xo,..., Xy to be some indeterminates.
We set OF<X1ﬂ, e X;lH) to be the p-adic completion of Laurent polynomial ring OF[XfH, e ,de].
Let R denote the p-adic completion of an étale algebra over OF<X1i1, ceey Xczltl) with non-empty and
geometrically integral special fiber. Denote by G g the étale fundamental group of R[1/p] and by I'p the
Galois group of R [1/p] over R[1/p], where R, is obtained from R by adjoining to it all p-power roots of
unity and all p-power roots of X, for each 1 < i < d. Then we have ' — Z,,(1)% x Z) (see §2 for precise
definitions). Set O, := (Ry,))" as a complete discrete valuation ring with uniformiser p, residue field a
finite étale extension of x(X1,...,Xy) and set L := Op[1/p]. Let G, denote the absolute Galois group
of L such that we have a continuous homomorphism Gy — Gg; let ', denote the Galois group of L
over L, where L, is obtained from L by adjoining to it all p-power roots of unity and all p-power roots
of X;, for each 1 < ¢ < d. The continuous homomorphism G; — Gg induces a continuous isomorphism
I';, — T'g. In this setting, we have the theory of crystalline representations of G from [Bri08] and the
theory of étale (p,I')-modules from [And06; ABOS].

1.1.1. Relative Wach modules. Set ¢ := (1,(p, (p2,...) in R’_ (the tilt of Ry) and its Teichmiiller
lift [¢] in Ajnf(Roo) := W(R2,), the ring of p-typical Witt vectors with coefficients in R’ . Additionally, set
= [e]—1and [p], := (1) /11, as elements of Ajn(Rs). Moreover, for 1 < i < d, fix X? := (X;, Xl-l/p, cen)
in Rgo and their Teichmiiller lifts [Xf] in Ajnf(Rs). Let AE denote the (p, p)-adic completion of the
unique extension of the (p, u)-adic completion of Op[u][X2]*1, . .., [X5]*!] along the p-adically completed
étale map Op (X ... ,Xdi1> — R (see §1.4 and §2.2). The ring A}, is equipped with a Frobenius
endomorphism ¢ and a continuous action of I'g; set AJLr to be the (p, u)-adic completion of the localisation
(AE)(Z% u) equipped with an induced Frobenius endomorphism ¢ and a continuous action of I'y, = T'p.
With this setup, we define the following:
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Definition 1.1. A Wach module over AE with weights in the interval [a, b], for some a,b € Z with b > a,
is a finitely generated AE—module N satisfying the following assumptions:

(1) The sequences {p, u} and {u, p} are regular on N.
(2) N is equipped with a semilinear action of I such that the induced action of I'r on N/uN is trivial.

(3) N admits a Frobenius-semilinear operator ¢ : N[1/u] — N[1/¢(1)] compatible with the action of
I'r on each side, and such that ¢(u’N) C p’N and the cokernel of the Af-linear map (1 ® ¢) :
©*(uPN) — uPN is killed by [p]z_“.

Denote by (¢, T’ R)_MOdE,;];; the category of Wach modules over AE, with morphisms between objects being

AE—linear, (p-equivariant (after inverting 1) and I'g-equivariant morphisms.

Remark 1.2. The condition (1) in Definition 1.1 is new and relaxes finite projectivity assumption of
relative Wach modules in [Abh21, Definition 4.8]. Moreover, condition (1) above is equivalent to the
vanishing of local cohomology of N with respect to the ideal (p, u) C AE in degree 1 (see Lemma 3.3 and
Remark 3.4), in particular, it is equivalent to having {p, [p],} and {[p|,, p} as regular sequences on N (see
Lemma 3.6). Furthermore, one can also show that the A%[1/p]-module N[1/p] is finite projective (see
Proposition A.1, where we use some ideas from [BMS18; DLMS22]), the A% [1/u]-module N[1/4] is finite
projective (see Proposition 3.11) and N = N[1/p] N N[1/u] C N[1/p,1/u] (see Lemma 3.5).

Remark 1.3. In Definition 1.1, note that in contrast to the definition of Wach modules in the arithmetic
case (see [Ber(04, Definition I11.4.1]), we have dropped the assumption on the continuity of the action of
I'r on N. However, in Lemma 3.7 we show that the condition (2) in Definition 1.1, i.e. triviality of the
action of I'g on N/uN, automatically implies that the action of I'r on N is continuous.

Remark 1.4. Definition 1.1 may be adapted to the case of a field, i.e. over the ring A} = Op[u] (resp.
Az) In such cases, from the assumptions of Definition 1.1 it follows that a Wach module over A;,C (resp.
A7) is necessarily finite free. Indeed, if N is a Wach module over A}, (resp. AT), in the sense of Definition
1.1, then one first observes that N is torsion-free since N C N[1/p] and the latter is finite free over AL[1/p]
(resp. AF[1/p]) by [Abh23a, Lemma 2.14]. Then using [Fon90, §B.1.2.4 Proposition] (resp. Lemma 3.5
and [Abh23a, Remark 2.15]) it follows that N is finite free. In particular, Definition 1.1 is equivalent to
[Ber04, Definition I11.4.1] over A (resp. [Abh23a, Definition 1.3] over A7).

Set Agp = AE[l /u]™ as the p-adic completion, equipped with the induced Frobenius endomor-
phism ¢ and the induced continuous action of T'g, and similarly, set Ay := AF[1/u]" equipped with
the induced Frobenius endomorphism ¢ and the induced continuous action of I'y. Let T be a finite
free Z,-representation of Gr and note that one can functorially attach to 7" a finite projective étale
(¢, T'r)-module Dr(T) over AR of rank = rkz, T, equipped with a semilinear and continuous action of I'g
and a Frobenius-semilinear operator ¢ commuting with the action of I'g. In fact, the preceding functor
induces a categorical equivalence between the category of finite free Z,-representations of Gr and the
category of finite projective étale (y,'g)-modules over Ag (see [And06G, Theorem 7.11]). Additionally,
the category of Wach modules over AE fully faithfully embeds into the latter category, i.e. the category
of étale (p,'r)-modules over Ag (see Proposition 3.15).

1.1.2. Main results. Let Repczr;S(G r) denote the category of Z,-lattices inside p-adic crystalline rep-
resentations of Gg. For T' a Z,-lattice inside a p-adic crystalline representation of G, we construct a
Wach module Ng(T) over A}, functorial in T, and contained in Dg(T) (see Theorem 4.1). Our first
main result is as follows:

Theorem 1.5 (Corollary 4.3). The Wach module functor induces an equivalence of categories
RepZ!*(Gr) = (0. T)-Mod '
T+— NR(T),

with a quasi-inverse given as N — Tgr(N) := (W(Eb[l/pb]) ® 4+ N)wzl.
R
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Remark 1.6. In Theorem 1.5, we do not expect the functor N to be an exact equivalence. However,
note that after inverting p, the Wach module functor induces an exact equivalence between ®-categories:

RepCQr;S(GR) = (o, PR)_MOd[g]fj’ via V = Ng(V), where Bf, = AL[1/p], and an exact ®-compatible
quasi-inverse functor given as M — V(M) := (W(Eb[l/pb]) ® 4+ M)?=" (see Corollary 4.4).
R
As an application of Theorem 1.5, we obtain the following purity statement:

Theorem 1.7 (Theorem 4.5). Let V be a p-adic representation of Gg. Then V is crystalline as a
representation of Gg if and only if it is crystalline as a representation of Gp,.

For a p-adic representation V' of G, let ODgis,r(V') denote the associated filtered (¢, 9)-module over
R[1/p] (see [Bri08, §8.2]). We show the following criterion for checking the crystallinity of V:

Corollary 1.8 (Theorem 4.5 & Corollary 4.6). Let V' be a p-adic representation of Gr. Then V is
crystalline if and only if rkR[l/p]ODcrisR(V) = dimg, V. Moreover, under these equivalent conditions,
we have a natural isomorphism L @ gy /p) ODeris r(V) 5 ODyyis,.(V) of filtered (i, d)-modules over L.

Important inputs for the proof of Corollary 1.8 are Theorem 1.7 and a careful study of the period
rings for the localisation of R at its minimal primes above (p) C R (see §2.1).

1.1.3. Strategy for the proof of Theorem 1.5. The proof of Theorem 1.5 crucially uses analogous
results obtained in the imperfect residue field case (see [Abh23a, Theorem 1.5]). Starting with a Wach
module N over AE, we use ideas from [Abh21, Theorem 4.25 & Proposition 4.28], the observation that
AT Bt N is a Wach module over A} and [Abh23a, Lemma 3.6 & Theorem 3.12] to establish that Tg(N)

is a Z,-representation of G such that Tr(IV)[1/p] is crystalline (see Theorem 3.34). Conversely, starting
with a Z,-lattice T inside a p-adic crystalline representation of Gr, we observe that T'[1/p] is a p-adic
crystalline representation of G, and we use [Abh23a, Theorem 4.1] to obtain a unique Wach module
N (T) over Af. Moreover, note that from the theory of (¢, I')-modules we have an étale (o, I'g)-module
DRr(T) over Ag (see [And06]).

We set Ng(T) := N(T) NDg(T) C DL(T) as an Af-module, where Dy, (T) is the (¢, T')-module
over Ay, associated to 1. Then, using the compatible Frobenius-semilinear endomorphism ¢ and the
continuous action of 'y, = T'r on N1 (T) and Dg(T), we equip the Af-module Ng(7T') with a natural
(¢, T'r)-action. Let us remark that the definition of N g(7') is parallel to the Breuil-Kisin setting studied in
[DLMS22] and we employ some (modified) ideas from op. cit. to show that Nz(7") has “good” properties
as a module over AE. However, there are two key differences: first, op. cit. uses [BT08] as an important
ingredient but our constructions use [Abh23a] instead; next, note that relative Breuil-Kisin modules
admit a prismatic descent datum whereas Wach modules admit an action of I'p. Equipping N (7T') with
a natural action of I'p is non-trivial and we resolve it by using the theory of Wach modules in the imperfect
residue field case from [Abh23a] and the theory of étale (p,I')-modules from [And06] as important inputs.
Finally, we utilise the properties of N (7") and Dr(T) to show that Ng(T) is the unique Wach module
associated to T'.

1.2. Wach modules as ¢-deformations. In §5 we recall the definition of a g-connection ax-
iomatically, following [MT20]. Moreover, we show that a Wach module N over A}, can also be seen
as a p-module equipped with a g-connection. More precisely, let D := Op[u], and let {v1,...,74} be
topological generators of the geometric part of I'g, i.e. Iy (see §2). Then in Proposition 5.3 we show that
the g-connection defined as
Vo: N — N@ys Qe o Ty 20 dlog (1X7)),

describes (N,V,) as a ¢p-module with (p, [p],)-adically quasi-nilpotent D-linear flat g-connection over
AE. We equip N with the Nygaard filtration as in Definition 3.24. Then, it follows that N/uN is
a w-module over R equipped with a p-adically quasi-nilpotent flat connection and we further equip it
with a filtration Fil*(N/uN) given as the image of Fil* N under the surjection N — N/uN. We equip
N[1/p]/uN[1/p] = (N/uN)[1/p] with induced structures, in particular, it is a filtered (¢, 9)-module over

R[1/p].
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Theorem 1.9 (Theorem 5.6). Let N be a Wach module over A}, and V := Tr(N)[1/p], the associated
crystalline representation from Theorem 1.5. Then we have a natural isomorphism (N/uN)[1/p] —
ODygis,r(V') of filtered (p, 0)-modules over R[1/p].

Note that ODis,r(V) denotes the filtered (¢, d)-module over R[1/p] associated to V' (see [Bri0g,
§8.2]). Our proof of the theorem follows from computations done for the proof of Theorem 3.34 (building
upon ideas developed in [Abh21, Theorem 4.25 & Proposition 4.28] and [Abh23a, Theorem 1.7]).

Finally, let us summarise the relationship between various categories considered in Theorem 1.5 and
Theorem 1.9. Recall that RepCQr;S(G r) is the category of p-adic crystalline representations of Gg, and
let MFR(p,d) denote the category of filtered (¢, d)-modules over R[1/p]. From [Bri08, §8.2] we have
a ®-compatible functor ODgis R : Repggs(G r) = MFR(p,d), and let MF2(p,d) denote its essential
image. Then, from [Bri08, Théoreme 8.5.1], we have an exact equivalence of ®-categories OD¢yis -
Repg;S(G R) — MF%(,9), with an exact ®-compatible quasi-inverse OV s r (see §2.6). So, Remark
1.6 and Theorem 1.9 can be summarised as follows:

Corollary 1.10 (Corollary 5.10). Functors in the following diagram induce exact equivalence of ®-categories

| N )
cris b
Repg,”(Gr) v (¢, T'r)-Mod
ODcris,R
Olk\" q—1
MF% (¢, 0).

1.3. Relation to previous works. Our first main result, Theorem 1.5, is a generalisation of
arithmetic Wach modules from [Wac96; Col99; Ber04] and [Abh23a, Theorem 1.5]. That said, the methods
of op. cit. do not directly apply to our current situtation. In fact, the proof of Theorem 1.5 uses crucial
inputs of results and ideas from [Abh21] and [Abh23a].

Recent developments in the theory of prismatic F-crystals in [BS23; DLMS22; GR22] would sug-
gest that there is a categorical equivalence between the category of Wach modules over AE and (com-
pleted/analytic) prismatic F-crystals on the absolute prismatic site (Spf R) . From that perspective,
Theorem 1.5 could be seen as an analogue of [DLMS22, Theorem 1.2 & Proposition 1.4]. In our con-
structions, for a lattice T" inside a crystalline representation of G'g, the definition of Ng(T') is parallel to
the Breuil-Kisin case studied in op. cit. and we employ some (modified) ideas from op. cit. to show that
Ngr(T) has “good” properties as a module over AE. However, there are two key differences: first, op. cit.
uses [BT08] as an important ingredient but our constructions use [Abh23a] instead; next, note that Wach
modules admit a natural action of I'p whereas relative Breuil-Kisin modules admit a prismatic descent
datum. Equipping Nz(T') with a natural action of I'g is non-trivial and we resolve it by using the theory
of Wach modules in the imperfect residue field case from [Abh23a] and the theory of étale (p,I')-modules
from [And06] as important inputs. Furthermore, as our base ring R is absolutely unramified (at p), the
action of I'g is rich enough to establish the categorical equivalence claimed in Theorem 1.5.

In the current paper, we provide two applications of Theorem 1.5. The first application, i.e. Theorem
1.7 establishes a certain purity statement for crystalline representations. Our result is similar to the purity
statement for Hodge-Tate representations in [Tsull, Theorem 9.1] and rigidity of de Rham local systems
in [LZ17, Theorem 1.3]. It should be noted that the purity result in Theorem 1.7 can also be obtained
by combining [.Z17, Theorem 1.3] and some unpublished works of Tsuji. Moreover, the result of loc. cit.
works for general ramified (at p) small base. A similar statement has been obtained in [Moo22, Theorem
1.4] using the results of [DLMS22].

The second application of Theorem 1.5 is given in Corollary 1.8. Our result provides a new criterion
for checking the crystallinity of a p-adic representation of Gr. Note that the analogous statement for
de Rham representations is true from the results of [LZ17]. However, our result in the crystalline case
is entirely new and uses Theorem 1.7 as an important input. At this point, it is worth mentioning that
for general ramified (at p) small base, a statement analogous to Corollary 1.8 appears to be true. In
particular, we expect that one can deduce the statement using [.Z17, Theorem 1.3], the unpublished
results of Tsuji mentioned above and employing arguments similar to our proof of Theorem 4.5.
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For our second main result, Theorem 1.9, the motivation for interpreting a Wach module as a
g-de Rham complex and as the g-deformation of crystalline cohomology, i.e. ODyyis, comes from [Fon90,
§B.2.3], [Ber04, Théoreme II1.4.4] and [Sch17, §6]. In particular, we provide a direct generalisation of
[Ber04, Théoreme I11.4.4], as well as verify expectations put forth in [Abh21, Remark 4.48] and [Abh23a,
Remark 1.8] (see Remark 5.9 for the latter).

1.4. Setup and notations. In this section we will describe our setup and fix some notations, which
are essentially the same as in [Abh21, §1.4]. We will work under the convention that 0 € N, the set of
natural numbers.

Let p be a fixed prime number, k a perfect field of characteristic p, Op := W (k) the ring of p-typical
Witt vectors with coefficients in k. Then O is a complete discrete valuation ring with uniformiser p and
set F' := Op[1/p] to be the fraction field of Op. Let F denote a fixed algebraic closure of F so that its
residue field, denoted as &, is an algebraic closure of k. Furthermore, denote the absolute Galois group of
F to be Gp := Gal(F/F).

Notation. Let A be an I-adically complete algebra for a finitely generated ideal I C A. Let Z :=
(Z1,...,Zs) denote a set of indeterminates and k := (kq,...,ks) € N® be a multi-index, then we write
Zk .= 78 ... zks For k — +oo we will mean that Y k; — +o0. Define

NZ) = { Z aka, where ay € A and ay — 0 [-adically as k — —i—oo}.
keNs

We fix d € N and let X := (X1, Xo,..., Xy) be some indeterminates. Let R be the p-adic completion
of an étale algebra over R := Op(X, X~1), with non-empty geometrically integral special fiber. We fix
an algebraic closure Frac(R) of Frac(R) containing F. Let R denote the union of finite R-subalgebras
S C Frac(R), such that S[1/p] is étale over R[1/p|. Let 77 denote the fixed geometric point of the generic
fiber Spec R[1/p] (defined by Frac(R)), and let G := 7$*(Spec R[1/p],7) denote the étale fundamental
group. We can write this étale fundamental group as the Galois group (of the fraction field of R[1/p]
over the fraction field of R[1/p]), i.e. Gg = m{'(Spec(R[1/p]),7) = Gal(R[1/p]/R[1/p]). For k € N,
let Q]f% denote the p-adic completion of module of k-differentials of R relative to Z. Then, we have
QL = ¢ | Rdlog X;, and Q% = AbQL.

Let ¢ denote an endomorphism of R~ which extends the natural Frobenius on O by setting p(X;) =
XP forall1 < i < d. The morphism ¢ : R~ — R is flat by [Bri08, Lemma 7.1.5], and it is faithfully flat
since ¢(m) C m for any maximal ideal m C R“. Moreover, using Nakayama Lemma and the fact that
the absolute Frobenius on R™/p is evidently of degree p?, it easily follows that ¢ on R is finite of degree
p%. Recall that the Op-algebra R is given as the p-adic completion of an étale algebra RP, therefore,
the Frobenius endomorphism ¢ on R™ admits a unique extension ¢ : R — R such that the induced map
¢ : R/p — R/p is the absolute Frobenius z +— 2P (see [CN17, Proposition 2.1]). Similar to above, again
note that the endomorphism ¢ : R — R is faithfully flat and finite of degree p.

Let Op := (R())", where " denotes the p-adic completion. Let L denote a fixed algebraic closure
of L with ring of integers O such that we have an embedding R — Of. Then we get a continuous
homomorphism G, := Gal(L/L) — Gg, inducing an isomorphism I';, — T'r. The Frobenius on R
extends to a unique Frobenius endomorphism ¢ : Op, — O, lifting the absolute Frobenius on Or,/pOr,
(see [CN17, Proposition 2.1]). Similar to above, ¢ on Oy, is faithfully flat and finite of degree p?.

Let S be a commutative ring with m := p'/? € § such that S is m-adically complete and 7-torsion free,
for example, S = Of,,,0L,, O, O, Roo, R. Then the tilt of S is defined as S? := lim,, S/p and the tilt
of S[1/p] is defined as S[1/p]* := S°[1/p"], where p* := (1,p'/?,...) € S” (see [Fon77, Chapitre V, §1.4]
and [BMS18, §3]). Finally, consider a Z,-algebra A equipped with a lift of the absolute Frobenius on A/p,
i.e. an endomorphism ¢ : A — A such that ¢ modulo p is the absolute Frobenius. Then for any A-module
M we write o*(M) := A®yp 4 M.

