

Finite height representations and syntomic complex

Abhinandan

Graduate School of Mathematical Sciences
The University of Tokyo

Finite height representations

Let $p \geq 3$ a prime number, κ a perfect field of characteristic p with $W = W(\kappa)$, F = Fr(W), $\bar{F} =$ algebraic closure of F and $G_F = Gal(\bar{F}/F)$.

Fontaine's theory: V = p-adic representation of G_F .

Crystalline	${f B}_{ m cris}(O_{ar F})$ -admissible
Finite height	Wach module $\mathbf{N}(V)$ exists

Theorem 1 (Wach, Colmez, Berger)

A p-adic representation of G_F is crystalline if and only if it is of finite height.

Let $R = W\langle X_1^{\pm 1}, \dots, X_d^{\pm 1} \rangle$ (for simplicity), $\overline{\operatorname{Fr}(R)} \supset \overline{F}$ fixed algebraic closure with \overline{R} the integral closure of R in the maximal unramified extension of $R[\frac{1}{p}] \subset \overline{\operatorname{Fr}(R)}$ and $G_R = \operatorname{Gal}(\overline{R}[\frac{1}{p}]/R[\frac{1}{p}])$.

Andreatta-Brinon theory: V = p-adic representation of G_R .

Crystalline	$\mathcal{O}\mathbf{B}_{\mathrm{cris}}(ar{R})$ -admissible
Finite height	Wach module $\mathbf{N}(V)$ exists

Theorem 2 (A.)

Let V be a finite height representation of G_R , then

- $\bullet V$ is crystalline.
- ${}^{\bullet}\mathcal{O}\mathbf{A}_{\mathrm{cris}}(R_{\infty})\otimes_{\mathbf{A}_{R}^{+}}\mathbf{N}(V)\stackrel{\sim}{\to} \mathcal{O}\mathbf{A}_{\mathrm{cris}}(R_{\infty})\otimes_{R}\mathcal{O}\mathbf{D}_{\mathrm{cris}}(V)$ for V positive.

The converse statement, i.e. crystalline implies finite height, as well as, analogous integral results appear to be true (work in progress).

Syntomic complex and Galois cohomology

Let K/F finite ramified $O_K = \text{ring of integers}$, $\varpi = \text{uniformizer}$, $S = O_K \otimes_W R$ and $G_S = \text{Gal}(\bar{R}[\frac{1}{p}]/S[\frac{1}{p}])$. $R_{\varpi}^+ = (p, X_0)$ -adic completion of $W[X_0, X_1^{\pm 1}, \dots, X_d^{\pm 1}]$, $R_{\varpi}^{\text{PD}} = p$ -adic completion of $R_{\varpi}^+[\frac{E(X_0)^k}{k!}]_{k \in \mathbb{N}}$.

Here $E(X_0)$ generates the kernel of $R_{\varpi}^+ \to S$ via $X_0 \mapsto \varpi$.

$$\operatorname{Syn}(S,r) := \operatorname{Cone}(\operatorname{Fil}^r \Omega_{R^{\operatorname{PD}}_{\varpi}}^{\bullet} \xrightarrow{p^r - p^{\bullet} \varphi} \Omega_{R^{\operatorname{PD}}_{\varpi}}^{\bullet})[-1].$$

Theorem 3 (Colmez-Nizioł)

The Fontaine-Messing period maps $\tau_{\leq r} \operatorname{Syn}(S, r) \longrightarrow \tau_{\leq r} \operatorname{R}\Gamma_{\operatorname{cont}}(G_S, \mathbb{Z}_p(r)),$ $\tau_{\leq r} \operatorname{Syn}(S, r)_n \longrightarrow \tau_{\leq r} \operatorname{R}\Gamma_{\operatorname{cont}}(G_S, \mathbb{Z}/p^n(r))$ $\xrightarrow{\sim} \tau_{\leq r} \operatorname{R}\Gamma([\operatorname{Sp} S[\frac{1}{p}]]_{\operatorname{\acute{e}t}}, \mathbb{Z}/p^n(r)),$ are p^N -quasi-isomorphisms for $N = N(K, p, r) \in \mathbb{N}$.