Outline of the paper. This article consists of four main sections. In §2 we collect relevant results in
relative p-adic Hodge theory. In §2.1 we consider localisations of R at minimal primes above (p) C R
and study their properties. Then in §2.2, §2.3 & §2.4 we define relative period rings and study their
localisations at primes of R above (p) C R. In §2.5 we quickly recall important rings from the theory
of relative (¢, I')-modules and in §2.6 we recall the relation between (p,I')-module theory and p-adic
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representations, as well as, definition and properties of crystalline representations. The aim of §3 is to
define and study properties of a Wach module in the relative case and the associated representation of Gg.
In §3.1 we first note some technical lemmas and then in §3.2 we define relative Wach modules, study its
properties and relate these objects to étale (¢, ')-modules (see Proposition 3.15). Furthermore, in §3.3,
we functorially attach a Z,-representation of G'r to a relative Wach module and in §3.4 we show that such
representations are closely related to finite [p],-height representations studied in [Abh21]. In §3.5 we study
the Nygaard filtration on relative Wach modules. Finally, in §3.6 we show that the Z,-representation of
G R associated to a relative Wach module, as in §3.3, is a lattice inside a p-adic crystalline representation of
Gr (see Theorem 3.34). In §4 we prove our first main result, i.e. Theorem 1.5. Before proving the theorem,
we draw some important conclusions from the statement, in particular, in §4.1 we prove Theorem 1.7 and
Corollary 1.8. Finally, in §4.2 we construct the promised relative Wach module and prove Theorem 1.5.
In §5, we state and prove our second main result, i.e. Theorem 1.9. In §5.1, we recall the formalism on
g-connections. Then in §5.2, we show that a Wach module can be interpreted as a p-module equipped
with a g-connection (see Proposition 5.3). Finally, using the computations done in the proof of Theorem
3.34, we prove Theorem 1.9.

Acknowledgements: I would like to sincerely thank Takeshi Tsuji for discussing many ideas during
the course of this project, reading an earlier version of the article and suggesting improvements. I would
also like to thank Yong Suk Moon, Koji Shimizu and Alex Youcis for helpful remarks. This research is
supported by JSPS KAKENHI grant numbers 22F22711 and 22KF0094.

2. PERIOD RINGS AND p-ADIC REPRESENTATIONS

We will use the setup and notations from §1.4. Recall that R is the p-adic completion of an étale algebra
over Op(X7', ..., X1 and Op, := (Rp)". Set Ryo := U?ZIR[upoo,Xil/poo] and recall that R is the union
of finite R-subalgebras S in a fixed algebraic closure Frac(R) D F, such that S[1/p] is étale over R[1/p].
We have (see [Abh21, §2 & §3]),

G = Gal(R[1/pl/R[L/p]), Hr = Gal(R[1/p]/Rucl1/p]).
T i= Gr/Hp = Gal(Roo[L/pl/RI1/p]) = Z,(1)% % 2},
2 := Gal(Ruc[1/p]/ R(j1y) [1/p)) > Z,(1)", Gal(R(pye)[1/p]/R[1/p)) = Tr /T = Z.

We fixed L as an algebraic closure of L := Op[1/p] with ring of integers O and an embedding R — Oz. So,
we have a continuous homomorphism of groups G, := Gal(L/L) — Gp, which induces an isomorphism
'y, = T'g. For1 <i<d, we fix XZI? = (Xi,Xil/p,Xil/pQ, ...)in R’_ and take {y0,71,...,7q4} in I'g such
that {v1,...,74} are topological generators of I'}; satisfying ~; (X?) = eX? if i = j and X? otherwise, and
Y0 is a lift of a topological generator of I'r /T";.

2.1. Localisation. Let S denote the set of minimal primes of R above pR C R. The set S is
equipped with a transitive action of G (see [Mat89, Theorem 9.3]). For each prime p € S, set Gr(p) :=
{9 € Grsuch that g(p) = p}, i.e. the decomposition group of G at p. Recall that O = (R,)" and
L = Op[1/p]. For each p € S, let L(p) denote an algebraic closure of L with ring of integers Of(p)
containing (R),. Set Gr(p) := Gal(L(p)/L) so that we have a natural homomorphism Gg(p) — Gg
which factors as Gr(p) — Gr(p) C Gg (see [Bri08, Lemme 3.3.1]). Note that for each p € S, we have

a natural embedding R C Of(p) and hence we have a (non-canonical) isomorphism of Galois groups
Gr(p) = Gr.

Now, for each p € S, let Cf denote the p-adic completion of Orp) and let C, o= Frac(C). Then C,
is an algebraically closed valuation field equipped with a continuous action of G (p) and (C;)aR(P) =0,

(see [Hyo86, Theorem 1]). Furthermore, let C*(p) denote the p-adic completion of (R), and let C(p) :=
C*(p)[1/p] equipped with a continuous action of Gg(p).

Lemma 2.1. For each p € S, we have (R)p C C*(p) and (R), NpC*t(p) = p(R)y. Moreover, (R), N
pOf(p) = p(R)y.
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Proof. The proof is similar to [Bri08, Proposition 2.0.3]. Let p € S and x € (R),. Then there exists a
finite normal R-subalgebra S C R such that S[1/p] is étale over R[1/p] and q := pN S is a height 1 prime
ideal of S with p € q (since R is integral over S) and z € S;. Moreover, S is a 1-dimensional normal
noetherian domain, in particular, a discrete valuation ring. Now if the image of z is zero in C*(p), then
we have that € p™(R), N Sq = p" Sy, for each n € N, since Sy is normal. So z must be zero since Sy is
p-adically separated. This shows the first claim. For the second claim, let x = py for some y € CT(p).
We have that y € S4[1/p] and we need to show that y € S;. Let §q denote the completion of Sy for the
valuation (say vq) described above. Then §q[1 /p] is a finite separable extension of L and §q embeds into
C, . Moreover, the image of C*(p) in Cy, is contained in C;, therefore vq(y) > 0, i.e. y € Sq[1/p] ﬁgq =Sy,
as desired. Finally, let z = pz for some z € O . Then similar to above, we have z € S54[1/p] and

vg(2) > 0, s0 z € Sq. This shows the third claim. [

All rings discussed above are p-torsion free, so from Lemma 2.1, it easily follows that the inclusion
C*(p) C C/ is compatible with respective actions of Gr(p), where the action of Gr(p) on the left-hand

term factors through Gr(p) — Gr(p). In particular, we get that C*(p)Sr®) = O (see [Bri0g, p. 24]).
Now, note that we have natural injective maps R — (E)p — Of(p)- Upon passing to p-adic completions
and setting C*(R) := R, we obtain natural maps C*(R) — C*(p) — CJ}, where the first map need not

be injective. However, recall that R is a direct limit of finite and normal R-algebras, therefore the natural
map R/p"™ — @®pes(R)p/p" is injective. Passing to the limit over n, we obtain injective maps

Ct®R) — [[CcT () — ] G- (2.1)
peS peS

Note that in (2.1) the leftmost term admits a natural action of G, the middle term admits a natural action
of [[,es Gr(p) and the rightmost term admits a natural action of [[,cs Gr(p). The two homomorphisms
in (2.1) are compatible with these respective actions. Moreover, from [Bri08, Remarque 3.3.2] the middle
term of (2.1) can be equipped with an action of G and the left homomorphism in (2.1) is equivariant
with respect to this action of G.

Remark 2.2. Note that C*(p) is an Op-algebra for each p € S, so the maps in (2.1) extend to injective
maps Op, @g C*(R) = [lpes CT(p) = [lpes Cf (see [Bri08, Proposition 3.3.3]).

Lemma 2.3. The Op-algebra Ct(p) is perfectoid in the sense of [BMS18, Definition 3.5].

Proof. Note that we have 7 :=p'/? € R C (R), C C*(p) and 7? = p divides p. Moreover, it is clear that
C*(p) is m-adically complete. Now, consider the following commutative diagram:

CH(p)/n? — CT(p)/m —5—= CT(p)/n?

7)
! ! !
Cy/mP —— CJ /m ——— CJ /P,

where the left and right vertical arrows are injective by Lemma 2.1 and the middle vertical arrow is also
injective by an argument similar to the proof of Lemma 2.1. So it follows that the top right horizontal
arrow is injective as well. Then, using [BMS18, Lemma 3.9 and Lemma 3.10], we are left to show that
0 :CH(p)/p = (R)p/p = (R)p/p = Ct(p)/p is surjective. So let z € (R),/p and take a lift y € (R),.
Then there exists an a € R\ p such that ay € R. Now, from [Bri08, Proposition 2.0.1], there exists
z,w € R such that ay = 2P + pw. Moreover, there exists b € R\ p and ¢ € R such that a = b + pc. Then

we can write bPy + pcy = 2P + pw, or equivalently, y = (2/b)P + p(cy + w)/bP with (z/b)P € (R), and

p(cy+w)/bP € p(R),. Hence, x = (2/b)? mod p(R),, proving that ¢ : (R),/p — (R),/p is surjective. W

2.2. The period ring A;;. In this subsection we will study the relative version of Fonatine’s
infinitesimal period ring Aj,¢ to be used in the sequel (see [Abh21, §2 and §3] for details). Let Ajf(Roo) :=
W(R’,) and Ajye(R) := W(Eb) admitting the Frobenius on Witt vectors and continuous G g-action (for
the weak topology). Moreover, we have Aiyf(Roo) = Ame(R)HR (see [And06, Proposition 7.2]). Let
e:= (1, Gy .) ii=e—1¢ O}m and set p = [g] — 1,& := p/o (1) € Apne(OF,). Let x denote
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the p-adic cyclotomic character, then for g € Gg, we have g(1 + u) = (14 p)X9). Additionally, we have
a G g-equivariant surjection 6 : Aj¢(R) — CT(R) and Ker 0 = £A;,¢(R). The map @ further induces a
I g-equivariant surjection 6 : Ajyf(Roo) — Reo.

Let S denote the set of minimal primes of R above pR C R and for each prime p € S let C,, denote

the valuation field described in §2.1 and C;’ its ring of integers. Moreover, from Lemma 2.3, we have
that C*(p) is a perfectoid algebra. So we set A, ¢(C/l) = W(C;’b) (resp. Aine(CH(p)) := W(CH(p)?))
admitting the Frobenius on Witt vectors and continuous G g(p)-action (resp. Gg(p)-action). Similar to
above, we have a Gr(p)-equivariant surjection 6 : Aje(Cy) — C; with Ker 6 = £Ai¢(C.) (resp. a
GRr(p)-equivariant surjection 6 : Ap,¢(CT(p)) — CH(p) with Ker 6 = £Aje(CH(p))).

Lemma 2.4. For each p € S we have (p,Gr(p))-equivariant embeddings Aupe(Ct(p)) — Aing(CF)
and W(C(p)*) — W(Cz), where the action of Gg(p) on left-hand terms factor through Gg(p) — Gr(p).
Moreover, we have a (¢, Gr(p))-equivariant identification Apg(CT(p)) = Ainf(C;)ﬂW(C(p)b) as subrings
of W(C}).

Proof. From the discussion before (2.1), we have a G (p)-equivariant injective map C*(p) — C,. By

applying the tilting functor, we further obtain a (¢, G r(p))-equivariant commutative diagram of rings

(
J J (2.2)

c+t p)b C;r,b
C(p) —— G,

where the vertical arrows are injective. Note that the natural map C*(p)/p = (R)p/p — Orw/P = Ci/p
is injective, so by left exactness of lim,, we obtain that in (2.2) the top horizontal arrow is injective.
Moreover, note that C(p)? = limg,,,» C(p) as a multiplicative monoid, and similarly for CZ. Therefore,
again by left exactness of lim, it follows that the bottom horizontal arrow in (2.2) is injective. Now, since
Cg is a valuation field, let Ug denote the normalised valuation on it such that ’UE (p°) = 1. Then we have

that = € C;’b if and only if vg(x) > 0. Moreover, we have C(p)” = C*(p)’[1/p°] and Cg = C;“b[l/pb].
From (2.2) and injectivity of its arrows, it now follows that for 2 € C(p)” we have z € C*(p)® is and only
if vg(a:) > 0. In particular,

Ct(p)’ =C(p)’NC’ c C. (2.3)

Furthermore, recall that the p-typical Witt vector functor is left exact since it is right adjoint to the
forgetful functor from the category of d-rings to the category of rings (see [Joy85]). Therefore, all maps
in the following natural (¢, Gr(p))-equivariant commutative diagram are injective

Aint(CT(p)) —— At (C)

! |

W(C(p)") —— W(C}).
Hence, from (2.3) it follows that A;,¢(Ct(p)) = W(C(p)*) N Aint(Cf) C W(CZ). [ |

Remark 2.5. From Lemma 2.4, the discussion preceding it (see the map ) and the fact that C*(p) is a
subring of C;f, it easily follows that £ Aus(CT(p)) = Aint(CT(p)) N EAine(C) C Aint(C)).

Remark 2.6. By functoriality of the tilting construction and Witt vector construction, we note that the
action of G on [[,es C*(p) described after (2.1) (see [Bri08, Remarque 3.3.2]), extends to respective

natural actions of Gr on [Jyes Aint(C*(p)) and [Tyes W(C(p)®).

Lemma 2.7. In the notations described above, we have (p, GRr)-equivariant embeddings Aips(R) —
[es At (CH(p)) and W(C(R)?) — [lyes W (C(p)?), where right-hand terms are equipped with a G g-action

as described in Remark 2.6. Moreover, we have a (¢, GR)-equivariant identification Ay (R) = W (C(R)’)N
[Tpes Ant(CH(p)) as subrings of Tl,es W(C(p)’).
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Proof. From (2.1) recall that we have injective maps C*(R) — [[,es(R); . By applying the tilting functor,
we further obtain a (p, Gr)-equivariant commutative diagram:

CH(R) —— Tlyes C*(p)’

l | (2.4)

CR) —— (IesCH®))[F] — Thes C),
where the bottom right horizontal arrow and vertical arrows are injective. From the injectivity of R/p —
[Tpes C*(p)/p and left exactness of lim,,, we obtain that in (2.4) the top horizontal arrow is injective and
since we have C(R)” = Ct(R)"[1/p’], it also follows that the bottom left horizontal arrow is injective.
Now let Uz denote the valuation on C; intriduced in the proof of Lemma 2.4. Then under the composition
of left vertical and bottom horizontal arrows of (2.4), it follows that for any = € C(R)” we have that =
belongs to C*(R)” if and only if Ug(lb) > 0 for each p € S. In particular,

CH(R) =C®’n [ c* () c [ Crv) (2.5)
peS peS

Furthermore, recall that the p-typical Witt vector functor is left exact since it is right adjoint to the
forgetful functor from the category of §-rings to the category of rings (see [Joy85]). Therefore, all maps
in the following natural (¢, Gg)-equivariant commutative diagram are injective

At (R) — [lpes Amnt(CT(p))

| |

W(C(R)") — Tyes W(C(p)").

Then from (2.5) we obtain Aj,¢(R) = W(C(R)’) N [Tpes Ainf(CT(p)) as subrings of [T,cs W(C(p)). M

2.3. de Rham period rings. In this subsection we will recall the de Rham period rings (see
[Abh21, §2.1]). Note that the I'g-equivariant map 0 : Ajf(Reo) — R described in §2.2 extends to
a surjective map 0 : Aie(Roo)[1/p] = Roo[l/p]. We set Bir(Roo) := limy,(Aint(Reo)[1/p])/€™. Let
t = log(1 + p) € Big(Rso), then Bj;(Ro) is t-torsion free and we set Bar(Roo) 1= Bir(Roo)[1/t]-
Furthermore, one can define period rings OB (Roo) and OBgr(Roo). These rings are equipped with a
I'p-action, an appropriate extension of the map 6 and a decreasing filtration. Rings with a prefix “O”
are further equipped with an integrable connection satisfying Griffiths transversality with respect to the
filtration. One can define variations of these rings over R as well.

Next, let S denote the set of minimal primes of R above pR C R as in §2.1. Similar to above, for
each p € S, we set Bi(CJ) := limy, (Aine(C/l)[1/p])/(Ker 6)™ and Bar(Cyl) := Bir(C;)[1/t] equipped
with a Gg(p)-action (resp. Biz(C*(p)) := limy,(Ains(Ct(p))[1/p])/(Ker )" as well as Bar(Ct(p)) :=
Bir(C*(p))[1/t] equipped with a Gr(p)-action), an appropriate extension of the map 6 and a decreasing
filtration.

Lemma 2.8. The Gr(p)-equivariant embedding Ape(CT(p)) — Aing(CJ) of Lemma 2./ extends to a
Gr(p)-equivariant embedding Bag(C™ (p)) — Bar(Cy).

Proof. Note that by definition, the Gg(p)-equivariant embedding A, (CH(p)) — Aint(C)) induces a
G r(p)-equivariant map B, (Ct(p)) — B3 (Cl). Then from Remark 2.5 and the fact that lim is a left
exact functor on the category of abelian groups, we get that the map B (CT(p)) — B(]LR(Q‘JF ) is injective.
The claim now follows since B;R(C; ) and B (CT(p)) are t-torsion free (see [Bri08, Proposition 5.1.4]). M

Moreover, for each p € S we have big period rings OBg,(C;f) and OBgr(C;l) equipped with an

L-linear Gg(p)-action (resp. OB, (Ct(p)) and OBar(C*(p)) equipped with an L-linear G'g(p)-action),
an appropriate extension of the map 6, a decreasing filtration and a connection. From [Bri0g8, §5.2 &
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§5.3], in particular, from the alternative description of OBJ, (C) (resp. OB (CT(p))) as a power series
ring over B, (C;l) (resp. BJz(C*(p))) and using Lemma 2.8, the following is obvious:

Lemma 2.9. The Gr(p)-equivariant embedding Bar(C*(p)) — Bar(Cy) of Lemma 2.8 extends to an

L-linear Gg(p)-equivariant embedding O Bag(C* (p)) — OB4r(C)) compatible with respective filtrations
and connections.

Remark 2.10. Recall that product is an exact functor on the category of abelian groups. So the nat-
ural embeddings Ai,(CT(p)) — Bar(CT(p)) — OBgr(CT(p)), for each p € S, extend to embeddings
[Tpes Amt(CT(p)) — [lpes Bar(CT(p)) — Ilpes OBar(CT(p)). By an argument similar to [Bri08, Re-
marque 3.3.2] the products [[,cs Bar(C* (p)) and [Tycs OBar(C*(p)) can respectively be equipped with
an action of Gg, extending the Gr-action on [],cs Aint(C*(p)) (see Remark 2.6), in particular, the
embeddings [[pes Ainf(CT(p)) = [Tyes Bar(CT (p)) — [Tpes OBar(C*(p)) are Gr-equivariant.

Lemma 2.11. In the notations described above, we have an R[1/p]-linear Gg-equivariant embedding
OBgr(R) = [lpes OBar(C*(p)), where the right-hand term is equipped with a G r-action as described
in Remark 2.10. Moreover, for each p € S, the induced natural map OBgr(R) — OBgr(Ct(p)) is
compatible with respective filtrations and connections.

Proof. Note that from Lemma 2.7 and Remark 2.10, we have G g-equivariant injective maps Aj,¢(R) —
H)JES Ainf(C+(p)) — HpES BdR(C+(p)) — HpeS OBdR(C+(p)) Then from the definition of BdR(R)
and OBggr(R), the preceding maps naturally induce an R[1/p]-linear and G r-equivariant commutative
diagram:

Bar(R) — [lpes Bar(CT(p)) ——— Bar(C*(p))

J J | 2

OBar(R) — Tlyes OBar(C*(p)) —— OBar(C*(p)),

where the vertical maps are injective, with the leftmost and rightmost vertical arrows being compatible
with respective filtrations and connections for each p € S. We need to show that the top left and
bottom left horizontal arrows are injective. But first, let us note that from the explicit description of
filtration on Bgr and OBqgg in [Bri08, §5.2], it easily follows that compositions of horizontal arrows in
(2.6) are compatible with respective filtrations and connections, i.e. for each k € Z, the respective images
of Fil*Byr(R) and Fil*OBgr(R) are contained in Fil* Bqr(C*(p)) and Fil*OByr(C*(p)), under the
composition of horizontal arrows. Similarly, from the explicit description of connection on O Bgg in [Bri08,
§5.3], it easily follows that the composition of bottom horizontal arrows in (2.6) is further compatible
with respective connections, for each p € §. Note that the injectivity of the top left horizontal arrow in
(2.6) will follow from the injectvity of the the lower horizontal arrow, which we show next (our argument
will be similar to [Bri08, Proposition 6.2.6]). Note that the filtration on OBggr(R) and OBgr(C*(p)),
for each p € S, is separated. Therefore, it is enough to show that the induced map on grading of the
filtration is injective. From [Bri08, Proposition 5.2.7] recall that gr*OBgr(R) — C*(R)[z1, .. ., 24, t 1],
where z; denotes the image of (X; — [X;]?)/t in grl?OBgr(R) =+ Ct(R)|[z1,...,24). Similarly, we have
gr*OBgr(C*(p)) = CH(p)[z1,. .., 24,71, for each p € S. The claim now follows from injectivity of the
natural map C*(R) — [],es C*(p) (see (2.1)). This concludes our proof. [ |

Remark 2.12. The Gg-equivariant embedding OByr(R) — [Iyes OBar(C*(p)) of Lemma 2.11 admits a
natural L-linear and G g-equivariant extension to an embedding L& g1 /p) O Bar(R) — [Tyes OBar(C*(p)).
Indeed, this follows from an argument similar to Lemma 2.11 or directly from [Bri08, Proposition
6.2.6]. Furthermore, from Lemma 2.11, it also follows that for each p € S, the induced natural map
L ®g(1/p OBar(R) = OB4r(CT(p)) is compatible with respective filtrations and connections, where the
left-hand term is equipped with filtration on OBgr(R) and tensor product connection.

2.4. Crystalline period rings. In thissubsection we will recall crystalline period rings (see [Abh21,
§2.2]). We set Aeris(Roo) := Ainf(Roo)(€¥/k!,k € N) and we have t = log(1 4+ u) € Awis(Or,) and
Acris(Roo) 18 p-torsion free and t-torsion free. So, we set BC“S(ROO) = Aais(Roo)[1/p] and Beis(Rso) =
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Bl .(Rs)[1/t]. Furthermore, one can define period rings OAcis(Reo), OB (Roo) and OBeyis(Rso)-
These rings are equipped with a continuous action of I'p, a Frobenius endomorphism ¢ and a natural
extension of the map 6. Rings with a subscript “cris” are equipped with a natural decreasing filtration
and rings with a prefix “O” are additionally equipped with an integrable connection satisfying Griffiths
transversality with respect to the filtration. Moreover, we have G r-equivariant and filtration compatible
natural embeddings Beis(Roo) C Bdr(Rso) and OBgis(Roo) € OBgr(Roo). One can define variations
of these rings over R as well. From [MT20, Corollary 4.34] we have a (¢, g)-equivariant isomorphism
OAcris(Roo) ; OAcris (R)HR L

As in §2.1, let S denote the set of minimal primes of R above pR C R. Similar to above, for each
p €S, wehaverings Acis(Cy ), Beris(C ), O Aeris(C) and O Beis (C,) equipped with a Gr(p)-action (resp.
AcriS(C;), Beis(CT(p)), OAeqis(CT(p)) and O Beis(CT(p)) equipped with a G r(p)-action), an appropriate
extension of the map 6, a Frobenius endomorphism ¢, a decreasing filtration and a connection (for rings

with prefix “O”). Then, we have the following:

Lemma 2.13. The (¢, Gr(p))-equivariant embedding Aine(CH(p)) — Aint(CJ) of Lemma 2. extends to

(¢, Gr(p))-equivariant and filtration compatible embeddings Beyis(CT (p)) — Beis(Cf) and O Beis(CT(p)) —
(’)Bcris(C;), where the latter is L-linear and also compatible with respective connections.

Proof. By definition, the (¢, Gr (p))-equivariant embedding A;,¢(CT(p)) — Ainf(C;r ) naturally extends to
(¢, Gr(p))-equivariant maps Aeis(CT(p)) — Acris(Cf) and O Aeis(CH(p)) = OAais(C ), where the lat-
ter is Op-linear and compatible with respective connections. Now consider the following G r(p)-equivariant
commutative diagram

Acris(c+(p)) — OAcris(C+(p)) — OBdR(C+(p))

! ! !

Acris(C;) . OAcris(Cg_) E— OBdR(C;—)’—)’

where all horizontal arrows are injective and compatible with respective filtrations and the right vertical
arrow is injective and compatible with respective filtrations and connections. Therefore, it follows that the
left and middle vertical arrows are injective and compatible with respective filtrations and connections.
Finally, the claims for Beis and OB follow by inverting ¢ in the left and middle columns of the
diagram. |

Remark 2.14. From Remark 2.10 it is easy to see that we have injective maps [[,cs At (CT(p)) —
[lpes Baris(CT(p)) — Ilpes OBais(CH(p)) — [lpes OBar(C*(p)), where the first two maps are com-
patible with respective Frobenii. By an argument similar to [Bri08, Remarque 3.3.2] the products
[Tpes Beris(CT(p)) and []pes OBeis(CT(p)) are stable under the Gg-action on [J,es OB4r(CT (p)) (see
Remark 2.10) and we equip them with the induced action. Then it follows that the injective maps
HpES Ainf(c+ (p)) - HpeS Bcris(c+ (P)) — HpeS OBcriS(C+ (p)) — HpES OBdR(C+(p)) are GR—equivariant

as well.

Lemma 2.15. In the notations described above, we have an R[1/p]-linear (¢, G r)-equivariant embedding
OBguis(R) — [les OBeis(CT(p)), where the right-hand term is equipped with a Gg-action as described
in Remark 2.1/. Moreover, for each p € S, the induced natural map OBeis(R) — OBeis(CT(p)) is
compatible with respective Frobenii, filtrations and connections.

Proof. From Lemma 2.7 and Remark 2.14, note that we have (¢, Gr)-equivariant injective maps Ajus(R) —
[Tpes Amt(CT(p)) — [Tyes OBeis(CT(p)). Then from the definition of O Beis, the preceding maps natu-
rally induce an R[1/p]-linear and (¢, Gg)-equivariant map O Beris(R) = [Tpes OBeris(CT (p)). The claim
on injectivity of the latter map follows in a manner similar to [Bri08, Proposition 6.2.6]. Indeed, consider
the following natural diagram

OBcris<§) — HpES OBcris<C+(p))

| !

OB4r(R) — [lpes OBar(CT (b)),
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where the left and right vertical arrows are natural inclusions and the bottom arrow is injective from
Lemma 2.11. The diagram commutes since the top and bottom horizontal arrows are defined using the
embedding Ajnt(R) — [Tyes Ainf(CT(p)) of Lemma 2.7. In particular, it follows that the top horizontal
arrow is injective, proving the first claim. Finally, for each p € S, the induced natural map O Beis(R) —
OBuis(CT(p)) is tautologically compatible with respective Frobenii and the claims on filtrations and

connections follow from the corresponding claims on O Bggr in Lemma 2.11. Hence, the lemma is proved.
|

Remark 2.16. The (¢, Gg)-equivariant embedding O Beis(R) — [lpes OBeris(CT (p)) of Lemma 2.15
admits a natural L-linear and (p, GR)-equivariant extension to an embedding L ® g/ OBeris(R) —
[Tpes OBeis(C*(p)). Indeed, this follows from an argument similar to Lemma 2.15 or directly from
[Bri08, Proposition 6.2.6]. Furthermore, from Lemma 2.15 it also follows that the induced natural map
L ®p( /p) OBeris (R) = OBeis(CT(p)) is compatible with respective Frobenii, filtrations and connections,
where the left-hand term is equipped with filtration on OBgs(R) and tensor product Frobenius and

connection.

2.5. Rings of (¢, T')-modules. Let us fix Teichmiiller lifts [X?] € Ajnt(Roo), for 1 < i < d, and let
AZ denote the (p, u)-adic completion of Op[u, [X3]*,.. ., [X]*!]. By defininition, there exists a natural
embedding Ag C Apf(Rx) and its image is stable under the Witt vector Frobenius endomorphism ¢
and the I'g-action on Aiyf(Roso) (see [Abh21, §3]); we equip Af; with induced structures. Furthermore,
note that we have an embedding ¢ : R~ — AE defined by the map X; — [Xi7 | and it is easy to see that
¢ extends to an isomorphism of rings R” lp] = AJDr (enough to check modulo u since both source and
target are p-adically complete and ptorsion-free). We extend the Frobenius endomorphism on R" to a
Frobenius endomorphism ¢ on RP[u] by setting o(u) = (1 4 u)? — 1. Then the Frobenius on R™[u] is
finite and faithfully flat of degree p?*! . Moreover, by the preceding discussion, it also follows that the
embedding ¢ and the isomorphism R”[u] — Af are Frobenius-equivariant.

Let AE denote the (p, u)-adic completion of the unique extension of the embedding AE — Ainf(Roo)
along the p-adically completed étale map R — R (see [Abh21, §3.3.2] and [CN17, Proposition 2.1]). Then
there exists a natural embedding A'E C Ainf(Roo) and its image is stable under the Witt vector Frobenius
and I'g-action on Aj,f(Rs); we equip AE with induced structures. Furthermore, the embedding ¢ : RF —
Al C A}, and the isomorphism R [u] — Af; C A}, naturally extend to a unique embedding ¢ : R — A},
and an isomorphism of rings R[u] — A;. We extend the Frobenius endomorphism on R to a Frobenius
endomorphism ¢ on R[u] by setting ¢(u) = (1+p)P—1. Then the Froebnius on R[u] is finite and faithfully
flat of degree p®*! . Moreover, by the preceding disucssion, it is easy to see that the embedding ¢ and the
isomorphism R[u] — AE are Frobenius-equivariant. In particular, the induced Frobenius endomorphism
@ on AE is finite and faithfully flat of degree p®*! and we have cp*(AE) = AE ®¢,A; AE = GBQSD(AE)ua,

where w,, = (1 4+ )0 [X3]% - - [X7]* for a = (a9, a1, ..., aq) €{0,1,...,p— 1}04.

Set Ar := A}[1/u]” as the p-adic completion and note that the Frobenius endomorphism ¢ and
the continuous action of I'r on AE naturally extend to Agr. Similar to above, the induced Frobenius
endomorphism ¢ on Ag is finite and faithfully flat of degree p?t! and ¢*(Ag) := Ag Rp An AR —
@aSO(AR)Ua = (@aSO(AE)ua) ®¢(A;) SO(AR> “— AE ®9"7AE AR.

Recall that C(R) = CT(R)[1/p] and we set A := W(C(R)?) and B := A[l/p], equipped with the
Frobenius on Witt vectors and a continuous (for the weak topology) action of Gg. Moreover, the natural
Frobenius and I'g-equivariant embedding A;g C Apnf(Roo) extends to a Frobenius and I'g-equivariant
embedding Ar C AR and we set Bg := Ag[1/p] equipped with induced Frobenius and I g-action. Take A
to be the p-adic completion of the maximal unramified extension of Ap inside A and set B := A[1/p] C B.
The rings A and B are stable under the action of G and Frobenius endomorphism on B and we equip
A and B with induced structures. Moreover, we have A = AHr and B = BYR. Next, let us set
At = Ays(R)NA C Aand BT := AT[1/p] C B and note that these rings are stable under the Frobenius
and G g-action on B. Furthemore, we have A} = (AT)fr and B}, = (B*)=r.

Also note that by identifying the groups I'y, — T'g, we have a (p,'f)-equivariant isomorphism
AT = ((AE)(p, w)", where ”* denotes the (p, p)-adic completion. The preceding isomorphism extends to

an isomorphism Ay, — ((AR)(y))", where " denotes the p-adic completion. It is easy to see that we have

D)
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AE = Az N Apg as subrings of Ay, and B}, := AE[l/p] = BZF N Bpg as subrings of By,.

2.6. p-adic representations. Let 7" be a finite free Z,-representation of Gg. By the theory of étale

(¢, ')-modules (see [Fon90] and [And06]), one can functorially associate to T' a finite projective étale
(¢, I'r)-module Dg(T) := (A®z, T)Hr over A of rank = rkz, T. Moreover, Dg(T) := (A®z, T)"#r =
AHR @, Dg(T) and we have a natural (p, I'g)-equivariant isomorphism

A RAg DR(T) = A ®Zp T. (2.7)

These constructions are functorial in Z,-representations and induce an exact equivalence of ®-categories
(see [And06, Theorem 7.11])

RepZ (GR) (907FR) MOdARa (28)
with an exact @-compatible quasi-inverse given as Tr(D) := (A @4, D)¥=! = (A ®4, D)¥=!. Similar
statements are also true for p-adic representations of Gr. Furthermore, let DL(T) := (AT ®z, T)"x

be the (¢, T'g)-module over A}, associated to T and for V := T[1/p] let DL(V) := DA(T)[1/p] be the
(¢, T'r)-module over Bj; associated to V.

Let V be a p-adic representation of Gg. From p-adic Hodge theory of G (see [Bri08]), one can attach
to V' a filtered (i, d)-module over R[1/p] of rank < dimg, V' given by the functor

ODcris,R : Repr(GR) — MFg(p,0)
Vi— (OBCI“IS( ) ®Q V)GR

The representation V is said to be crystalline if the natural map OBeis(R) ® r[1/p] ODeris,r(V) —
OBeis(R) ®q, V' is an isomorphism, in particular, if V' is crystalline then rk gy /p) ODyis,r(V) = dimg, V.
Restricting ODis, g to the category of crystalline representations of Gr and writing MFad(go, 0) for the
essential image of restricted functor, we have an exact equivalence of ®-categories (see [Bri08, Théoreme
8.5.1])

ODis 1 : Rep§*(Gr) = MF3 (¢, 0), (2.9)

with an exact ®-compatible quasi-inverse given as OV s r(D) 1= (Fil°(OBuis(R) ® R[1/p] D))9=0¢=1,
Furthermore, we have a continuous homomorphism G, — Gpg, i.e. V is also a p-adic representation of G7,.
Base changing the isomorphism O Beris(R) ® g1 /5] ODeris, (V) —+ OBeis(R) ®q, V along OBeis(R) —
OBis(O1), we obtain a G'z-equivariant isomorphism OBeis(O7) @ ODeris, (V) 5 OBeris(OF 7)®0,V,
i.e. V is a crystalline representation of G. Taking Gr-invariants in the preceding isomorphism we further
obtain a natural isomorphism L® g1 /5] ODeris r(V') — ODy¢is,1.(V) compatible with respective Frobenii,
filtrations and connections.

3. RELATIVE WACH MODULES

In this section we will describe relative Wach modules and finite [p],-height representations of G and
relate them to crystalline representations. We start by noting some technical lemmas.

3.1. Some technical results. In Aj(Op, ), let us fix ¢ == [¢], p =[] =1 = ¢ — 1 and [p|, :=
1)/ -

Definition 3.1. Let N be a finitely generated AE—module. The sequence {p,u} in AJ}% is said to
be N-regular if N is p-torsion free and N/pN is p-torsion free. Similarly, {u,p} is N-regular if N is
p-torsion free and N/uN is p-torsion free. The sequence {p, u} in AE is said to be strictly N-regular if
both {p, u} and {u,p} are N-regular.

Remark 3.2. In Definition 3.1 note that the sequence {p, u} is strictly N-regular if and only if N is
a-torsion free for every nonzero element a in the ideal (p, ) C AE and N/uN is p-torsion free. Indeed,
the “only if” direction is obvious and for the converse one needs to check that N/pN is p-torsion free. So
let x € N such that px = py for some y € N; we claim that x € pN. Reducing the preceding equality
modulo p and using (N/uN)[p] = 0, we get that y = pz for some z € N. From p-torsion freeness of N, it
follows that x = pz, as claimed.
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Lemma 3.3. Let N be a finitely generated AE—module and consider the compler,

€*. N (p,1) NoN (1,—p) N,
where the first map is given by x — (px,px) and the second map is given by (x,y) — px — py. Then

the sequence {p,u} is strictly N-regular if and only if H'(6€*) = 0. Moreover, under these equivalent
conditions H(“6*) = 0.

Proof. If {p, u} is strictly N-regular then (N/p)[u] = (N/u)[p] = 0. Therefore, we must have H°(6*) =
H!(6€*) = 0. For the converse, consider the following diagram

Nip, ] N[p) == Nlp] —— (N/w)[p]
0 —— N[y N —"2 N N/jp — 0
p P P P (3.1)
0 —— Ny N—" N N/p —— 0
(N/p)[ul N/p —*— N/p —— N/(p, ).

Since H(6*®) = 0, we get that the top right and bottom left corners of (3.1) are zero, i.e. (N/u)[p] =
(N/p)[p] = 0. Now let = € N[u|, then from the surjectivity of the leftmost vertical arrow from second to
third row it follows that there exists 1 € N[u] such that z = pz;. Proceeding by induction it is easy to see
that = € p"N|[u] C p"N for all n € N. But since N is finitely generated over A}, which is (p, u)-adically
complete, it follows that NNV is p-adically separated, i.e. z = 0, in particular, N[u] = 0. A similar argument
shows that N[p| = 0, in particular, N[p, u] = 0. This proves both claims in the lemma. [

Remark 3.4. The complex 6° in Lemma 3.3 computes local cohomology of N with respect to the ideal
(p, ) C A, (see [Wei94, Theorem 4.6.8]). So, if we set Z := V/(p, ) C Spec (AL) =: X as a closed subset,
then one also says that 6°® computes HY (X, N), i.e. cohomology of X with compact support along Z (see
[Wei94, Generalization 4.6.2]).

Lemma 3.5. Let N be a finitely generated AE—module such that {p,u} is strictly N-reqular. Then
we have N = N[1/p] N N[1/u] C N[1/p,1/u] as Aj-modules. Moreover, N = N[1/p] N N[1/u]" C
N[1/u)M1/p], where " denotes the p-adic completion.

Proof. Note that from definitions we have (N/p)[u] = (N/p)[p] = 0 and (N[1/u])/p = (N/p)[1/n].
So it follows that N/p"N C (N/p™)[1/p], for all n € N, and therefore, N N p"N[1/u] = p™N. Hence,
N[1/p]NN[1/u] = N. Furthermore, since (N[1/u]")/p" = (N[1/u])/p™ = (N/p™)[1/u], therefore, similar
to above we also get that N N p"N[1/u]* = p"N, for all n € N. Hence, N[1/p]| " N[1/u]" = N. |

Lemma 3.6. Let N be a finitely generated AE—module. Then the sequence {p,u} is strictly N-regular
if and only if the sequence {p, [plq} is strictly N-regular.

Proof. Let us first assume that the sequence {p,pu} is strictly N-regular. Note that we have [p|, =
pP~t mod pAF, therefore, it follows that N/p is [p],-torsion free, in particular, the sequence {p, [p],} is
regular on N. Moreover, as [p], is an element of the ideal (p, u) C AE, from Remark 3.2 we have that
N is [pl,-torsion free. Now considering a diagram similar to (3.1) with p replaced by [p], and using that
N is p-torsion free and N/p is [p]s-torsion free, it follows that N/[p], is p-torsion free, i.e. the sequence
{p, [plq} is strictly N-regular. Conversely, assume that the sequence {p, [p|,} is strictly N-regular. Then,
again as we have [p]; = pP~! mod pAf, so from [Sta23, Tag 07DV], it follows that {p,u} is a regular
sequence on N. Next, let us note that yP~! is an element of the ideal (p, [p],) C AL, so it follows that
N is pP~!-torsion free, therefore, u-torsion free. Now considering the diagram (3.1) and using that N is
p-torsion free and N/p is u-torsion free, it follows that N/u is p-torsion free, i.e. the sequence {p, u} is
strictly N-regular. Hence, the lemma is proved. |


https://stacks.math.columbia.edu/tag/07DV
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Finally, let us note an important observation for the action of I'g on AJr modules. Note that the action
of I'r is continuous on AJIQ for the (p, u)-adic topology and the induced action of 'z on A}, R/ 1 = Ris
trivial. More generally, we claim the following;:

Lemma 3.7. Let N be a finitely generated AE—module equipped with a semilinear action of U'r such
that the induced action of U'r on N/uN is trivial. Then the action of I'r on N is continuous for the
(p, u)-adic topology.