Let $K = F(\zeta_{p^m})$ for $m \geq 1$, V = positive finite height representation of G_R of height s, $T \subset V$ a G_R -stable \mathbb{Z}_p -lattice such that $\mathbf{N}(T)$ is sufficiently "nice" and gives rise to a sufficiently "nice" filtered (φ, ∂) -module M over R such that $M \subset \mathcal{O}\mathbf{D}_{\mathrm{cris}}(V)$ and

$$\operatorname{Fil}^r \mathscr{D}_{S,M}^{\bullet} : \operatorname{Fil}^r M_{\varpi}^{\operatorname{PD}} \to \operatorname{Fil}^{r-1} M_{\varpi}^{\operatorname{PD}} \otimes_{R_{\varpi}^{\operatorname{PD}}} \Omega_{R_{\varpi}^{\operatorname{PD}}}^1 \to \cdots$$

$$\operatorname{Syn}(S,M,r) := \operatorname{Cone}(\operatorname{Fil}^r \mathscr{D}_{S,M}^{\bullet} \xrightarrow{p^r - p^{\bullet} \varphi} \mathscr{D}_{S,M}^{\bullet})[-1].$$

Theorem 4 (A.)

Let $r \in \mathbb{N}$ such that $r \geq s+1$. Then the Fontaine-Messing period maps

$$\tau_{\leq r-s-1} \operatorname{Syn}(S, M, r) \xrightarrow{\sim} \tau_{\leq r-s-1} \operatorname{R}\Gamma_{\operatorname{cont}}(G_S, T(r)),$$

$$\tau_{\leq r-s-1} \operatorname{Syn}(S, M, r)_n \xrightarrow{\sim} \tau_{\leq r-s-1} \operatorname{R}\Gamma_{\operatorname{cont}}(G_S, T/p^n(r)),$$
are p^N -quasi-isomorphisms for $N = N(T, p, m, r) \in \mathbb{N}$.

p-adic nearby cycles

Let \mathfrak{X}/W a proper and smooth (p-adic formal) scheme, X its (rigid) generic fiber, \mathfrak{X}_{κ} its special fiber with $j: X_{\text{\'et}} \to \mathfrak{X}_{\text{\'et}}$ and $i: \mathfrak{X}_{\kappa, \text{\'et}} \to \mathfrak{X}_{\text{\'et}}$ natural maps between sites.

 $\mathscr{S}_n(r)_{\mathfrak{X}} := \text{Syntomic sheaf modulo } p^n \text{ on } \mathfrak{X}_{\kappa, \text{\'et}}.$

Theorem 5 (Kato, Kurihara, Tsuji, Colmez-Nizioł)

For $0 \le k \le r$, the map $\alpha_{r,n}^{\mathrm{FM}} : \mathcal{H}^k(\mathscr{S}_n(r)_{\mathfrak{X}}) \longrightarrow i^* \mathrm{R}^k j_* \mathbb{Z}/p^n(r)_X',$ is a p^N -isomorphism for $N = N(F, p, r) \in \mathbb{N}$.

Let \mathcal{M} be a Fontaine-Laffaille module over \mathfrak{X} of level $s \in [0, p-2]$ such that there exists an affine covering $\{\mathfrak{U}_i\}_{i\in I}$ of \mathfrak{X} with \mathfrak{U}_i "small" and $\mathcal{M}_{\mathfrak{U}_i}$ is a free relative Fontaine-Laffaille module. Let \mathbb{L} denote the associated étale \mathbb{Z}_p -local system on the generic fiber X.

Theorem 6 (A.)

For $0 \le k \le r - s - 1$ the Fontaine-Messing period map

$$\alpha_{r,n}^{\mathrm{FM}}: \mathcal{H}^k[\mathscr{S}_n(\mathcal{M},r)_{\mathfrak{X}}) \longrightarrow i^* \mathrm{R}^k j_* \mathbb{L}/p^n(r)_X',$$
 is a p^N -isomorphism for $N=N(p,r,s)\in\mathbb{N}.$

References

- [1] P.Colmez, W. Nizioł. Syntomic complexes and p-adic nearby cycles. Inventiones mathematicae, 208(1):1-108, 2017.
- [2] Abhinandan, Crystalline representations and Wach modules in the relative case. Preprint, 2021.
- [3] Abhinandan, Syntomic complex and p-adic nearby cycles. Preprint, 2022.