Proof. Recall that from §2 we have ['r — I'p x T'p — Z,,(1)¢ x Z;. Moreover, we fixed {71,...,74} as
topological generators of I'; and 7o in ' to be a lift of a topological generator of I' g /T";. Additionally, we
may assume that x(y0) = 1+pa, for p > 3, and x(y0) = 1+4a, for p = 2, where x is the p-adic cyclotomic
character and a is a unit in Z,. To show that the action of I'p is continuous on N, for the (p, u)-adic
topology, we need to show that for any x in NV, any n > 1 and for each -y;, there exists an m € N such that
%m(a:) =z mod (p, ) As the action of T'g is trivial on N/uN, let us note that for each 0 < ¢ < d, the

operators Vg ; 1= % : N — N are well-defined (see §5.2 for more on such operators). Moreover, note

that for any a in A+, zin N and 0 <i < d, we have (v; —1)(a®z) = (vi — Da®@z +vi(a) ® (vi — 1)(z),
and therefore, Vg (e ® ) = Vg i(a) ® x + vi(a) ® Vi(z). Now for 1 < i < d, note that V;(u) = p, so
by setting m = n, we get that

Wi w) = (1+ pVai(x))" =2+ X0, () uFVE (2),

where the summation in the third term is easily seen to be an element of (p, u)" N. Next, let ¢ = 0 and
using the action of vy on y, it is easy to see that V() = (1 4+ p)((1 + p)P* — 1)/p is an element of
(p, w)Af.. Then an easy induction on k > 1 shows that for any = in N, we must have that (uV,0)*(x) is
an element of (p, u)*N. In particular, by setting m = n, it follows that we have

(@) = 1+ uVeo(@)P" =+ 30 () (1Vg0) (2),

where the summation in the third term is again an element of (p, )" N. Hence, we conclude that the
action of I'g is continuous on V. [ |

3.2. Wach modules over AE. We start with the definition of Wach modules.

Definition 3.8. A Wach module over AE with weights in the interval [a, b], for some a,b € Z with b > a,
is a finitely generated AE—module N satisfying the following assumptions:

(1) The sequences {p, u} and {u,p} are regular on N.
(2) N is equipped with a semilinear action of I such that the induced action of I'p on N/uNN is trivial.

(3) There is a Frobenius-semilinear operator ¢ : N[1/u] — N[1/¢(p)] compatible with respective
actions of I'g such that ¢(u’N) C u®N, and the map (1 ® ) : p*(u®N) — u’N is injective and its
cokernel is killed by [p] 2_“.

We define the [pl,-height of N to be the largest value of —a for a € Z as above. The module N is said to
be effective if we can take b = 0 and a < 0. A Wach module over BE is a finitely generated module M
equipped with a semilinear action of I'g and a Frobenius-semilinear operator ¢ : M[1/u] — M[1/@(u)]
compatible with respective actions of I'r and such that there exists a I'g-stable and p-stable (after
inverting u) AE submodule N C M and equipped with induced (¢,I'r)-action N is a Wach module over

A}, and N[1/p] = M. Denote by (¢, 'g)- Mod” }f, the category of Wach modules over A}, with morphisms

between objects being A -linear y-equivariant (after inverting 1) and I'g-equivariant morphisms.

Remark 3.9. In Definition 3.8, note that from the triviality of the action of I'r on N/uN and Lemma
3.7, it follows that the action of I'g on N is continuous.

Next, we note some structural properties of Wach modules.

Lemma 3.10. Let N be a finitely generated AE-module Then (3) of Definition 3.8 is equivalent to giving
an Af-linear and I g-equivariant isomorphism oy : (*N)[1/[plq] = AE@ At N)[1/[plq) = N[1/[plg)-
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Proof. Suppose N satisfes condition (3) of Definition 3.8. Then, the map 1® ¢ : ¢*(u’N) — p N induces
an isomorphism 1 ® ¢ : (u’¢*N)[1/[pl,] — (1’ N)[1/[p],]. Hence, we obtain an isomorphism

en : (9"N)[1/[plq] ”Tb> (12" N1/ [plg] =2 (uPN)[1/[plq] <“Tb N{1/[plq)-

Since, 1 ® ¢ commutes with the action of I'g, we deduce that ¢y is I'g-equivariant.
Conversely, suppose that we have an A%-linear I'g-equivariant isomorphism ¢y : (p*N)[1/[pl] —
N[1/[plq). Then note that for some a,b € Zwith b > a we can write [p]loon(¢*N) C N C [pl2on(¢*N). So

we get an AE—Semilinear and I'g-equivariant map as the composition ¢ : u! N -2 o (uPN) N, uPN.
This extends to an Aj-semilinear I g-equivariant map ¢ : N[1/u] — N[1/¢(u)] and we have

en (" (1"N)) = p[plben (9™ N) C p°N C [pld Pon(¢* (1" N))

Then it easily follows that 1 ® ¢ = ¢n : p*(u®N) — N is injective, its cokernel is killed by [p]g_a and
it commutes with the action of I'r. Hence, N satisfies condition (3) of Definition 3.8. n

Proposition 3.11. Let N be a Wach module over Af,. Then N[1/p] is finite projective over A}[1/p]
and N[1/u] is finite projective over AL[1/p].

Proof. For r € N large enough, note that the Wach module u"N(—r) is always effective. So without

loss of generality, we may assume that N is effective. Then the first claim follows from Lemma 3.10 and

Proposition A.1. For the second claim, note that N is p-torsion free, so Ag ® 4+ N is a p-torsion free
R

étale (p,I'g)-module over Ag, and therefore, finite projective by [And06, Lemma 7.10]. Since A}[1/u]
is noetherian, we have N[1/u]" =+ Agr D A+ [1/) N[1/u] = Agr ® 4 N, where " denotes the p-adic

completion. Moreover, the natural map Spec (A%[1/u]") USpec (AL[1/u,1/p]) — Spec (AL [1/u]) is a flat
cover. Therefore, by faithfully flat descent it follows that N[1/u] is finite projective over A%[1/u]. [

Remark 3.12. Note that the map Spec (A% [1/[plq]5)USpec (A%[1/[plq, 1/p]) — Spec (A% [1/[plq]) is a flat
cover and A} [1/p] = A% [1/[plg]5. Now for a Wach module N over A};, we have that the A};[1/p]-module
N[1/p] is finite projective and the AL[1/u]-module N[1/4] is finite projective (see Proposition 3.11).
Therefore, by faithfully flat descent, we get that the A%[1/[p],]-module N[1/[p],] is finite projective.
Moreover, from Lemma 3.6 we also have that the sequence {p, [p],} is strictly N-regular and equivalent
to condition (1) in Definition 3.8.

Remark 3.13. Note that for a Wach module N over AE, we have that N is p-torsion free, in particular,
N is contained in N[1/p]. As N[1/p] is finite projective over A}[1/p] by Proposition 3.11, therefore, we
obtain that N is a torsion free AE—module.

Lemma 3.14. Let N be a Wach module over AJ]SL, then we have N = (AJLr ®A§ N)N (Agr ®AE N) C

+_
Af ®A£ N as Aj-modules.

Proof. Let Ng := N, N, :== Aj{ ®A; N and Dp := Ap ®A§ N. Note that Ng[1/p] is finite projective over
B}, with Np[1/p] = B} Bpi Ngr[1/p] and Dg[1/p] = Bgr Opt Nr([1/p], therefore Np[1/p] N Dg[1/p] =
(Bf N Bg) ®pt Ng[1/p| = Ngr[1/p]. Moreover, we have N, N Dr C Np[1/p]| N Dg[1/p] = Ngr[1/p], and
using Lemma 3.5 we see that N, N Dp = N, N D N Ng[1/p] = Ng. [ |

From the proof of Proposition 3.11, it is clear that extending scalars along AE — Ap induces a functor

(¢, FR)—ModE;];;} — (¢, FR)—ModétR, and we make the following claim:
Proposition 3.15. The following natural functor is fully faithful

(¢, FR)-MOd[j}Ig — (¢,Tr)-Mod%,

N»—)AR®A+N.
R
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Proof. Let N, N’ be two Wach modules over AE. Write Ng := N, N, := A} @4+ N, Dy := Ap®@,4+ N
R R
and similarly for N’. We need to show that for Wach modules N and N}, we have

Hom Ng,Np) — Hom(%FR)_MOdi{R (DR, D%) (3.2)

(.0 r)-Mod "¢ (
R

Note that A}, — Ag = AL[1/u]”" is injective, in particular, the map in (3.2) is injective. To check that
(3.2) is surjective, take an Ag-linear and (¢, I'r)-equivariant map f : Dr — D%. We need to show
that f(Ng) C Nj. Base changing f along Ap — A, and using the isomorphism I';, = I'p induces
an Ar-linear and (p,I')-equivariant map f : Dy, — D;. Then from [Abh23a, Proposition 3.3] we have
f(Nz) € Nj. Finally, using Lemma 3.14, we get that inside D} we have f(Ngr) = f(Np N Dg) =
f(NL)N f(Dr) C N; N Dy = Np, concluding the proof. [ |

Analogous to above, one can define categories (¢, FR)—Modgg]lg and (¢, FR)—ModéBtR and a functor

from the former to latter by extending scalars along BE — Bpg. Then passing to the associated isogeny
categories and using Proposition 3.15, we get the following:

Corollary 3.16. The natural functor (go,FR)—Mod[g]}g — (@,FR)-ModéBtR is fully faithful.

3.3. (Gpr-representations attached to Wach modules. Composing the functor in Proposition
3.15 with the equivalence in (2.8), we obtain a fully faithful functor,

T : (p.Tr)-Mod?? — Repy, (G)
g (3.3)

~

N — (A@,s NP 5 (WCER)) @45 )7

Proposition 3.17. Let N be a Wach module over AE and T := Tgr(N), the associated finite free
Z,-representation of Gr. Then we have a natural Gr-equivariant comparison isomorphism

At (R)[1/1] @ 41 N = Aine(R)[1/p] @2, T. (3.4)

Additionally, (3.4) is compatible with Frobenius after base change along Aig(R)[1/u] — W (C(R)?).

Proof. Note that for T' = T(N), from the equivalence in (2.8), we have Dg(T) — Ar ® 4+ N as étale
R

(¢, T'g)-modules over Ap. Then extending scalars of the isomorphism in (2.7) along A — W (C(R)) gives
(¢, Gr)-equivariant isomorphism,

W(C(R)") D48 N = W(C(R)’) ®z, T. (3.5)

Nowa, for r € N large enough, the Wach module p” N (—r) is always effective and we have Tg(u"N(—r)) =
T(—r) (the twist (—r) denotes the Tate twist on which I'g acts via the cyclotomic character). Therefore,
we see that it is enough to show the claim for effective Wach modules (see Definition 3.8), in particular,
in the rest of the proof we will assume that NV is effective.

Let S denote the set of minimal primes of R above pR C R. From §2.1, recall that for each p € S, we
have L(p) C Cp, an algebraic closure of L containing (R),, and we have Gr(p) = Gal(L(p)/L). Moreover,
we have an isomorphism of groups I';, — I'g and for each prime p € S, let AZ (p) denote the base ring
for Wach modules in the imperfect residue field case (see [Abh23a, §2.1.2]). To avoid confusion, let us
write Ng := N and N (p) := A (p) Bt N, in particular, Ny, (p) is a Wach module over A} (p) finite free

of rank = rkz, T". From [Abh23a, Lemma 3.6] note that we have Gr(p)-equivariant inclusions for each
pes,
1 Aing (C)) @z, T C Aint(C)) ® 44 ) Ni(p) C Ains(C)) ¥z, T (3.6)

Now, note that the (o, Gr(p))-equivariant composition A}, — W(C(R)") — W (C(p)®) naturally factors as
the (¢, Gr(p))-equivariant maps A}, — A} (p) — W(C(p)®). So, by base changing the (i, G r)-equivariant
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isomorphism in (3.5) along the (¢, Gr(p))-equivariant map W (C(R)”) — W (C(p)®), we obtain a natural
(¢, Gr(p))-equivariant isomorphism,

W(CH)Y) ® 41 ) Nelp) = W(CH)) 2, T. (3.7)

~

All terms in (3.6) and (3.7) admit (p, Gr(p))-equivariant embedding into W(C;) D 4t (p) Np(p) —
W(Cg) ®z, T, where the action of Gr(p) on (3.7) factors through Ggr(p) — Gg(p). Therefore, tak-
ing the intersection of (3.6) with (3.7) inside W(Cg) D 4t (p) Ni(p) — W(C;) ®z, T and using Lemma
2.4, for each p € S, we obtain the following (¢, Gr(p))-equivariant inclusions:

i At (C* (9)) ©2, T C Au(CH(9)) 42 ) Ni(p) C Aue(CH(p)) 2, T, (3.8)

where the middle term can be written as Ay, (CT(p)) D 4+ () NL(p) = Aine(CT(p)) ® 41 Ng.

Now, from Remark 2.6, recall that [[,cs Ainf(CT(p)) is equipped with an action of G and from
Lemma 2.7 we have a (p, Ggr)-equivariant embedding Aj,¢(R) — [les Aint(CT(p)). Then, we can equip
[Tpes (At (CT(p)) ®z, T) = (Ilpes Ainf(CT (p))) ®z, T with the diagonal action of (¢, Gr) and similarly
for [Tpes (Aint(CT(9)) @ 4+ () NL(p)) = [Tpes (At (CT(p) @ 4+ Nr) = (ITpes Aint(C*(p))) ® 4+ Ni, where

the second equality follows from the fact that product is an exact functor on the category of Ag—modules
and Np is finitely presented over the noetherian ring A% (see [Sta23, Tag 059K]). So, taking the product
of (3.8) over all p € S, we obtain the following (¢, Gr)-equivariant inclusions:

/-L H mf ®Zp C H 1nf ®A+ NR C H 1nf C (p)) ®Zp T) (39)
peS peS peS

Inverting p in (3.9) and from the discussion above we get a G'g-equivariant isomorphism

( H Ainf(c+(p))> [ ] ®A+[1/#] NR ( H Aing(C ) [ﬂ ®z, T. (3.10)

peS peS

Furthermore, the (¢, G r)-equivariant isomorphism in (3.5) can be written as
Y ~ Y
W(C(RY) ®.4511/,) Nrll] = W(C(RY) o2, T. (3.11)

Using Lemma 2.7, all terms in (3.10) and (3.11) admit an embedding into (T,es W(C(p)*)) ® 4+ NR =
(Tpes W(C(p)")) ®z, T' compatible with respective actions of ¢ and Gr. Note that Ng[l/u] is finite

projective over AL[1/u] (see Proposition 3.11), so the intersection of the left-hand terms in (3.10) and
(3.11), inside (TTyes W(C(p)")) @4+ Nr, gives

(W(C(R) )®A+[1/u] Ng[L ) (( HSA1nf )[i] O 4t/ NR[%])
pe

where the first equality follows from Lemma 2.7. Similarly, the intersection of the right-hand terms in
(3.10) and (3.11), inside ([Tyes W(C(p)")) ®z, T, gives
W(C(R)’) ® 1T A ))[L] ®z, T) = Ant(R)[L] @z, T
Zp 1nf m Zy inf n Zp 4>
pesS

where the equality again follows from Lemma 2.7. Since (3.10) and (3.11) are isomorphisms, we obtain
the natural G g-equivariant isomorphism claimed in (3.4) as,

At (R)[1/p] @ 41 Nr = Ains(R)[1/1] @2z, T.

From the proof, it also follows that the isomorphism above is compatible with Frobenius after base change
along Ap(R) — W(C(R)). [ |
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Corollary 3.18. Let N be a Wach module over A} and let T := Tgr(N) denote the associated finite
free Z,-representation of Gr. Then we have a natural (¢, Gr)-equivariant comparison isomorphism

AT/ ® 4t N = A1/ p] @z, T.

Additionally, the isomorphism above is compatible with Frobenius after base change along AT[1/u] — A.

Proof. Since N([1/p] is finite projective over A%[1/ul, taking the intersection of the isomorphism in

Proposition 3.17 with the isomorphism in (2.7), inside A ®z, T, we obtain a G g-equivariant isomor-

phism AT[1/u] @ 4+p,,, NI1/1] — A*[1/p] ®z, T, as claimed. Moreover, from §2.5, recall that
R

AT = Aps(R)N A C A, therefore, from Proposition 3.17 it also follows that the isomorphism above
is compatible with Frobenius after base change along A™[1/u] — A. [ |

Proposition 3.19. Let N be an effective Wach module over AE and T := Tr(N) the associated finite
free Z-representation of Gr. Then we have (¢, T g)-equivariant inclusions p*DE(T) C N C DL(T) (see
§2.6 for notations).

Proof. The proof follows in a manner similar to the proof of Proposition 3.17, so we will freely use the
notation of that proof. Inverting p in (3.9) we get (¢, Gr)-equivariant inclusions

i (T (Aune(CF ) 02, 7)) [3] © ( TT (Auue(C* () ©41 Nw))[2]
peS pes (3.12)

< (TT (Aue(C*(0)) @2, 7)) [2].

pesS
The last term of (3.12) can be written as (Hpes Appe(CT (p))) [%] ®q, V and similarly for the first term.
Moreover, we have [[yes(Amf(CT(p)) D 4 Ngr) = ([Tpes Aint(CT(p))) ® 41 Ng, so the middle term of
(3.12) can be written as (Hpes Ainf(C+(p))) [%] ®pt NR[%] Furthermore, by inverting p in (3.5), we

have the following (p, Gg)-equivariant comparison isomorphism:
W(C(R))[}] ®p1 Nr[] = W(CR))[}] ®q, V- (3.13)

Using Lemma 2.7, we embed all terms in (3.12) and (3.13) inside ([]pes W (C(p)*))[1/p] Dpt Ng[1/p] =
(ITpes W (C(p)*))[1/p] ®q, V, compatible with respective actions of ¢ and Gg. Since Ng[1/p] is finite

projective over B}, the intersection of the middle term in (3.12) and the left-hand term in (3.13), inside
(TTpes W(C(0)"))[1/p) @ 5 Nr[1/p], gives

(WE@") 2] @ps Na[2]) 0 ((TT AweC @) (2] @42 Nr[2]) = Aue(B) (L] @42 Na[2],
peS

where the equality follows from Lemma 2.7. Similarly, the intersection of the right-hand terms in (3.10)
and (3.13), inside ([]yes W(C(p)*))[1/p] ®q, V, gives

(W@ (2] @q, V) 1 ((TT Ame(C () [3] 2o, V) = Aums(R) 2] @0, V,
peS

where the equality again follows from Lemma 2.7. Therefore, from (3.12) and (¢, GRr)-equivariance of
(3.13), we obtain the following (¢, G g)-equivariant inclusions

(At (R)[] ®q, V) € Awe(R)[;] Opt Ng[;] € Awme(R)[;] ®q, V. (3.14)
Inverting p in the isomorphism obtained in Corollary 3.18 and by taking its intersection with (3.14),
inside W (C(R)*)[1/p] ®pt Ng[1/p] = W(C(R)")[1/p] ®q, V', we obtain the following (¢, G'r)-equivariant
inclusions
p (BT ®q, V) C BT @py Ng[;] € BT @q, V.

In the preceding equation, by taking Hpg-invariants and its intersection with Dg(T') = Ng[1/u]”, inside
Dr(V), we obtain p*DE(T) C Ng C DE(T), since Ng = Ng[1/p] N Ng[1/u]" from Lemma 3.5 and
DL(T) = Dg(T) NDL(V) C Dr(V) by definition. Hence, the proposition is proved. [
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3.4. Finite [p],~height representations. In this section we will generalise the definition of finite
[p]q-height representations from [Abh21, Definition 4.9] in the relative case.

Definition 3.20. A finite [p|,-height Z,-representation of G is a finite free Z,-module T" admitting a
linear and continuous action of G such that there exists a finitely generated AE—submodule Ngr(T) C
DRr(T), stable under the action of I'r on D(7T'), and such that Nz (7T'), equipped with the induced actions
of ¢ and I'g, satisfies the following:

(1) Ng(T) is a Wach module in the sense of Definition 3.8.

(2) Apg-linearly extending the inclusion Ng(T) — Dg(T') induces a (¢, 'g)-equivariant isomorphism
AR ® 41 Ng(T) = Dg(T).

The height of T' is defined to be the height of Nr(T). Say that T is positive if Ng(T') is effective.

A finite [p],-height p-adic representation of G is a finite dimensional Qp-vector space admitting a
linear and continuous action of G'r such that there exists a Gg-stable Z,-lattice T C V, with T" of finite
[p]g-height. We set Nr(V) := Ng(T')[1/p] satisfying properties analogous to (1) and (2) above. The
height of V' is defined to be the height of T'. Say that V is positive if Nz (V) is effective.

Lemma 3.21. Let T be a finite [plq-height Z,,-representation of G then the Af-module Ng(T), asso-

ctated to T in Definition 3.20, is unique.

Proof. By definition, Agr ® 4+ Nr(T') — Dg(T) and this scalar extension induces a fullly faithful functor
R

in Proposition 3.15. So from (2.8) we obtain the uniqueness of N(7"). Alternatively, the uniquess can also

be deduced using Proposition 3.19 and [Abh21, Proposition 4.13]. [ |

Remark 3.22. Let V' be a finite [p],-height p-adic representation of Gr and 7' C V a finite [p],-height
GRr-stable Z,-lattice. Then we have Nr(V') = Nr(7T')[1/p] and from Proposition 3.19 we get that if V' is
positive then p*D%L(V) C Ng(V) € D(V). Moreover, similar to [Abh21, Remark 3.10], we can show
that Nz (V) is unique, in particular, it is independent of choice of the lattice T' by Corollary 3.16.

Remark 3.23. By the definition of finite [p],-height representations, Lemma 3.21 and the fully faithful
functor in (3.3) it follows that the data of a finite height representation is equivalent to the data of a Wach
module.

3.5. Nygaard filtration on Wach modules. In this section we consider the Nygaard filtration
on Wach modules as follows:

Definition 3.24. Let N be a Wach module over AE. Define a decreasing filtration on N called the
Nygaard filtration, for k € Z, as

Fil*N := {z € N such that ¢(z) € [p]’;N}

From the definition it is clear that N is effective if and only if Fil°’N = N. Similarly, we define Nygaard
filtration on M := N[1/p] and it easily follows that Fil* M = (Fil*N)[1/p).

Lemma 3.25. Let N be a Wach module AE.

(1) For any k,r € Z, and the Wach module i "N(r) over Ak, we have that Fil*(u™"N(r)) =
p " (Fil" PR N ().

(2) For all k € Z, we have that Fil*N N uN = pFil*~IN c N.
Similar statements are also true for the Bf,-module N|[1/p).

Proof. The proof follows from arguments similar to [Abh23b, Lemma 3.3 & Lemma 3.4]. In (1), the
inclusion p~"(Fil"**N)(r) c Fil*(u~"N(r)) is obvious. For the converse, let 4"z @ €®” be an element
of Fil¥(u~"N(r)), where x is an element of N and €®" is a Z,-basis of Z,(r). By assumption, note that
o(p"r @ ¥ = ([plgn) "e(z) ® €7 is in [p]’q“u_’"N(r). Therefore, p(x) belongs to [p]ngkN, ie. x is
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in Fil'**N. For (2), note that using (1) we may assume that N is effective. The claim is obvious if
Fil*~"!N = N, so we assume that k > 2. Let = be an element of Fil* N N N and write 2 = puy, for some
y in N. Now, as ¢(z) is in [p|FN, therefore, pp(y) is in [p|i=tN, i.e. pp(y) = [p|F~'2, for some z in N.
In particular, we have that [p]g_lz =p 12 = 0mod uN. But N/uN is p-torsion free, so it follows that
z = 0 mod uN, ie. y is in Fil* "' N. The other inclusion is obvious because pFil* ' N c Fil*N. This
allows us to conclude. |

Remark 3.26. The Nygaard filtration from Definition 3.24, on a Wach module N over AE, is stable
under the action of I'g. Therefore, using Lemma 3.25 (2) we see that for any ¢ in I'r and k € Z, we have
that (g — 1)Fil*N c (Fil*N) N uN = pFil* "IN,

The reason for considering the Nygaard filtration as above is the following: note that AcriS(R) is

equipped with a filtration by divided power ideals and the embedding Aj,(R) C Awis(R) induces a
filtration on Aj,¢(R) given as Fil* Ay ¢(R) = ¥ Aj¢(R) for k € N. We equip A1 with the induced
filtration Fil* At := AT NFilk A1 (R) C Ape(R).

Lemma 3.27. Let N be an effective Wach module over A}, and let T := Tg(N) denote the associated
Z,-representation of Gr. Then, for k € N, we have (Filk A+ ®z, T)NN = Fil*N.

Proof. Let V := T[1/p], M := N[1/p] and Fil*B* := (Fil*A*)[1/p]. Then it is enough to show that
(Fil*B* ®q, V)N M = Fil* M. Indeed, from Definition 3.24 we have Fil* N := Fil* M NN = (Fil* B+ ®q,
V)NMNN = (Fil* AT @z, T)NN since Fil* B¥NA* = Fil*A*. Now the inclusion Fil* M C (Fil*B*®q, V)
is obvious and for the converse it is enough to show ([p]y BT ®q, V) N M = [p]5M. Indeed, if we have z in
(Fil*B+ ®q, V)NM then ¢(z) isin ([p]i BT ®q, V)NM = [p|FM, ic. zisin Fil* M. For the reduced claim,
note that the inclusion [p]I;M C ([jo]ICjBJr ®q, V) N M is obvious. To show the converse, let z in Bt ®q, V
such that [p]*z is in M, in particular, z is in M[1/[p],]. Then it follows that h(z) = x for all h € Hp,
ie. zisin (BT ®q, V)~ = D}(V) = DL(T)[1/p]. From Proposition 3.19 recall that p*D}(V) C M,
where s is the [p],-height of N. So we get that pz is in M, in particular, = is in M[1/u|. Combining this
with the previous observation we get that x isin M[1/u]NM[1/[pls] C Br® B M. But from Proposition
3.11 we know that M is finite projective over B}, and note that B = BE[l/u] N B%[1/[plg] C B, since
[plg = p mod puBj. Hence, it follows that we have x is in M[1/u] N M[1/[p],] = M, as desired. [

3.5.1. Nygaard filtration on scalar extension of Wach modules. Let N be a Wach module
over AE. Then by Remark 1.4 we know that Ny, := AJLr ® 4+ Ng is a Wach module over AZ equipped
R

with the natural action of ¢ and I';, — T'g (in the sense of [Abh23a, Definition 3.1]). Note that similar
to Definition 3.24, we can equip Ny, with the Nyggard filtration (see [Abh23a, Definition 3.2]), and we
claim the following:

Lemma 3.28. For each k € Z, we have that
A} ® 4+ FilFNp =5 Fil* Ny (3.15)
R

Proof. Using Lemma 3.25 (1), note that it is enough to prove the claim for effective Wach modules, in
particular, we will assume that Fil’Nr = Ng. Note that the case k = 0 is trivial. We will first prove
the claim rationally and use it to deduce the integral claim. Set Mg := Ng[1/p] and My, := Nz[1/p],
equipped with induced structures. Now, consider the following commutative diagram with exact rows:

0 —— FilMt'Mp —— FilFMp —— grfMr —— 0

i i J (3.16)

0 —— FilM'M, —— FilbM, —— grb M, —— 0,

where the left and the middle vertical arrows are natural inclusions. For the induced right vertical

arrow note that we have Fil*Mp N Fil** 1M, = Fil*™ Mg c My, since [p]];MR N [p]ZHML = (B N

[pl¢BY) ®p+ [plE Mg = [p]i™ Mg. So we get that the right vertical arrow of (3.16) is injective. From the
R
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preceding conclusion, it follows that BZ ®p+ gr*Mr =5 L ® R[1/p] grf Mp is a finitely generated module
R

over grOBZr = Bzr / ,uBEL — L, i.e. a finite dimensional L-vector space, and further it is easy to see that
the natural map L ®g1/p] gr®* Mg — gr* M7, is injective. Now, consider the following diagram with exact
rOWS:

0 —— Bzr ®BI-§ FﬂkJrlMR — Bzr ®Bl—§ FﬂkMR — L®R[1/p] grkMR — 0

l l J (3.17)

0o— S Filb My, — S FilFM, ——— s ohM, 5 0,

4 where the top row is the scalar extension of the top exact row in (3.16) along the natural flat map
BE — B; and the vertical maps are induced from the isomorphism AJLr ® At Nr = N;. Now, we

will proceed by induction on k, i.e. assume that the middle vertical arrow of (3.17) is an isomorphism
for some k > 0. Then, it follows that the right vertical arrow is surjective and it is injective by the
discussion after (3.16), hence bijective. So, we conclude that the left vertical arrow is bijective as well,
i.e. BZ ® g+ Fil**1Mp =5 Fil**' My, Finally, note the natural map AE — AJLr is flat, therefore, for any
k € Z we have that

A; ®A§ FﬂkNR = AJLr ®A§ (FﬂkMR N Ngr)
= (A} ® Ak Fil* Mz) N (A} ® 4 Nr) = Fil* M N Ny, = Fil*Ny.
This completes our proof. |

Remark 3.29. The ideas emplyed in the proof of Lemma 3.28 enables us to relate the Nygaard filtration
on Np to classical Wach modules. Indeed, let O; := (UL, 0L[X 1/p )", where " denotes the p-adic

(2
completion. The Op-algebra Oy is a complete discrete valuation ring with perfect residue field, uniformiser

p and fraction field L := O 7[1/p]. The Witt vector Frobenius on Oy is given by the Frobenius on Oy,
described in §1.4 and setting go(XZ-l/pn) = Xil/pn_1 forall 1 <i < dandn € N. Let Loy := L(pp=)
and let L S T denote a fixed algebraic closure of L. We have the Galois groups G p = Gal(z/ L) =
Gal(f/UfZIL(XZ-l/pw)) andI'y := Gal(Loo/L) =+ Gal(L(pp)/L) = Z). Note that G’y can be identified
with a subgroup of G and I'y can be identified with a quotient of I'r,. Next, recall that from [Ber04], we
have the theory of Wach modules over Az = O;[u] (see [Abh23a, §4.1] for a quick recollection). Now,

if N is a Wach module over Ag, then N; := A}: ® 4+ Np is naturally a Wach module over A}t (see
L
[Abh23a, Corollary 4.27]). Euipping N with the Nygaard filtration as in Definition 3.24 and employing
an argument similar to Lemma 3.28 shows that, for each k € Z, we have that AJLr ® 4+ Fil* N, = FilFN; .
L

3.5.2. Reduction modulo p of the Nygaard filtration. Let Ni be a Wach module over AE and
note that (Ng/uNg)[1/p] is a p-module over R[1/p] since [p], = p mod pAf,, and Ng/uNg is equipped
with a filtration Fil® (Ngr/uNR) given as the image of Fil* N under the surjection N — Ng /uNg. We
equip (Ng/uNg)[1/p] with the induced filtration Fil*((Ng/uNg)[1/p]) := Fil*(Ng/uNg)[1/p], and note
that it is a filtered p-module over R[1/p].

Lemma 3.30. For ecach k € Z, the following sequence is exact:
0 — Fil*INp 25 Fil* Ny — Filk*(Ng/uNg) — 0. (3.18)

Moreover, by taking the associated graded pieces, we get that grt*Nr — gr®(Ng/uNg). Similar state-
ments are also true for the BE—module N[1/p]. Furthermore, similar claims hold for Wach modules over
A; and Az (see Remark 3.29 for the latter ring) as well as after inverting p.

Proof. Exactness of (3.18) easily follows from Lemma 3.25 (2). Then, by taking the associated graded
pieces, we obtain the following exact sequence:

0 — gr¥ TN £ grf Np — gr¥(Ng/uNg) — 0.

It is clear that the map gr* ' Ny -2 grf N is trivial, i.e. gr¥ Np = gr¥(Ng/uNg). Rest is obvious. W
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Let N, := AJLr ® 4+ Ng equipped with the natural action of ¢ and I'y, —5 T'r and set Mg := Ng[1/p]
R
and My, := Np[1/p].

Lemma 3.31. The natural isomorphism of ¢-modules Op ®p (Ng/uNg) — Np/uNy is compatible
with filtrations, i.e. for each k € Z we have that

O, ®g Fil*(Ng/uNg) = Fil*(N1/uN7). (3.19)
In particular, L @ g (Mr/uMpg) — M /uMy is a natural isomorphism of filtered p-modules over L.

Proof. Consider the following diagram with exact rows:

0—— Af ® Ak pFil" I Ngp —— AT ® At Fil*Ng —— Op @ Fil*(Ngp/uNg) —— 0
zi(:’s.rs) zi(:z.rs) l(&lf)) (3.20)

0 —— > pFilF'N, — S FilPN, —— 5 FiF(Np/uNy) ——— 0,

where the top row is the extension of (3.18) along the flat map AE — AJLr and the bottom row is the exact
sequence (analogous to (3.18)) for Wach modules over Af. Note that the map in (3.19) is compatible
with the natural map in (3.15), i.e. the the right square in (3.20) commutes. Hence, the right vertical
arrow, i.e. (3.19) is bijective. [

Remark 3.32. In the notation of Remark 3.29, let N; be a Wach module over AJLr and set Nj :=
A‘Li' ® 4¢ Np. Then then natural isomorphism of ¢-modules Oy ®0, (Nr/uN) — Ny /uNy is compatible
vyith filtrations, i.e. for each k € Z we have that O; ®0, Fil*(Ny,/uNr) = Fil*(N; /uNy). uIn particular,
L ®o, (NL/uNr) — (N /Ny )[1/p] is a natural isomorphism of filtered p-modules over L.

3.6. Wach modules are crystalline. The goal of this subsection is to prove Theorem 3.34. In
order to prove our results, we will need auxiliary period rings Ag% and (’)A%Pw from [Abh21, §4.3.1].
We briefly recall their definitions. Let @ := (, — 1 and set AE@, = Aflp 7 ()] C Amf(Ro), stable
under the (¢, 'g)-action on the latter. By restricting the map 6 on Amf(R ), to A+ (see §2.2), w

obtain a surjective ring homomorphism 6 : AEW — R[w|. We define A - to be the p—adlc completlon
of the divided power envelope of the map 6 with respect to Ker 6. Furthermore, the map 6 extends
R-linearly to a surjective ring homomorphism 0 : R ®z A% i R[w], given as z ® y — zf(y). Similar
to above, we define (’)A}%% to be the p-adic completion of the divided power envelope of the map fr with
respect to Ker §p. The morphisms 6 and 0 naturally extend to respective surjections 6 : ALD R — R[w|
and Op : (’)APD — R[w|. Now, from loc. cit., we have natural inclusions AP% C Agis(Roo) and
OAPD C OACHS( ), and it is easy to verify that the former rings are stable under respective actions of
%) and I'r on the latter rings. Therefore, we equip A - and OA - with induced structures, in particular,
a filtration and an A%%—hnear connection 94 on OAPD sa‘msfymg Griffiths transversality with respect to
the filtration, and it is easy to show that (OA}%%)QA 0 = A}%BU. Note that the aforementioned filtration

on A}%]?ﬂ and OAED R, coincide with the divided power filtration by Ker 6 and Ker 0 respectively (see
[Athl Remark 4. 23])

Remark 3.33. Let us first remark that the ring ARP R 1s flat over AE. Indeed, note that A%Bv is the
p-adic completion of a divided power algebra over A R Slven as A};’w (€ /!, k € N], where £ = p/o .
Now, since (p, £) is a regular sequence on A} R therefore, using [BS22, Lemma 2.38 and Lemma 2.43],
it follows that A%]?ﬂ is p-completely flat over A+’w, therefore, flat since A;%w is noetherian (see [Sta23,
Tag 0912]). As A}, k. is flat over AfL, it follows that AP%, is flat over AL. Furthermore, from [Abh21,

Lemma 4.20], note that OA - is a PD-polynomial algebra over A - in d variables. So agam from [B522,
Lemma 2.38 and Lemma 2.43] it follows that O ALP Row 18 p—completely flat over APD As A - is flat over
AE, we get that (’)A%%, is p-completely flat over AR, hence flat. Next, note that for any k € N, the
graded quotient gr” (AE]?W) = Fil* (A%]?w) /F ilkH(A%%) is isomorphic to £ R[w], in particular, we have
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that gr (APD ) is a free R-module. Now, since OAEP is a PD-polynomial algebra over AEP R We also get
that for any k& € N, the graded quotient gr (OA%%) Fllk(OAPD )/ Fllk“((’)AE%) is a free R-module.
Moreover, we have A% /u — R, so the flat dimension of R as an Aj-module is 1, and it follows that
the flat dimension of grkOA as an AJr module is also 1. Since F110(9A = 0ALP . therefore, using
induction on k£ € N, we conclude that Fllk OAPD is flat as an A -module.

Theorem 3.34. Let N be a Wach module over AE and let T := Tgr(N) be the associated finite free
Zy,-representation of Gr. Then V := T[1/p| is a p-adic crystalline representation of G and we have
a natuml isomorphism of R[1/p]-modules (OA w Oat N[1/p))'® =5 ODeis r(V) compatible with the
respective Frobenii and connections.

Proof. For r € N large enough, the Wach module p"N(—r) is always effective and Tr(u"N(—r)) =
Tr(N)(—7) (the twist (—r) denotes a Tate twist on which I'r acts via x ", where y is the p-adic cyclotomic
character). Therefore, it follows that it is enough to show the claim for effective Wach modules. So, in the
rest of the proof, we will assume that N is effective. Now, let us set ODpg := (O ARD = ®at N[l/p])FR C
ODis,r(V), and using Proposition 3.35, we note that ODp, is a finite projective R[l/p] module of rank
=rk B;N [1/p]. Moreover, ODp, is equipped with the tensor product Frobenius. Next, we note that ODpg

is equipped with a connection induced from the connection on OA%%. Using Proposition 3.35, note that
we have a natural isomorphism OA%% ®r ODp — OAE]’?Z ® 4t N[1/p]. Now, consider the following

diagram:

_ 3. 25
OBusis(R) @ pp1 /) ODi — ks OBes(R ) @+ N[L/p]

(:34241 (:;.4)} (3.21)

OBcris(E) ®R[1/p] ODcris,R(V) — OBcris(R) ®Qp ‘/7

where the left vertical arrow is the extension of the R[1/p]-linear injective map ODpr — ODgis,r(V), from
(3.24), along the faithfully flat ring homomorphism R[l/p] — OBgis(R) (see [Bri08, Theoréme 6.3.8]),
the top horizontal arrow is the extension along OARY [1/p] — OBeys(R) of the isomorphism (3.23) in
Proposition 3.35, the right vertical arrow is the extension along AT[1/1] — OBeis(R) of the isomorphism
in Proposition 3.17 and the bottom horizontal arrow is the natural injective map (see [Bri08, Proposition
8.2.6]). Commutativity of the diagram (3.21) and compatibility of its arrows with the respective actions
of (¢, Gr) and connections follow from (3.24). Since the top horizontal and right vertical arrows in (3.21)
are bijective, we conclude that its left vertical arrow and the bottom horizontal arrow are also bijective.
Therefore, V' is a p-adic crystalline representation of Gg, and by taking G fixed part of the left vertical
arrow in (3.21), we obtain an isomorphism of R[1/p]-modules

ODR L> ODcris,R(V) (322)
compatible with the respective Frobenii and connections. This concludes our proof. |
The following observation was used above:

Proposition 3.35. Let N be an effective Wach module over A}, then ODpg := (OARD o ® 4t N[l/p])

is a finite projective R[1/p|-module of rank = rk+ N[1/p] equipped with a Frobenius and o connection.
R

Moreover, we have a natural comparison isomorphism

(3.23)
a®b®:ﬂ»—>ab®m,

compatible with the respective Frobenii, connections and actions of I'g.

Remark 3.36. In (3.23), the Frobenius on each term is given as ¢ ® p; the connection on the right-hand
term is given as the natural A%l?w-linear differential operator d ® 1 and on the left-hand term, it is given
as 0 ® 1+ 1® dp, where dp is the connection on O Dpg; the action of any ¢ in I'g on the left-hand term
is given as ¢ ® 1 and on the the right-hand term, it is given as g ® g.
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Proof of Proposition 3.35. We will adapt the proof of [Abh21, Proposition 4.28]. Recall the following rings
2 k

from [Abh21, §4.4.1]: for n € N, we take a p-adically complete ring SPP := AE it 2,’;2” ey k,’;ﬁ, ce)
We have a Frobenius homomorphism ¢ : SE*P — SPP, "in particular, " (SFP) AP D_and the ring SF'P
is further equipped with a continuous (for the p-adic topology) action of I'g. The reader should note that
in [Abh21, §4.4.1] we consider a further completion of S'P, with respect to certain filtration by PD-ideals,
which we denote as §5 D'in loc. cit. However, such a completion is not strictly necessary and all the proofs
of loc. cit. can be carried out without it. In particular, many good properties of §5D restrict to good
properties on S as well (for example, (¢, T'r)-action above).

Let us now consider the Op-linear homomorphism of rings ¢ : R — SEP, defined by sending X; —
[X ]b], for 1 < j < d. Using ¢ we can define an Op-linear homomorphism of rings f : R ®o, SLP —
SPD “sending a ® b +— 1(a)b. Let OSPP denote the p-adic completion of the divided power envelope of
R ®0, SP, with respect to Ker f. The tensor product Frobenius induces ¢ : OSEP — OSEPD; | such
that " (OSFP) OA%%, and the action of I'g extends to a continuous (for the p-adic topology) action
on (’)S,P; D Moreover, we have a (¢, T'r)-equivariant embedding S,P; D~ OSE D and the latter is equipped

with a I'g-equivariant SFP-linear integrable connection given as the universal continuous SEP-linear de

Rham differential d : OSFP — Q}D SPD /gPD- Furthermore, we have R = (OSFP)'® and with Vi = 1®J[§%],
for 1 < j < d, we have the p-adically complete divided power ideals of O.SF'P as follows:
d d
JHOSPD .~ <% [T = vyl k = (ko, k1, ..., ka) € N*™* such that Y k; > z>
j=1 Jj=0

We equip OSPP @ 4+ IV with the tensor product Frobenius and the connection on OSPP induces an
R

SPD_linear integrable connection on OSED®A£N. Then D,, := (OS}?D@)A;N[I/})})FR isan R[1/p]-module
equipped with a Frobenius ¢ : Dy, — Dy 1 and an integrable connection. In particular, it follows that
©"(Dy) C ODp = ((’)APD ® 41 N[l/p]) C (OAuis(R) Bt N[1/p]) "7 here we have (’)A%Dw

OAuis(Reo) = OAuis(R)HE (see [MT20, Corollary 4.34] for the equality). Let T' := Tr(/NV) denote the
finite free Z,-representation of G, associated to N, and set V' := T[1/p], then we have

ODR C (OBCI‘IS( ) ®B+ N[l/p]) (OBCI"IS( ) ®B+ N[l/p])
(OBcns( )® V) ODCI‘iS,R(V)7

(3.24)

where the isomorphism follows by taking G r-fixed elements of the isomorphism (3.4) in Proposition 3.17,
after extending scalars along Aj,¢(R)[1/1] — OBeis(R). Since ¢"(D,) C ODg, or equivalently, the
R[1/p]-linear map 1 ® ¢" : R[1/p] @yn g1 /p] Dn — ODRg is injective, we get that R[1/p] ®,n g1/ Dn
is a finitely generated R[1/p]-module. Moreover, recall that ¢™ : R[1/p] — R[1/p] is finite flat (see
§1.4), so it follows that D, is finitely generated over the source of ", i.e. D, is a finitely generated
R[1/p]-module equipped with an integrable connection, in particular, it is finite projective over R[1/p]
by [Bri08, Proposition 7.1.2]. Furthermore, recall that N[1/p] is a finite projective Bj-module (see
Proposition 3.11), therefore OSF'P ® 4t N[1/p] is a finite projective OSLP[1/p]-module, and from [AGT16,

Lemma 1V.3.2.2], it follows that OSIP ® 4+ IV is p-adically complete. Now, for n > 1, similar to the
R

proof of [Abh21, Lemmas 4.32 & 4.36], it is easy to show that log~y; := ZkeN(—l)k% converges as
a series of operators on OSFP ® A% N, where {y0,71,...,74} are topological generators of I'p (see §2).

Lemma 3.37. Let m > 1 (let m > 2 if p = 2), then we have a T g-equivariant isomorphism via the
natural map a QbR r — ab @ x:

OS*P @ D,,, = OSPP @4+ NI1/p]. (3.25)

Proof. The map in (3.25) is obviously compatible with the respective actions of I'g, so we need to check
that it is bijective. Let us first check the injectivity of (3.25). We have a composition of injective

homomorphisms O.SFP[1/p] N (’)AE, [1/p] = OBeis(R). As D,, is finite projective over R[1/p], the
map
0OSPP @p D, = OSPP[1/p] @r(1/p) Dm — OBeris(R) @ym g1 /p) Dim, (3.26)
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is injective. Next, we have V' = T[1/p| and we consider the following composition,

OBeis(R) ® g g1 /p) Dm ——— OBeris(R) ®pp1/p) ODr — OBais(R) ®pp1/p) ODaris,r(V).  (3.27)

As R[1/p] = OBgis(R) is faithfully flat (see [Bri03, Théoréme 6.3.8]) and (3.24) is injective, so in
(3.27), the second map is injective and the first map is injective because 1 ® ¢™ : R[1/p] @, m g1 /)
D,, — ODpg is injective, in particular, we see that (3.27) is injective. Moreover, since N[1/p| is a finite
projective Bj;-module, therefore, similar to (3.26), it can be shown that the map OSLP ® ,+ N[1/p] =
_ R
OSPP[1/p] ® g+ N[1/p] — OBeris(R) ®,m g+ N[1/p] is injective. Furthermore, from the definition
R "R
of Wach modules (see Definition 3.8), we have an isomorphism 1 ® ¢ : Bj, ®, 5+ N[1/p,1/[plq] e
PR

N[1/p,1/[pl4]. Therefore, iterating it m times and by extending scalars along BE — OBeis(R), we obtain
an isomorphism O Beis(R) ® o B N[1/p] = OBuis(R) Dpt N[1/p], since [p, is unit in OBeis(R). So,
from the preceding observatlons 1t follows that the followmg composition,

OS,E;D ®AJ}; N[1/p] — OBguis(R) ® o™, B N[1/p] —> OBeis(R) ®B+ NI1/p], (3.28)

is injective. Let us now consider the following diagram:

3.26 — 3.27
OSEP @ Dy~ OBuyio(R) @ it 3] Do s OBexis(R) © ODris (V)

(3. 25)J J

OSPD ®A+ N[l/p] 3 8) OBCHS( ) ®B+ N[l/p] (3,’1) OBcris(R) ®Qp V,

where the right vertical arrow is the natural injective map (see [Bri08, Proposition 8.2.6]). From the
definitions, it easily follows that the diagram commutes, therefore, we see that the left vertical arrow, i.e.
(3.25) is injective.

Next, let us check the surjectivity of the map in (3.25). We define the following operators on ONED :
OS2 @44 N[1/p],

5 —(logvo)/t  fori=0,
") (logv)/(tV;) forl1 <i<d,

where V; = %, for 1 <i <d(see[Abh21,§4.4.2]). Note that for any g € ' and any x € OS};D@AJEN,
we have (¢g—1)(ax) = (g—1)a-x+g(a)(g—1)z. Then, from the identity log(v;) = limnHJroo(yf’n —-1)/p",
it easily follows that the operators 0; satisfy the Leibniz rule for all 0 < i < d. In particular, the operator
d: ONFD _, ONPD ®0sED Q}QSpD/R, given by x — Op(x)dt + Y%, 9;(z)d[X?], defines a connection
on ON,I,DLD . Furthermore, from [Abh21, Lemma 4.38] the operators 9; commute with each other, so the
connection 0 is integrable and using the finite [p],-height property of N, similar to [Abh21, Lemma 4.39],
it is easy to show that 0 is p-adically quasi-nilpotent. Now, similar to the proof of [Abh21, Lemma 4.39
& Lemma 4.41], it follows that for x € N[1/p], the following sum converges in D,, = (ONFP)I'r =
(ONEP)I=0:

> A 00r oo (@)t (1 - V) (1= vy Rl (3.29)

keNd+1

Using the construction above we define an O SYP[1/p]-linear transformation v on the finite projective
module ONP and claim that « is an automorphism of ONEP. Indeed, let us first choose a presentation
ONFP @ N’ = (OSFP)"| for some r € N. Then, on a chosen basis of (OSYP)" we can define a linear
transformation 8 using (3.29) over ONIP and the identity on N’. Note that the transformation 3
preserves (’)NED and we set det @ = det 8, which is independent of the chosen presentation (see [Gol61,
Proposition 1.2]). Now by an argument similar to the proof of [Abh21, Lemma 4.43], it easily follows that
for some N € N large enough, one can write p”¥ det v = p™¥ det § € 14 J OSPD in particular, we get that
det o is a unit in OSEP[1/p], so a defines an automorphism of ONLP (see [Gol61, Proposition 1.3]). Since
the formula considered in (3.29) converges in D,,, we conclude that the natural map OSPP ®p D,, —
OsPpb ® 4t N|[1/p], is surjective. Hence, (3.25) is bijective, proving the lemma. [
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Recall that ODpg is an R[1/p]-module equipped with an integrable connection and it is finite over
R[1/p] since we have an inclusion ODg C ODis z(V) of R[1/p]-modules from (3.24). In particular, we
see that ODp is a finite projective module over R[1/p] by [Bri08, Proposition 7.1.2]. Moreover, ODp, is
equipped with a Frobenius-semilinear operator ¢. Now consider the following diagram:

1 m
OAPD @y g Dy ——2—s OARD @p ODp

(3.25)lz (3.2:5)l (3.30)
OARY, ®m at N[1/p] —=— OARD, ® 41 N[1/p],

where the left vertical arrow is the extension along ¢™ : OSED — OA%% of the isomorphism (3.25)
in Lemma 3.37 and the bottom horizontal isomorphism follows from an argument similar to [Abh21,
Lemma 4.46]. By the description of the arrows, it follows that the diagram is (p,I'g)-equivariant and
commutative. Taking I'p-invariants of the diagram (3.30), we obtain an isomorphism of R[1/p]-modules
1®¢@™: R®ym gi1/p] Dm — ODg. In particular, it follows that the top horizontal arrow of (3.30) is an
isomorphism. Hence, we conclude that the right vertical arrow of (3.30) is bijective as well, in particular,
the comparison in (3.23) is an isomorphism compatible with the respective Frobenii, connections and
actions of I'g. This finishes our proof. |

Remark 3.38. Let us make an observation that will be useful for the proof of Theorem 5.6. In the
basis {dlog(X1),...,dlog(X4)} of Qk, let 94, denote the i*® component of the connection on OA%%,
for 1 <14 < d, and let Op; denote the induced operator on ODg. Moreover, employing arguments similar
to [Abh23b, Lemmas 4.12, 5.17 & 5.18], we can show that, for 1 < i < d, the operator V; = (log~;)/t =

._1)k+1
%ZkeN(—l)k% converges as a series of operators on (’)AIEBU Bt N. Now, using (3.29) and the

top horizontal arrow in diagram (3.30), we note that for any x € N[1/p], there exists w € ODpg and
z € (Fill(’)Aﬁ%) ® 41 N|[1/p], such that x = f(w) + z, where f is the isomorphism in (3.23). Then an

easy computation shows that V;(z) — f(0pi(w)) = Vi(z) + 04,i(2) € (FﬂlOAE]?w) ® 41 N[1/p].

4. CRYSTALLINE IMPLIES FINITE HEIGHT

The goal of this section is to prove the following claim:

Theorem 4.1. Let T be a finite free Z,-representation of G such that V := T[1/p] is a p-adic crystalline
representation of Gg. Then there exists a unique Wach module Nr(T) over AE attached to T'. In other
words, T is of finite [p]y-height.

Proof. For a p-adic representation, the property of being crystalline and of finite [p],-height is invariant
under twisting the representation by x”, where x is the p-adic cyclotomic character and » € N. Therefore,
we can assume that V is positive crystalline. Note that V' is also a positive crystalline representation of
(1., and therefore, it is also positive and of finite [p],-height as a p-adic representation of G, (see [Abh23a,
Definition 3.7]). In particular, we also get that 7" is positive and of finite [p],-height as a Z,-representation
of Gr. Moreover, associated to T, from loc. cit. we have the Wach module N (T) over A} and we set
Ng(T) := N (T)NDg(T) C D.(T) as an Af-module. From Proposition 4.7, the module N (T') satisfies
all the axioms of Definition 3.8 and Definition 3.20. Hence, it follows that N (7T') is the unique Wach
module attached to T', or equivalently, T is of finite [p],-height. |

Remark 4.2. From Theorem 4.1, note that T" is a Z,-representation of G, such that V' := T[1/p] is
crystalline for Gr,. Then, from [Abh23a, Theorem 4.1] it follows T is of finite [p],-height as a representation
of Gy, i.e. there exists a unique Wach module N (T) over A} attached to T. Moreover, note that
Az ® A+ Ngr(T) is also a Wach module over AJLr attached to T, where we use I', — I'. Now, using

Proposition 4.12, we have that A; ® ;+ Nr(T) — A ®a, Dr(T) — Dr(T) as étale (,I'z)-modules
R

over Ar. Hence, by the uniqueness of the Wach module attached to T" over A} in [Abh23a, Lemma 3.9]
it follows that A} @ ,+ Ng(T) = N(T) as (¢,I'1)-modules over A} .
R
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4.1. Consequences of Theorem 4.1. Let RepC“S(G r) denote the category of Z,-lattices inside
p-adic crystalline representations of Ggr. Then, by comblnlng Theorem 3.34 and Theorem 4.1, we obtain
the following:

Corollary 4.3. The Wach module functor induces an equivalence of categories

Re(Gi) = (5. T ModS
T +— Ngr(T),

with a quasi-inverse given as N + Tgr(N) := (W(Rb[l/pb]) ® 4+ N)gp:1
R
Passing to associated isogeny categories, we obtain the following:

Corollary 4.4. The Wach module functor induces an exact equivalence of ®-categories RepC“S(GR) =

(. Tre)-Mod [,

(W (R [1L/p) ©,0 M)7".

Proof. The equivalence of categories follows from Theorem 4.1. For the rest of the proof, let us remark that
for a p-adic crystalline representation V of G, from Proposition 4.7, we have Ng(V) = N (V)NDg(V) C
D (V) as finite projective (¢, 'g)-modules over BE. Moreover, from Proposition 4.12 and Remark 4.2,
note that B} ®pt Ng(V) =5 NL(V) and By Dpt Nz (V) = Dg(V) compatible with resepctive natural
actions of (¢, I'g).

Now, let V1 and V5 be two crystalline representations of G'r, then Vi ®q, V2 is again crystalline (see
[Bri08, Théorem 8.4.2]). We have

via V = Ngr(V), and with an exact ®-compatible quasi-inverse given as M +— V(M) =

Ng(V1) ®p+ Nr(V2) = Nr(V1) @5+ (NL(V2) N DR(12))
= (Nr(V1) @+ N1(12)) 0 (Nr(V1) ® g+ Dr(V2))
= (NL(V1) ®g+ Np(V2)) N (Dr(V1) @+ Dr(V2))
= Nz (V1 ®q, V2) N Dg(V1 ®q, V2) = Nr(V1 ® V2),

(
(

where the first equality follows from the discussion above, the second equality follows since Ng(V7) is
projective, the third equality again follows from the discussion above and the last equality follows from
[Abh23a, Corollary 4.3] and (2.8). This shows the compatibility of N with tensor products. Conversely,
let N1 and N be two Wach modules over A%, and set N3 := (N1 ® At N3)/(p-torsion) as a finitely generated

Ak-module. Then, note that we have N3 C N3[1/p] = Ny[1/p] ®p+ Ns[1/p], where the right-hand term

is a projective B;{F-module. Therefore, N3 is torsion free and by definition N3/u is also p-torsion free,
in particular, the sequence {p, u} is strictly Ns-regular by Remark 3.2. Furthermore, assumptions for
the (¢, 'g)-action on N3, as in Definition 3.8, can be verified similar to [Abh21, Proposition 4.14]. So it
follows that N3 is a Wach module over A%. Since, N3[1/p] = Nq[1/p] Dpt N3 [1/p], compatibility of the
functor Vg with tensor products now follows from (2.8).

It remains to show the exactness of Ny since exactness of the quasi-inverse functor Vi follows from
Proposition 3.15 and the exact equivalence in (2.8). So, let us consider an exact sequence of p-adic
crystalline representations of Gg as 0 — V; — Vo — V3 — 0, and we wish to show that the sequence

0— NR(‘/I) — NR(VQ) — NR(Vg) — O, (4.1)

is exact. Let To C V5 be a Gg-stable Z,-lattice, then T := V1 NTy C V3 is a Gr-stable Z,-lattice inside
Vi and set T3 := T /11 C V3 as a Gr-stable Z,-lattice. By definition, we have Wach modules Nx(T}),
Ng(T) and Ng(T3) and we set N := Ng(Th)/Ng(T}) as a finitely generated Aj-module equipped with
a Frobenius ¢ : N[1/u] — N[1/¢(n)] and a continuous action of I'g induced from the corresponding
structures on N(T3). We claim that N[1/p] = Ng(V3) as (¢, I'g)-modules over Bj,.

Indeed, first recall that D g is an exact functor from the category of Z,-representations of G g to the cat-
egory of étale (¢, I'g)-modules over Ap (see §2.6). So we get that the natural map N = Ng(7Ts)/Ng(T1) —
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Nr(T3) is injective, and since AE — Ap is flat, therefore, we have Agr ® ,+ N — Dr(T»)/Dg(Ty) =
R
Dg(T3) «— Ag ® 4+ Ng(T3) as étale (¢, I'g)-modules over Ag. Moreover, since ¢ : AE — AE is flat,
R
therefore, using the finite [p|,-height property of Nz(T}) and Nr(712), we get that N is of finite [p],-height,
ie. 1®p: (¢*N)[1/[plg] = N[1/[plg]. In particular, N[1/p] is finite projective over B}, by Proposition
A.1. Next, for i € {1,2,3}, considering V; as a p-adic crystalline representation of G, from [Abh23a,
Corollary 4.3], we have an exact sequence 0 — N (V1) — N5 (Va) — Nz (V3) — 0 of Wach modules over
B} = Af[1/p]. Note that the natural map Bj, — B} is flat, so we get that B} ®z+ N[1/p] — N (V3)
R
as (¢, T'r)-modules over Bf. Moreover, from Remark 4.2, we have that B} Dpt Nz(V;) = Np(V;),

for i € {1,2,3}. Now, since N[1/p] is finite projective over BE, therefore, as submodules of Dy, (V3), we
obtain an isomorphism of (¢, I'g)-modules over BE as follows:

N[1/p) = (Bf ©5: N[1/p) N (Br @51 N[1/p]) =5 Ni(Vs) N Da(Va) € Np(Vi).
Hence, (4.1) is exact, concluding our proof. |
We obtain applications of Theorem 4.1 as follows:
Theorem 4.5. Let V be a p-adic representation of Gr. Then the following are equivalent:
(1) V is crystalline as a representation of Gg;
(2) V' is crystalline as a representation of Gp,;
(3) tkp(1/p)ODeris,r(V) = dimg, V.

Proof. Let V € Repf:,r;s(G Rr), then obviously we have that V & RepSpiS(G 1). Conversely, let V' €
Repggs(G 1) and choose a Gpg-stable Z,-lattice T C V such that T is of finite [p],-height as a repre-
sentation of Gr,. Then, using Proposition 4.7, note that T is of finite [p],-height as a representation of Gg.
Therefore, V= T'[1/p] is a crystalline representation of Gg by Theorem 3.34. This shows the equivalence
of (1) and (2).

Next, if V' € Rep%r;S(GR), then rkp( /p ODeris,r(V) = dimg, V' (see §2.6), proving that (1) implies
(3). So it remains to show that (3) implies (2). Let V be a p-adic representation of G such that
kg1 /p)ODais,r(V) = dimg, V. From [Bri06, §3.3] recall that V' is crystalline for G, if and only if
dimz, ODis, (V) = dimg, V. So we will show that dimz ODeis,.(V') = dimg, V' by constructing a nat-
ural isomorphism of L-vector spaces L ®g|1/p| OD s, r(V) = OD s, .(V). Since dimy, OD s, (V) <
dimgq, V, it is enough to construct a natural L-linear injective map L ® gy /5] ODeyis, R(V) = ODgis,1.(V)
and the claim would follow by considering L-dimensions.

From Remark 2.16, note that we have a natural (¢, Gr)-equivariant L-linear injective map L ® R[1/p]
OBeis(R) = Tlpes OBeis(CT(p)). Tensoring this map with V' and considering the diagonal action of
G R, we obtain a (¢, Gg)-equivariant injective map

L @gj1jp) OBeris(R) @q, V — ( HSOBcris(CWP))) ®q, V = HS(OBcns(CWP)) ®, V). (42)
pe pe

The map in (4.2) further induces a natural map L ®gjy /5] OBais(R) ®q, V' — OBeis(CH(p)) ®q, V,
compatible with the respective Frobenii, filtrations and connections (see Remark 2.16). Now, we take the
G g-invariant part of (4.2) and note that product commutes with the left exact functors, in particular,
with taking Gp-invariants. So we obtain p-equivariant L-linear injective maps

GRr
L @pp1/p) ODeris (V) — rg OBeis(CH(p)) @, V)
pe

- peHg(@BmS(cﬁ(ao)) ®q, V)" (4.3)

— H (OBais(CT(p)) ®Q, V)GR(p)v
peS
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where note that the last arrow is injective since Gr(p) C Gg is a subgroup. Moreover, since G acts
transitively on S, it transitively permutes the components of [T,cs(OBeis(CT(p)) ®q, V)CRW) e, if
0 # x € L ®p[1/p) ODeris,r(V), then its image (xy)pecs under the composition (4.3) satisfies that x, # 0,
forallp € §. Therefore, for each p € S, composing (4.3) with the natural p-equivariant L-linear projection
Tpes(OBeis(CT(p)) ®q, V)92P) — (OBais(CH(p)) ®q, V)7® gives a natural g-equivariant L-linear
injective map

L ®R[1/p] ODcris,R(V) — (OBCriS(C+(p)) ®Qp V)GR(p)7 (44)

compatible with the respective Frobenii, filtrations and connections (see above and Remark 2.16), where
the left-hand term is equipped with the tensor product Frobenius, the filtration on ODgs r(V) and
natural connection.

Finally, from Lemma 2.13, recall that we have a natural L-linear (p,Gg(p))-equivariant injective
map OBeris(CT(p)) = OBais(C,) compatible with respective filtrations and connections and where the
G r(p)-action on the left term factors through G r(p) = Ggr(p). Tensoring the preceding injective map
with V, equipping each term with the diagonal action of Gg(p) and taking G z(p)-invariants produces a
natural L-linear injective map (O Beis(CH(p))®q, V)97 ¥ — ODeyis,1.(V), compatible with the respective
Frobenii, filtrations and connections. Composing (4.4) with the preceding L-linear map gives a natural
L-linear injective map

L ®R[1/p] ODcris,R(V) — ODcriS,L(V)a (45)

compatible with the respective Frobenii, filtrations and connections. By considering L-dimensions, it
follows that (4.5) is bijective (see Corollary 4.6 for a stronger statement). Hence, dim; ODis,.(V) =
kg1 /p|ODais,r(V) = dimq, V', showing that (3) implies (2). This concludes our proof. [ |

Corollary 4.6. Let V' be a p-adic representation of Gr. Under the equivalent conditions of Theorem
4.5, the map in (4.5) induces a natural isomorphism of filtered (¢, d)-modules over L.

Proof. Assume that V is a crystalline representation of G, so that we have a natural O Bgis(R)-linear
isomorphism O Bis(R) ® R[1/p] ODeris(V) = OBeuis(R) ®q, V, compatible with the respective Frobenii,
filtrations, connections and G g-actions (see [Bri08, Proposition 8.4.3]). For any p € S, by base changing
the preceding isomorphism along the composition O Beis(R) — [[pes OBeis(CT(p)) = OBeris(CT (p)) —
OBcriS(C;f), we get a O Beis (C,‘f )-linear isomorphism

OBCHS(C:—) ®R[1/p} ODcriS(V) AN OBcriS(C;_) ®Qp V, (4.6)

compatible with the respective Frobenii, filtrations, connections and G r(p)-actions. In (4.6), by taking
CAT’R(p)-invariants we get (4.5), i.e. L ®R[1/p] ODyis.r(V) = ODgis,(V), and by construction, the
preceding isomorphism is compatible with the respective Frobenii, filtrations and connections. Hence,
the claim follows. [ ]

4.2. Main ingredients for the proof of Theorem 4.1. In this subsection, let T' be a finite
free Z,-representation of G such that T is a finite [p],-height representation of G'1, (see Definition 3.20
and [Abh23a, Definition 3.7]). In particular, we can attach to T" a (¢,I'r)-module Dg(T") over Ag, as
well as, a Wach module N(T) over A} . Our goal is to prove the following claim:

Proposition 4.7. The A}-module Ng(T) := Ny (T) N Dg(T) C Dr(T) satisfies all the axioms of
Definition 3.20. In particular, T is a finite [p],-height representation of Gg.

Proof. Tt is immediate that N(T') is p-torsion free and p-torsion free. From Lemma 4.8 and its proof,
note that Ng(7) is finitely generated over A% and we have that Ng(T)/p C (NL(T)/p) N (Dr(T)/p) C
D (T)/p, in particular, Ng(T)/p is p-torsion free. Next, from Lemma 4.9, we know that Nz (T') is of
finite [p],-height, i.e. the cokernel of the injective map 1®¢ : p*(Ng(1')) — Ng(T') is killed by [p]7, where
s is the height of N7(T'). Furthermore, from Proposition 4.12 we have that Ar ®AJ}; Ng(T) — Dg(T).
Finally, recall that the action of 'y, is trivial on N (T)/uNL(T) and I';, — T'g, so for any g € I'g, we
have (9 — 1)N(T') € uINL(T'). Therefore, we get that (g9 — 1)Ng(T') C (uNL(T)) NDg(T) = uNg(T),
so it follows that I'r acts trivially on Ng(7")/uNg(T'). This concludes our proof. [
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Lemma 4.8. The Af-module Ng(T) := NL(T) N Dg(T) is finitely generated.

Proof. We first claim that for each n € N>1, the natural A}, /p"-linear map Ng(T)/p" — (N(T)/p™) N
(Dgr(T)/p™) C D(T)/p™ is injective and the intersection (N (T)/p")N(Dr(T)/p™) is a finitely generated
AE/p”—module. Since N (T), N1(T') and Dg(T) are p-torsion free, it is enough to show the claim for
n = 1 and the claim for n > 1 can be deduced by an easy induction. So we are reduced to showing
that the natural map Nr(T)/p — (N.(T)/p) N (Dr(T)/p) C Dr(T)/p is injective and the module
(NL(T)/p) N (Dg(T)/p) is finitely generated over A% /p =: E},. Note that we have pN(T) N Ng(T) —
pDL(T) N DR(T) = pDg(T), so we get that pN1(T) N Ng(T) < pN(T) N pDgr(T) = pNg(T), in
particular, Nr(7")/p — N (T')/p. Similarly, we have pDr(T) NNg(T') — pDr(T) NNL(T) = pN(T),
so we get that pDr(T) "NNg(T') — pDgr(T) NpN(T) = pNg(T), in particular, Ng(T")/p — Dr(T)/p.

Next, we will show that (N,(T')/p)N(Dr(T)/p) is a finitely generated E};-module. Assume that Dg :=
DRr(T)/p is finite free (a priori it is finite projective) of rank h over Ep := Ar/p. Let e = {e1,...,ep}
be a basis of N, := N(T)/p over Ef := A /p and f = {f1,..., fn} a basis of Dy over Eg. Then, for
Ep, = Ar/p, we have f = Ae, for some A := (a;j) € GL(h, E), and write A~' = (b;;) € GL(h, E). Set
M := @} |Ef fi, so that M[1/u] = Dg. Let « € M[1/u] NNy and write z = 1, cie; = S0, d; fi with
¢ € E'Zr and d; € ER, forall 1 <1 < h. So we obtain that d; = Z?:l bjicj, for all 1 <4 < h. In particular,
for some k large enough, we have d; € ,u_kE}f, for all 1 < i < h. Note that ,u_kE}f NEr = ,u_kEE, SO
we obtain that d; € p=*E}. Hence, M[1/u] N N C p~*M, in particular, M[1/u] NN = DrN Ny, is
finitely generated over E;.

In general, when Dg is finite projective, we choose an Ef-module D’ such that Dg @ D' = E&F,
for some k € N. Let D} := Ep, ®FEx Dpg, so we have that Dy ® D, = E?k. Note that since Ey, is a
field with ring of integers EZF, therefore, we can choose a lattice of D) over EZF, i.e. there exists a free
Ef-submodule Nj C D} such that N} [1/u] = D’. So, we get that Nz & N} is a free £ -module such
that E;, ® B} (Np®eNj)=Drae D) = E?k . Inside EEBk, consider the inclusion of EE—modules

(DrNNL)@®(D'NN;)=DreD)Nn(NL@ N;) C Ex*n (N @ N}). (4.7)

Using the conclusion in the free case from the previous paragraph, we get that the last term in (4.7) is a
finite Eg—module. Hence, Dr N Ny, is also a finite EE—module, proving the claim.

To prove the lemma, it remains to show that Ng(T) is p-adically complete. Indeed, from the claim
above note that, for alln € N>1, Ng(T)/p" is a finitely generated A}, /p"-module. Since A} is noetherian,
therefore, for each n € N and k£ € N as in the previous paragraph, we have a presentation 0 — M,, —
(AL /p™)®*F — Ng(T)/p" — 0, where M, is a finitely generated A}/p"-module. By taking a finite
presentation of M,, as an AE /p"-module, it is easy to see that the system {Mn}neN21 is Mittag-Leffler.
In particular, it follows that lim,, Ng(T)/p" is a finitely generated module over lim,, A}/p"™ = A%. Now
consider the following natural AE—linear maps:

£+ Na(T) — Hm Ng(T)/p" — Hm((NL(T)/p") 0 (DR(T)/p"))

— (lim N (T)/p") N (lim D(T)/p")

— Nr(T) NDg(T) = Ng(T),
where the first arrow is the natural projection map, the second arrow is injective by the claim proved
above, the third arrow is injective by definition and the fourth arrow is bijective since N7(T') and Dg(T")

are p-adically complete. Chasing an element of x € Ng(T') through the composition, we see that f(x) = z.
Hence, we get that Ng(T') — lim, Ng(T')/p", in particular, it is a finitely generated A%-module. [

Lemma 4.9. The Af-module Ng(T) is of finite [plq-height, i.e. the cokernel of the injective map 1@ :
©*(NR(T)) — Ng(T) is killed by [p];, for some s € N.

Proof. Note that ¢ : AE — AE is finite and faithfully flat of degree p®*! (see §2.2). Moreover,
from §2.2 we have that ¢*(Ar) — A} ® A% AR and ¢*(A}) = A} ®g,at AT = @ap(Aug =

(Bap(Af)uq) Be(at) (Af) + Af Dy, at Af. Therefore, we also obtain that p*(NL(T)) := A} ®p,at
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NL(T) = AE ®<P7AE NL(T) and QO*(DR(T)) = Apg R, Ap DR(T) = AE ®Ap,A'§ DR(T). Hence, as
Afk-submodules of ¢*(Dr(T)), we have that

o*(NR(T)) = A% ©, 4 Na(T) = A ©, 4 (NL(T) N D(T))
= (A ®, 41 NL(T) N (AR @, 41 Dr(T)) = ¢"(NL(T)) N ¢"(DR(T)).
Since the cokernel of the injective map (1®¢) : ¢*(NL(T)) — N (7)) is killed by [p];, for some s € N, and

(1® @) : p*(Dg(T)) = Dg(T), therefore, it easily follows that the cokernel of (1 ® ) : ¢*(Ng(T)) —
Ng(T) is killed by [p]; as well. [

Finally, we will show that A} ® 4t Ng(T) = NL(T) and Apg ® 41 Ng(T) = Dg(T), using an
approach parallel to [DLMS22, Proposition 4.24 & Lemma 4.25]. For n € N>1, let Ng,, := Ng(T')/p",
DR,n = DR(T)/pn, NL,n = NL(T)/pn, DL,n = DL(T)/pn and Mn = NL,n N DR,n C DL,n- Then have
the following commutative diagram,

M, —I" s M,

! !

n
Dgr, — Dg,

where the vertical arrows are natural inclusions, the bottom horizontal arrow f,, is the natural projection
map and the top arrow is the induced map. We have a similar diagram with the bottom row replaced by
Nin —» Np1.

Lemma 4.10. We have the following,
(1) M, is a finitely generated A} /p™-module and Ng(T) = lim,, M,,.
(2) M, is of finite [p]q-height s, for s € N as in Lemma 4.9.
(3) Mu[l/p] = AR ® 4+ My =5 Dpry and A} ® 5 M =5 Np .

Proof. The claim in (1) follows from the proof of Lemma 4.8 and the claim in (2) follows similar to Lemma
4.9. As the maps AE — Ap and AE — A'LF are flat, the last claim follows from the following equalities:

AR @44 My = (AR @41 Drin) N (AR @41 Nin) = (AR @ 41 Drin) N (A] @ 4+ Drin) = DR,
AL @1 My = (AL @44 Drin) N (AL @44 Nom) = (AR @44 Now) 0 (AL ® 44 Nin) = Npp.

Hence, the lemma is proved. |

Let S denote the set of Af-submodules M’ C M; such that M’ is stable under the action of ¢, it is
of finite [p],-height s and M'[1/u] = Mi[1/pu] = Dr1 = Dgr(T)/p. Set M° := NppesM’ C M.

Lemma 4.11. The A},-module M° belongs to S and f,(M,) is also in S, for all n € N>.

Proof. The idea of the proof is motivated from [DLMS22, Lemma 4.25]. Let M’ be an element of S. For
the first claim, we need to show that there exists r € N such that " M; € M’ C My. Let M" := My /M’
such that M” # 0 and let k = p(p — 1)s € N. Also, let *(M") := p*(M1)/¢*(M') and let 1 ® @ :
©*(M") — M" denote the map induced from 1 ® ¢ps. Since M; (resp. M’) is of finite [p],-height k

k k
(since s < k), we define 5 : My £ pF My — o*(My) (vesp. Yoy : M' £ (b M — o*(M')) to be
the unique AE/p—linear map such that ¥y o (1 @ o) = /L’I“Idso»;W (resp. Ypr o (1 @ pppr) = ukldcpjw).
Let ¢ppm : M" — ©*(M") denote the map induced from y;. Now, consider the following commutative
diagram:
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0 —— ¢"(M') —— ¢"(M1) — ¢"(M") —— 0
J}@‘pM’ J}@@M J}@SOMN
0 M’ M" 0

M,y
J}Z)]\/I/ lw M Jan

0 —— ¢"(M') — ¢" (M) —— ¢"(M") — 0.

Note that [p], = #?~' mod p, p(u) = p? mod p and p([pl,) = PP~ mod p. Since My[1/u] =
M'[1/p)], let i € N>j such that g?"M"” = 0 and P~V M" # 0. Let x € M” such that p”’z # 0 and set
y=1®x € ¢*(M"). Then p(uP)y =1 ® pPlz = 0, but =Dy = Pty =1 @ pPt—Yg #£ 0. Let
z=(1® @pr)y € M", then uP'z = 0. So we have 0 = Wy (uPz) = P (Yam o (1 @ opr)y) = pP*ry.
Therefore, we get that pi +k = pi +p(p—1)s > p?(i—1),ie. i < s+ Z%. Hence, s M" = 0. Since the
constant obtained is independent of M’, we also get that u*t1M; C M° C My and M°[1/u] = My[1/p).

Next, we will show that M° is of finite height s. Let x € M°, so that x € M’ for each M’ € S and
there exists some y € ¢*(M’) C ¢*(M7) such that (1® ¢)y = [p];z. Note that y is unique in ¢*(M;) and
since ¢ : AL — AL is flat, we get that y € Nypes(Af B4t M') = AL ®g,at (NapresM’) = @*(M®).
Therefore, we concldue that M° € S.

For the second part of the claim note that M,[1/u] = Dgr,, and fr(Dry) = Drn/p = Dr(T)/p (see
Lemma 4.10). So we get that f,,(M,[1/u]) = Dr(T)/p and we are left to show that f,(M,) is of finite
height s. Note that we have a commutative diagram with exact rows:

0 —— ¢*(kernel) —— ¢*(M,,)) —— @*(fn(M,)) —— 0

Jl@cp ll@g& l1®<.0

0 —— kernel M, In fu(M,) — 0.

The rightmost vertical arrow is injective since f,,(M,) C Dpg,, and the cokernel of the middle vertical
arrow is killed by [p]7 (see Lemma 4.10). Hence, the cokernel of the rightmost vertical arrow is also killed
by [p]5- This concludes our proof. [

Proposition 4.12. The natural inclusion Ng(T) C Dg(T) extends to a (¢,T'r)-equivariant isomor-
phism AR ®A; NR(T) = DR(T).

Proof. Since everything is p-adically complete and Dg(7T) and N (T') are p-torsion free, it is enough to

show the claim modulo p. Recall that we have Ng(T)/p C My = Dg(T)/pNNL(T)/p C Dr(T)/p and

from Lemma 4.11 we have M° C Ng(T)/p. Therefore, we get that Dr(T)/p = M°[1/u] C Ar/p @ 4+,
R

Ngr(T)/p € Mi[1/p) = Dr(T)/p. u

5. WACH MODULES AND ¢-CONNECTIONS

In this section we will interpret Wach modules over AJIEL (resp. BE) as modules with g-connection and
show that Wach modules over B}, can be seen as g-deformation of filtered (i, d)-modules over R[1/p],
coming from p-adic crystalline representations of G (see Theorem 5.6). For our definitions, we will follow
[MT20, §2], with slight modifications.

5.1. Formalism on ¢-connection. Let D be a commutative ring and consider a D-algebra A
equipped with d commuting D-algebra automorphisms ~; ... ,7q, i.e. an action of Z¢. Moreover, fix an
element ¢ € D such that ¢ — 1 is a nonzerodivisor of D and 7; = 1 mod (¢—1)A, forall 1 <i < d. Assume
that we have units Uy, ...,Uy € A* such that v;(U;) = qUj, if i = j or Uj if i # j. We fix these choices
for the rest of the section.

Definition 5.1 ([MT20, Definition 2.1]). Let qQA/D = EBZZOQQZ/D be a differential graded D-algebra
defined as:

o ¢QY /D= A and ¢ /p is a free left A-module on formal basis elements dlog(U;).
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o The right A-module structure on qQ}L‘/D is twisted by the rule dlog(U;) - f = ~i(f)dlog(U;).
o dlog(U;)dlog(U;) = —dlog(U;)dlog(U;) if i # j and 0 if ¢ = j.
¢ The following map is an isomorphism of A-modules:
@iEIkA ; qQ]jﬂ/D
(fl) — Zie[k fldlog(Ull) e dlog(UZk)v
where[k = {iz (il,...,ik) S Nk such that 1 <741 < -+ < 1 Sd}
o The 0! differential d, : A — Q}4/D is given as f — Y4, %dlog(Ui).
o The elements dlog(U;) € quD/A are cocycles, for all 1 <14 < d.

The data d; : A — QO/D forms a differential ring over D, i.e. qu‘/D is a D-bimodule and d, is D-linear
satisfying the Leibniz rule dy(fg) = dq(f)g + fdq(g) (see [And01, §I1.1.2.1]).

Definition 5.2 ([MT20, Definition 2.2]). A module with g-connection over A is a right A-module N
equipped with a D-linear map V, : N — N ®4 qQL/D satisfying the Leibniz rule Vy(zf) = Vy(z)f+2®
dq(f), for all f € A and z € N. The g-connection V, extends uniquely to a map of graded D-modules
Vq: N®aqyp — N ®a g%}, satisfying Vo (n®w) w') = Vy(n@w) -’ + (—1)48 ¥ (n@w) - dg(w).
The g-connection V is said to ée flat or integrable if V 0V, = 0.

Now, assume that D is equipped with an endomorphism ¢ : D — D such that it is a lift of the absolute
Frobenius on D/pD and ¢(q) = ¢P. Further, assume that A is equipped with a compatible (with ¢ on
D) endomorphism ¢ : A — A such that it is a lift of the absolute Frobenius on A/p and commutes with
the action of ~1,...,74 on A. The endomorphism ¢ induces an endomorphism g on qu‘ /D given as

0o (X% fidlog(U3)) = [ply 2%, w(fi)dlog(U;). In particular, from [MT20, Lemma 2.12] the following
diagram commutes

1
A/D

J [

A L qQ}MD.

A1 0

It follows that given a g-connection (N, V) we can define the base change via Frobenius, of the g-connection,
denoted p*V, on ¢*N := N ®4,, A, as

©*Vq: "N — N®a, QQL/D =¢"N® qQ,l4/D
@ fr— (18 ¢a)(Vq(z)) - f+nody(f).

A p-module with g-connection is a pair (N, V,) as above equipped with an A-linear isomorphism ¢y :
(¢*N)[1/[plq] = N[1/[p]4] such that the following diagram commutes:

(@ N)[1/[plg] 2% (0" N)[1/[pla] @ 4L
SONJ LON@ (5.1)

N[/l —— N{1/[plg] ® a2 p.

5.2. Wach modules as ¢-deformations. In this subsection, we take D := Op[u], A := A},
equipped with the action of ' and {v1,...,74} as topological generators of I'};, the geometric part of
T'r (see §2). Then, by setting ¢ := 1+ p and U; := [X?], for 1 < i < d, we have 7; = 1 mod pA%,
for all 1 < ¢ < d. In particular, AE satisfies the hypotheses of Definition 5.1. Moreover, the Frobenius
endomorphism on AJPE extends the Frobenius on D given by identity on Z, and ¢(pn) = (1 + p)? — 1.
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Furthermore, in this case, ¢Q! identifies with Q p given as (p, n)-adic completion of the module of

Af/D AL/
Kahler differentials of AJr with respect to D.
Note that we have a F robenius-equivariant isomorphism of rings A}, %/ — R, sofrom [MT20, Remarks

2.4 & 2.10], reduction modulo ¢ — 1 of the differential ring d, A+ — Q}Lﬁ /D is the usual de Rham

differential d : R — Q}-‘c- Similarly, the reduction modulo ¢ — 1 of a module with ¢-connection over AE
(Definition 5.2) is an R-module with connection. We say that a g-connection is (p, [p|q)-adically quasi-
nilpotent (equivalently, (p,q — 1)-adically quasi-nilpotent) if V, mod g — 1 is p-adically quasi-nilpotent.

Proposition 5.3. Let N be a Wach module over A+. Then the geometric q-connection

x>—>2% 212 glog ([X?]),

describes (N,V4) as a p-module equipped with a (p, [plq)-adically quasi-nilpotent flat q-connection over
Af.

Proof. Flatness of the g-connection V, follows from the first part of the proof of [MT20, Proposition
2.6]. Moreover, from Definition 3.8 and Lemma 3.10, note that we have ¢ @ 1: (N ® 4+ AR/l =
R1

N[1/[plq). So we get that the pair (N, V) is a p-module equipped with a g-connection over A},. Moreover,
since the action of ¢ and I'; commute on N, therefore, it follows that the corresponding diagram (5.1)
is commutative. Now, from the commutativity of the action of ¢ and I'p and the diagram (5.1), note
that we have V, 0 ¢ = [p];V4 0 ¢. Frurthermore, from the Frobenius finite height condition on N, we
have that for any = in N, there exists r € N large enough, such that [p]yx belongs to ¢* (V). So, using
the relation Vg 0 ¢ = [p]qV, 0 ¢ and the fact that [p], = p mod ¢ — 1, we see that V¥ ([p]rz) mod ¢ — 1
converges p-adically to 0 as k — +o00. Hence, it follows that V'q“(x) = [pl;"Vq([plgz) modulo ¢ — 1
converges p-adically to 0, i.e. V, is (p, [p]4)-adically quasi-nilpotent. This concludes our proof. |

Remark 5.4. In Proposition 5.3 we call the g-connection “geometric” because in the definition we only
use the geometric part of I'g, i.e. I'y.

Remark 5.5. From §3.6 recall that we have the ring A 2 C Acris(Roo) stable under the Frobenius and
the action of I'g. For R = Op, we denote the aforementloned ring, i.e. AI;% by DFP and for general R,
we denote it by APP = AIP}% (we do not use D and A for these rings to avoid conflict with assumptions
at the beginning of this subsection). Then, it is easy to see that the hypotheses of Definition 5.1 are
satisfied for DPP, APP with T'g-action and U; := [Xlb ]. Now, given a Wach module N over AE, similar to
Propostion 5.3, one can show that for N*P := APP @ At N, the g-connection

Vq:NPD — NP @ e Q}qPD/DPDa 1"_>E T ) leg([Xb])

describes (NP, V,) as a p-module equipped with a p-adically quasi-nilpotent flat g-connection over APD.
Set Vgi = (v —1)/u, for 1 < i < d. Furthermore, employing arguments similar to [Abh23b, Lemmas

4.12, 5.17 & 5.18] we can show that for 1 < i < d, the operator V; := (log~;)/t = %ZkeN(—l)k%
converges as a series of operators on NFP. So using the explicit formulas described above, it is easy to
see that for any z € N, we have V,;(z) — Vi(z) = (L1 — log%)(x) € (FiltAPP) ® 41 N, since t/p is a

m
unit in AFP by [Abh21, Lemma 3.14].

We are now ready to state the main result of this section. Let N be a Wach module over AE equipped
with a g-connection as in Proposition 5.3 and a Nygaard filtration as in Definition 3.24. Then, from
the discussion preceding Proposition 5.3, we note that N/uN is a ¢-module over R equipped with a
p-adically quasi-nilpotent flat connection and a filtration Fil*(N/uN) given as the image of Fil* N under
the surjection N — N/uN. Using Reamrk 3.26 note that the connection on N/uN satisfies Griffiths
transversality with respect to the filtration, i.e. V(Fil*(N/uN)) C Fil*"1(N/uN) ® QL. We equip
N[1/p]/uN[1/p] = (N/uN)[1/p] with the induced structures, in particular, we note that it is a filtered

(¢, 0)-module over R[1/p].
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Theorem 5.6. Let N be a Wach module over A}, and V := Tg(N)[1/p] the associated crystalline rep-
resentation from Theorem 5.3/. Then we have (N/uN)[1/p] = ODuis.r(V) as filtered (¢, d)-modules
over R[1/p].

Proof. For r € N large enough, note that the Wach module p" N(—r) is always effective and we have that
Tr(u"N(—r)) = Tr(N)(—r) (the twist (—r) denotes a Tate twist on which I'p acts via x~", where x
is the p-adic cyclotomic character). Therefore, it is enough to show both the claims for effective Wach
modules. So we assume that N is effective and set M := NJ[1/p] equipped with an induced action
of I'r, a Frobenius-semilinear operator ¢ and the Nygaard filtration. It follows that the finite projec-
tive R[1/p]-module M/uM is equipped with a Frobenius-semilinear operator ¢, induced from M. Note
that [p], = p mod pAf, therefore, we have 1 ® ¢ : ¢*(M/uM) — M/uM . Furthermore, the filtration
Fil*(M/pM) is defined to be the image of Fil* M under the surjective map M — M /uM. Next, from The-
orem 3.34, we have the R[1/p]-module ODp, := (OA%% Dt M)''R equipped with a Frobenius-semilinear

operator ¢ and a connection, and an R[1/p]-linear isomorphism ODg — ODgyis g(V) compatible with
the respective Frobenii and connections (see (3.22) in Theorem 3.34). So, let us consider the following
diagram with exact rows

00— uM M M/uM ———— 0

| | !

0 — (Fil'OARY) Dpp M —— OARY, ® 4t M — Rlw] ®r (M/pM) — 0

zT zT(:s.z:s) zT

00— (FﬂlOA%%) r ODp — OAE% r ODp —— R[w] ®r ODp —— 0.

Note that (Fil* (’)AIP}]?W R+ M)NM = (Fill(’)APR% NAL)® ,+ M = pM. Then, from the exactness of the
second row, it follows thatR the vertical maps from the first t(;% the second row are natural inclusions. The
middle vertical arrow from the third to the second row is the isomorphism (3.23) in Proposition 3.35 from
which it follows that the left vertical arrow is an isomorphism as well. In particular, we get that the right
vertical arrow is also an isomorphism. Taking the Gal(R[1/p][w]/R[1/p]) = Gal(F({,)/F)-invariants of
the right vertical arrows gives a natural isomorphism

ODr = M/uM, (5.2)

compatible with the respective Frobenii and we claim that it is compatible with the respective connections
as well. Indeed, note that the connection on M/uM is obtained by first reducing, the g-connection V,
on N, modulo 4 = ¢ — 1 and then inverting p. On the other hand, the connection dp on ODpr =
(OA%BU ® At M)T# is induced from the natural Ag%—linear connection on (’)A%]?w. Let V4, and Op

respectively denote the i*® component of the g-connection on N and the connection on ODp. Now

take x in M, and note that from Remark 3.38 there exists some w in OA%?W ®r ODpg such that x =

f(w) mod (FII'OAYD ) ® ,+ M, where f is the isomorphism in (3.23). Then it follows that to check
’ R

the compatibility of the isomorphism ODr —s M/uM with connections, it is enough to show that

Vg.i(z) = f(dp,i(w)) belongs to (Fil' OARD) ® 4+ M. From Remark 3.38 for V; = (log~i)/t, we know that
Vi(z)— f(Op,i(w))isin (FillOA%]?w) ® 41 M. Furthermore, from Remark 5.5 we have that V, ;(x) —V;(x)
is in (Fil* OAE%)@AEM. Upon combining the two, we get that V, ;(x) — f(9p, (w)) is in (Fil! OA%Pw)®A§
M, i.e. the isomorphism (5.2) is compatible with the respective connections.

Now, by composing the inverse of (5.2) with (3.22) from Theorem 3.34, we get isomorphisms

M//LM L> ODR L) ODCHS’R(V), (53)

compatible with the respective Frobenii and connections. By transport of structure, we equip ODpg
with a filtration induced from the Hodge filtration on OD s r(V). Then, by Lemma 5.7 we get that the
isomorphisms in (5.3) are further compatible with the respective filtrations. This allows us to conclude. W

The following observation was used above:
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Lemma 5.7. Let N be a Wach module over A%, set M := N[1/p] and let V := Tr(N)[1/p] denote the
associated crystalline representation of Gg. Then the isomorphism f : M/uM — OD,yis (V) from
Theorem 5.0 is compatible with filtrations, i.e. for each k € Z, we have that

Filk(M/uM) = Fil*OD s g (V). (5.4)

Proof. For r € N large enough, note that the Wach module " N(—7) is always effective and we have
Tr(u"N(—r)) = Tr(N)(—7) (the twist (—r) denotes a Tate twist on which I'r acts via x™", where x is
the p-adic cyclotomic character). Therefore, it is enough to show the claim for effective Wach modules.
To avoid confusion, let us write Ng := N, Mgr := M, N;, = AJLr ®A£ Npg (a Wach module over AJLF)
and My, := Np[1/p], equipped with the induced structures. From Lemma 3.28, note that the natural
map Ng — Ny induces natural maps gr®Mpr — gr* M and gr*(Mg/puMg) — gt*(Mp/uMyp), and
we claim that these are injective. Indeed, the injectivity of the first map follows from the discussion
after (3.16). For the second map, note that from Lemma 3.30 we have that gr* Mr = gr®(Mp/uMRg)
and gr* M = gr®(Mp/uMp). So it follows that the natural map gr*(Mg/uMpg) — gr¥(Mp/ubly) is
injective as well. In particular, inside My, /uM ,, we get that

Fil** Y (Mp/uMpg) = Filk (Mg /puMg) 0 FiFY (M /). (5.5)

Next, recall that we have the finite projective R[1/p]-module ODpg = (OARD ® 4+ Mp)'® and
’ R
similarly we have the finite dimensional L-vector space ODy, := (OAYD ® ,+ Mp)'t, where the ring
’ L

(’)AlZED (depending on L) is analogous to OAE% (see [Abh23a, §3.3] for precise definitions), and admits a
natural map (’)Ag% — (’)AE?U compatible with supplementary structures. From [Abh23a, Theorem 1.8
& Corollary 3.16], recall that we have isomorphisms of ¢-modules My /uM; — ODy, = OD s (V)
over L (similar to (5.3)), and note that the constructions of loc. cit. are compatible with the constructions
of this paper. Now, consider the following diagram:

L QR[1/p] (Mpr/uMp) —— L®R[1/p] 0*32)) L QR[1/p] ODsis,r(V)

Jz i zi(ans) (5.6)

Mp/uMp, ———— OD) ————— ODcris,L(V)7

where the top row is (5.3) and the bottom row is as discussed above (see the proof of [Abh23a, Corollary
3.16] for details). In (5.6), the left and the middle vertical arrows are the natural maps. Then, by the
discussion above we see that the left square commutes. Moreover, as the top right and the bottom right
horizontal isomorphisms are induced by natural inclusions and the crystalline period rings over R and L
are compatible, therefore, it follows that the right square commutes as well. Furthermore, in (5.6), the
left vertical arrow is a filtered isomorphism by Lemma 3.31, the composition of the bottom arrows is a
filtered isomorphism by [Abh23a, Theorem 1.8] (see Remark 5.8 for another proof) and the right vertical
arrow is a filtered isomorphism by Corollary 4.6.

Note that the composition of the arrows in the top row of (5.6) is the isomorphism f : Mr/uMpg —
ODis,r(V') and we need to show that f induces the map in (5.4) and that the induced map is bijective. We
will proceed by induction on k, where the case k = 0 is trivial. So assume that f induces an isomorphism
Fil*(Mg/uMpg) = Fil*ODys r(V), for some k > 0. Then, by using (5.5), the filtered isomorphism
M /uMy, — ODygis (V) and its compatibility with f (see (5.6)) and the induction assumption, it
follows that

Fil* Y (Mp/uMpg) = Filk(Mg/uMp) O Fil* (M, /M)
= Fil*OD ey (V) N FilF 1 OD i, (V) = FilFH 1 OD i r(V),

where the terms of the last row are conatined in ODygy (V') via the filtered isomorphism (4.5) (see
Corollary 4.6). Hence, it follows that (5.4) is bijective for each k € Z. This allows us to conclude. |

Remark 5.8. Let Ny, be a Wach module over Az and let T" be the associated crystalline Z,-representation
of G, from [Abh23a, Theorem 1.6]. In [Abh23a, Theorem 1.8 & Corollary 3.16], we have shown that the
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natural isomorphism (Nz/uNp)[1/p] = ODeis (V) is compatible with the respective filtrations. We
claim that the compatibility between filtrations can also be obtained by using the analogous result in
the perfect residue field case from [Ber04, Théoreme II1.4.4]. Indeed, consider the extension L /L with
perfect residue field from Remark 3.29. Then Ny := AJE ® At Ny, is a Wach module over AJLr and T is a
Z,-representation of Gy. Set My, := Nr[1/p], My := N;[1/p] and V := T[1/p]. Then from Remark 3.29,
Lemma 3.30 and Remark 3.32, it follows that inside My /My, we have that

Fil"™ (M /pMp) = Fil* (M /pMy) 0 FiF (M /). (5.7)

Now, consider the following diagram:

E QL (ML/MML) — f/ L ODcris,L(v)

y { (5.8)

ML/’UME = Dcris,f/(v)7

where the left vertical arrow is the natural map, the top horizontal arrow is induced from [Abh23a,
Equations (4.6) & (4.10)] and coincides the bottom row of (5.6) by [Abh23a, Equations (4.5), (4.11) &
(4.15)], the right vertical arrow is the natural isomorphism of filtered @-modules over L (see [Abh23a,
Equation (2.5)]) and the bottom horizontal arrow is the inverse of the natural isomorphism of filtered
¢-modules over L from [Ber04, Théoreme I11.4.4]. The diagram commutes by the compatibilty between
the constructions of [Abh23a] and [Ber(04] (more precisely, by using [Abh23a, Equations (4.6) & (4.14)]).
Now, note that to obtain the claim, it is enough to show that the top horizontal arrow of (5.8) induces
a map Fil* (Mp/uMp) — FilkODcris, (V) and that the induced map is bijective. We will proceed by
induction on k, where the case k = 0 is trivial. So assume that the top horizontal arrow of (5.8) induces
an isomorphism Fil*(Mg/uMp) = Fil*OD ;s r(V), for some k > 0. Then, by using (5.7), the filtered
isomorphism M; /uMy; — D_. (V) from (5.8) and the induction assumption, it follows that

cris, L
Fil"™ (M, /uMp) = Fil*(Mp /M) N Fil*(My /M)
2 Fil*OD i (V) NFIFID - (V) = Fil* T OD i 1 (V),

cris,L
where the terms of the last row are conatined in D___ 7 (V') via the right vertical filtered isomorphism in
(5.8). Hence, the claim follows.

Remark 5.9. The obvious variation of Theorem 5.6 also holds true in the imperfect residue field case. In-
deed, for Oy, recall that all compatibilities except for the connection part was already proven in [Abh23a,
Corollary 3.15] (Remark 5.8 another proof of compatibility between filtrations). To verify the compati-
bility of connections, similar to Proposition 5.3, we can define a g-connection over a Wach module over
AF. Then, using the results of [Abh23a, §3.3], one obtains an obvious variation of Remark 5.5 over AE%.
Finally, proceeding exactly as in the proof of Theorem 5.6 (after replacing each object by analogous object
for L), we obtain the desired isomorphism of filtered (¢, d)-modules over L.

Let us summarise the relationship between various categories considered in (2.9), Corollary 4.4 and
Theorem 5.6. Recall that RepS;S(G r) is the category of p-adic crystalline representations of Gr and

MF%!(¢, 8) denotes the essential image of the functor OD s g restricted to RepS;S(G R)-

Corollary 5.10. Functors in the following diagram induce exact equivalence of ®-categories

i Nr [v]
cris D
Repg,*(Gr) v (¢, Tr)-Mod
ODcris,R
O\X a1
MF%!(¢,9).

Proof. The exact equivalence induced by functors Nz and Vg is from Corollary 4.4 and the exact equiv-
alence induced by ODis p and OV s g is from [Bri08, Théoreme 8.5.1]. Moreover, from Theorem 5.6,
note that for a Wach module M over B, we have M/(q—1)M = M/uM = ODgis r(Vr(M)). Hence,
from the preceding exact equivalence of ®-categories, it follows that the slanted arrow labelled “q +— 1”
is also an exact equivalence of ®-categories. |
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A. STRUCTURE OF (p-MODULES

We will use setup and notations from §1.4 and the rings defined in §2.2. Let ¢ be an indeterminate and
recall that we have a Frobenius-equivariant isomorphism R[g — 1] — AE, via the map X; — [XZb ] and
q — 1+ p. We will show the following structural result:

Proposition A.1. Let N be a finitely generated A;—module and suppose that N is equipped with a
Frobenius-semilinear endomorphism ¢ : N — N such that 1 @ ¢ : ¢*(N)[1/[ply] — NI[1/[p4]]. Then
N{[1/p] is finite projective over B.

Proof. The proof is essentially the same as [DLMS22, Proposition 4.13]. Compared to loc. cit., the
Frobenius endomorphism on AE and finite height assumption on N are different and we do not assume N
to be torsion free. However, one observes that torsion freeness of NV is not used in the proof and one can
use [Abh23a, Lemma 2.14] and Lemma A.2 instead of [BMS18, Proposition 4.3] and [DLMS22, Lemma
4.12]. |

Lemma A.2. Let k be a perfect field of characteristic p and S := W (k)[u1,...,un] equipped with a
Frobenius endomorphism ¢ extending the Witt vector Frobenius on W (k) such that p(u;) € S has zero
constant term for each 1 <i < m. Let A := S[q—1] equipped with a Frobenius endomorphism extending
the one on S by ¢(q) = ¢P and let N be a finitely generated A-module equipped with a Frobenius-semilinear
endomorphism ¢ : N — N such that 1@ ¢ : ¢*(N)[1/[ply] = N[1/[pl4]. Then N[1/p] is finite projective
over A[l/p].

Proof. The proof is essentially the same as [DLMS22, Lemma 4.12], except for a few changes. One
proceeds by induction on m. The case m = 0 follows from [Abh23a, Lemma 2.14], so let m > 1. Take
J to be the smallest non-zero Fitting ideal of N over A. It suffices to show that JA[l/p] = A[l/p].
Compatibility of Fitting ideals under base change implies that JA[1/[p],] = ¢(J)A[1/[pls] as ideals of
A[1/[pl4], therefore, (A/J)[1/[plql = (A/¢(J))[1/[plq]. Let us assume JA[1/p] # A[1/p] and we will show
a contradiction.

In our setting, the Frobenius endomorphism on A and the finite height condition are different from
[DLMS22) Lemma 4.12]. Therefore, we need some modifications in the arguments of loc. cit.; let us
point out the differences in terms of their notations. Let K = W (k)[1/p], fix K as an algebraic closure of
K. Consider the K-valued points of Spec(A[1/p]/J) and let Z = {(|uil, ..., |um|,|¢ — 1|) € R™*1}
be the corresponding set of (m + 1)-tuple norms. Define the set Z' = {(|ui],...,|uml|,|¢ — 1]) €
R™*1 such that (Jo(u1),. .. |e(um)l,|¢? — 1]) € Z} and take (, — 1 as the chosen uniformiser. Then,
one proceeds as in loc. cit. to show that JA[1/p| C (u1,...,um,q — 1)A[1/p] and JA[1/p] ¢ IA[1/p],
where I = (uq,...,un) C A[1/p].

Finally, consider the Frobenius-equivariant projection A — A = A/I = W(k)[q — 1] and let J C A
denote the image of J. Since JA[1/p] ¢ IA[1/p], we get that J # 0. Moreover, JA[1/p] # A[1/p] since
JA[L/p] C (u1, ..., um,q—1)A[1/p]. However, the equality (A/J)[1/[ply] = (A/¢(J))[1/[pl,] implies that
(A/D)[1/Iplg) = (A)(I))[1/[ply), i-e. JA[1/p] = A[1/p] by inductive hypothesis (see [Abh23a, Lemma
2.14]). This gives a contradiction. Hence, we must have JA[1/p] = A[1/p], thus proving the lemma. N
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